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Abstract. We define and study a notion of ring of formal power series with exponents
in a cyclically ordered group. Such a ring is a quotient of various subrings of classical
formal power series rings. It carries a two variable valuation function. In the particular
case where the cyclically ordered group is actually totally ordered, our notion of formal
power series is equivalent to the classical one in a language enriched with a predicate
interpreted by the set of all monomials.

1. Introduction

Throughout this paper, k will denote a commutative ring with unity. Further, C will
denote a cyclically ordered abelian group, that is, an abelian group equipped with a ternary
relation (·, ·, ·) which has the following properties:

(1) ∀a, b, c, (a, b, c) ⇒ a 6= b 6= c 6= a
(2) ∀a, b, c, (a, b, c) ⇒ (b, c, a)
(3) ∀c ∈ C, (c, ·, ·) is a strict total order on C \ {c}.
(4) (·, ·, ·) is compatible, i.e., ∀a, b, c, d, (a, b, c) ⇒ (a + d, b + d, c + d).

For all c ∈ C, we will denote by ≤c the associated order on C with first element c. For
Ø 6= X ⊂ C, minc X will denote the minimum of (X,≤c), if it exists.

For instance, any totally ordered group is cyclically ordered with respect to the following
ternary relation: (a, b, c) iff a < b < c or b < c < a or c < a < b. Such a cyclically ordered
group is called a linear cyclically ordered group.

Let us review quickly two basic facts about cyclically ordered groups.

A theorem of Rieger (see [?], IV, 6, th. 21), shows that there exist a totally ordered
abelian group G and a positive element z in G, such that the subgroup Zz generated by z
is cofinal in G and C ' G/Zz, cyclically ordered in the following way: for all a, b, c ∈ G,
(a+Zz, b+Zz, c+Zz) holds if and only if there exist a′ ∈ a+Zz, b′ ∈ b+Zz, c′ ∈ c+Zz
such that one of 0 ≤ a′ < b′ < c′ < z or 0 ≤ b′ < c′ < a′ < z or 0 ≤ c′ < a′ < b′ < z holds.

Let l(G) be the maximal convex subgroup of G not containing z; i.e., l(G) is the largest
proper convex subgroup of G. Note that l(G) ⊆ ] − z, z[ . Then the restriction of the
canonical epimorphism p : G → C to l(G) is a monomorphism of totally ordered groups.
Its image l(C) is called the linear part of C because it is the largest totally ordered
subgroup of C with respect to the ordering ≤ε that we will define in Section ??.

By Swirczkowski’s theorem (see [?]), C/l(C) embeds in the multiplicative group of all
complex numbers of absolute value 1.
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In Section ?? we define k[[C]], the ring of formal power series with coefficients in k and
exponents in C, and k[C], its ring of polynomials, in such a way that they coincide with
the classical notions when C is a linear cyclically ordered group.

In Section ??, we prove the following:

Proposition 1. There exists a subring A of k[[G]] such that A/(1 − Xz)A ' k[[C]].

For such a ring A, let pA be the canonical mapping from A onto A/(1 − Xz)A.

In Section ??, we give some examples of units and zero divisors in k[[C]]. Then, we
prove:

Proposition 2. (a) The semi-group of all zero divisors of k[[C]] is the union of the
following two subsets:
- the pA-image of the semi-group of all zero-divisors of A,
- the pA-image of the set of all elements σ such that σA ∩ (1 − Xz)A 6= σ(1 − Xz)A.
(b) The group of all units of k[[C]] is the pA-image of the semi-group of all elements σ
such that σA + (1 − Xz)A = A.

Theorem 3. If k[[C]] is a field, then k is a field, C is torsion free and C/l(C) embeds in
the group of all roots of unity. Conversely, if k is a field, C is torsion free and C/l(C) is
finite, then k[[C]] is a field.

Open Problem: Suppose that k[[C]] is a field. Does this imply that C/l(C) must be
finite?

Theorem 4. k[C] is an integral domain if and only if k is an integral domain and C is
torsion free.

Open Problem: Is it true that k[[C]] is an integral domain if and ony if C is torsion
free and k is an integral domain?

In Section ?? we define the cyclic valuation on k[[C]] as a mapping v from C × k[[C]]
onto C∞ := C ∪ {∞} (with a <b ∞ for all a, b ∈ C). This extends the classical notion of
a valuation in a natural way. Indeed, if C is a linear cyclically ordered group, then the
usual valuation can be defined first order by means of the v(a, ·), a ∈ C.

The first order properties of the cyclic valuations can be stated in several languages
which we will compare, and which we will use to define the first order notion of a cyclically
valued ring. Then, we prove:

Theorem 5. A domain R is a subring of a ring k[[C]], for some domain k, if and only
if the following conditions hold:

(a) C is isomorphic to a subgroup C ′ of the group of units of R,
(b) there is a mapping v : C ×R → C ∪ {∞} such that (R, v) is a cyclically valued ring,
(c) for all σ in R, the set {v(a, σ) | a ∈ C} is well-ordered.

Throughout this paper, N will denote the semi-group of all non-negative integers, and
N∗ = N \ {0} will denote the set all positive integers.
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2. Definition of formal power series

A subset S of C will be called well-ordered if the totally ordered set (S,≤0) is well-
ordered. It is not difficult to check that S is well-ordered if and only if, for all (or for
some) c ∈ C, the totally ordered set (S,≤c) is well-ordered.

Lemma 2.1. The sum of any two well-odered subsets of C is well-ordered.

Proof. Let S1 and S2 be two well-ordered subsets and S = S1 + S2 = {c1 + c2 | c1 ∈
S1, c2 ∈ S2}. The ordered set (C,≤0) is isomorphic to the subset [0, z[ of G. S1 and S2

are isomorphic to well-ordered subsets S̃1 and S̃2 of [0, z[, and S̃1 + S̃2 is a well-ordered
subset of [0, 2z[. S1 + S2 is isomorphic to ((S̃1 + S̃2) ∩ [0, z[) ∪ (((S̃1 + S̃2) ∩ [z, 2z[) − z),
and this set is well-ordered. Hence S1 + S2 is well-ordered. 2

For all σ ∈ kC , the set Supp (σ) := {c ∈ C | σ(c) 6= 0} is called the support of σ. We
denote by k[[C]] the subset of kC of all elements with well-ordered support. An element
σ of k[[C]] will be written in the form σ = Σc∈SσcX

c, where S is well-ordered, and for
all c in S, σc = σ(c). We call σ a cyclic formal power series. Note that if σc = 0 for all
c /∈ S ∩ S ′, then Σc∈SσcX

c = Σc∈S′σcX
c.

We let k[C] be the subset of k[[C]] of elements with finite support. An element of k[C]
will be called a polynomial.

We define addition on k[[C]] by:

σ + σ′ = Σc∈S∪S′(σc + σ′
c)X

c,

and multiplication by:

σ · σ′ = Σc∈S+S′





∑

d∈S, d′∈S′, d+d′=c

σd · σ′
d′



 Xc .

The small Σ is the symbol for a series, the large
∑

represents the sum in the ring. Indeed,
like in classical power series, one can prove that if S and S ′ are well-ordered, then for all
c ∈ S + S ′, there is only a finite number of (d, d′) ∈ S × S ′ such that d + d′ = c.

It is routine to prove that (k[[C]], +, ·) is a ring, and (k[C], +, ·) is a subring of (k[[C]], +, ·).
Note that k is embedded in k[C] in a natural way. Hence we will consider it as a subring

of k[C], the elements of k being the functions with support {0}. Also note that any ring
of formal power series is a ring of cyclic formal power series.

3. Cyclic versus classical formal power series rings

In this section, we focus on connections between rings of formal power series with
exponents in a cyclically ordered group, and rings of formal power series with exponents
in a totally ordered group. We set some notations which we will use throughout this
paper:

• G+ := {g ∈ G | g ≥ 0}.
• p is the canonical map from G onto C.
• k[G] is the ring of polynomials with (possibly negative) exponents in G and coefficients
in k.
• If k[[C]] or k[C] is an integral domain, then its fraction field is denoted k((C)) or k(C),
respectively.
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Note that, if k is a field, then the fraction field k((G)) of k[[G+]] is equal to k[[G]]
because G is totally ordered. It is also equal to

⋃

g∈G+
X−gk[[G+]]. Nothing of this kind

holds for k[[C]] (see Section ??), which need not even be an integral domain.

In order to prove that k[[C]] is isomorphic to quotients of classical power series rings,
we define the following subsets of k[[G]]:
AM := {σ ∈ k[[G]] | ∀c ∈ C, p−1({c})∩Supp(σ) is finite and p(Supp(σ)) is well-ordered}.
AM+ := {σ ∈ AM | Supp(σ) ≥ 0}.
Am := {σ ∈ AM | Supp(σ) is bounded}.
Am+ := AM+ ∩ Am.
A0 := {σ ∈ AM | Supp(σ) ⊂ [0, z[}.
A0 is an additive subgroup of k[[G]] but, in general, not a subring.

Observe that we can’t drop the condition “p(Supp(σ)) is well-ordered” in the definition
of the ring AM . Indeed, we can find a subset S of G which is well-ordered although p(S) is
not. Take G = Q (the group of rational numbers) and z = 1. Then S = {n + 1

n
| n ∈ N∗}

is well-ordered, while p(S) = { 1
n
| n ∈ N∗} is not well-ordered.

Lemma 3.1. The sets AM and Am are subrings of k[[G]], AM+ and Am+ are subrings of
k[[G+]].

Proof. Note that these sets are non-empty because they contain 0 and 1 = X0.
We prove here that AM is a subring of k((G)), the other proofs being similar. Take

σ, σ′ ∈ AM . Then Supp(−σ) = Supp(σ), hence −σ ∈ AM . Further, p(Supp(σ + σ′)) ⊂
p(Supp(σ)∪Supp(σ′)) = p(Supp(σ))∪p(Supp(σ′)) is well-ordered. For all c ∈ C, p−1(c)∩
(Supp(σ)∪Supp(σ′)) = (p−1(c)∩Supp(σ))∪ (p−1(c)∩Supp(σ′)) is finite. Hence, σ +σ′ ∈
AM .

Set S := Supp(σ) and S ′ := Supp(σ′). We have that Supp(σσ′) ⊂ S +S ′. Furthermore,
the mapping p : G →→ C is a group homomorphism, hence p(S + S ′) = p(S) + p(S ′)
is well-ordered by Lemma ??. It follows that p(Supp(σσ′)) is well-ordered. Now, take
any c ∈ C and assume that p−1({c}) ∩ Supp(σσ′) is infinite. Set H := {h ∈ S | ∃h′ ∈
S ′, p(h + h′) = c}, H ′ := {h′ ∈ S ′ | ∃h ∈ S, p(h + h′) = c}. Then one of H and H ′ is
infinite. But, since each element in p(S) has finitely many pre-images, H is finite if and
only if p(H) is, and the same holds for H ′ and p(H ′), where p(H) and p(H ′) are both
well-ordered in C0. Assume for instance, that p(H) is infinite, hence it contains an infinite
increasing sequence, then p(H ′) contains an infinite decreasing sequence, a contradiction.
Consequently, σσ′ ∈ AM . 2

Proposition ?? can be rephrased as follows:

Proposition 3.2. Let A stand for any of the rings AM+, AM , Am+, Am, then k[[C]] '
A/(1 − Xz)A.

Proof. We first prove this proposition for A = AM . We define p′A : AM →→ k[[C]].
For an element Σg∈SσgX

g in AM , we set

p′A(Σg∈SσgX
g) = Σc∈p(S)





∑

h∈S∩p−1({c})

σh



 Xc ∈ k[[C]].
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This definition makes sense because for each c in p(S), S ∩ p−1({c}) is a finite set. It is
routine to check that the map p′A is a ring epimorphism.

Take
σ = Σg∈SσgX

g ∈ AM

and assume that S is the support of σ. We have X−g0σ ∈ A+ for g0 = min(Supp(σ)).
Therefore, we may assume that σ ∈ AM+. We have

p′A(σ) = Σc∈p(S)





∑

h∈S∩p−1({c})

σh



 Xc .

Hence,

p′A(σ) = 0 if and only if, for all c ∈ p(S),
∑

h∈S∩p−1({c})

σh = 0 .

We assume p′A(σ) = 0 and prove that σ = (1 − Xz)σ′ for some σ′ ∈ AM . For c ∈ C, we
will denote by c̃ the unique element of [0, z[ such that p(c̃) = c. Set S̃ := {c̃ | c ∈ p(S)} =
[0, z[∩(p−1(p(S))). Since p(S) is well-ordered and isomorphic to S̃, S̃ +Nz is well-ordered
too.

For c ∈ p(S), p−1({c}) = c̃+ Zz, and S ∩ p−1({c}) is finite. Let mc and nc in N be such
that σc̃+mc·z 6= 0, σc̃+nc·z 6= 0, and for n > nc or n < mc, σc̃+n·z = 0. It follows that

σc̃+nc·z = −σc̃+mc·z − σc̃+(mc+1)·z − · · · − σc̃+(nc−1)·z .

For all c ∈ p(S) and mc ≤ i < nc, set σ′
c̃+i·z := σc̃+mc·z +σc̃+(mc+1)·z + · · ·+σc̃+i·z; otherwise

set σ′
g := 0. Further, set

σ′ = Σg∈S̃+Nzσ
′
gX

g .

This is an element of AM+ since S̃ + Nz is well-ordered, and for all c ∈ C, p−1({c})∩
Supp(σ′) is either empty or bounded above by c̃ + ncz showing that its cardinality is at
most nc. Write

(1 − Xz)σ′ = Σg∈Gσ′′
gX

g ∈ k[[G]] .

If g /∈ Supp(σ′) ∪ (z + Supp(σ′)), then σ′′
g = 0. If g ∈ Supp(σ′) ∪ (z + Supp(σ′)), then

there are c ∈ p(S) and mc ≤ i ≤ nc with g = c̃ + i · z. We have:

σ′′
g =











σ′
c̃+mc·z = σc̃+mc·z if i = mc

σ′
c̃+i·z − σ′

c̃+(i−1)·z = σc̃+i·z if mc < i < nc

−σ′
c̃+(nc−1)·z = −σc̃+mc·z − σc̃+(mc+1)·z − · · · − σc̃+(nc−1)·z = σc̃+nc·z if i = nc .

It follows that (1 − Xz)σ′ = σ, that is, σ ∈ (1 − Xz)AM .
Since p′A is a ring homomorphism and p′A(1 − Xz) = 0, we have shown that ker pA =

(1 − Xz)AM , and therefore, k[[C]] ' AM/(1 − Xz)AM . Observe that p′A is indeed the
canonical mapping pA.

If A stands for AM+, Am or Am+, then ker p′AdA = ker p′A ∩ A = (1 − Xz)AM ∩ A =
(1 − Xz)A. 2

Since A0 ∪ {Xz} generates Am+, we have:

Remark 3.3. The family of all subrings A of AM containing Xz and such that pA(A) =
k[[C]] can be ordered by inclusion. Its smallest element is Am+. Indeed, any element σ
of AM is equivalent modulo (1 − Xz)AM to an element of A0, namely (pAdA0)

−1(pA(σ)).
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4. Units and zero divisors

It is not difficult to see that k[[C]] may contain zero divisors. For example, let m > 1
be an integer and suppose that there is some g ∈ G such that mg = z. Then

(1 − Xg)(1 + Xg + X2g + · · · + X(m−1)g) = 1 − Xz ∈ p−1
A ({0}) .

Since C ' G/Zz where G is torsion free, such m and g exist if and only if C is not torsion
free. Therefore, we have shown:

Lemma 4.1. If k[[C]] is an integral domain, then C is torsion free.

Trivial examples of units are the elements Xc, with c ∈ C. The following properties of
cyclically ordered groups will provide less trivial examples.

Definition 4.2. We set P := {c ∈ C | (0, c,−c)}. From the general properties of
cyclically ordered groups, we know that there exists at most one element of order 2, which
we shall denote by ε. Hence, C is a disjoint union C = P ∪ −P ∪ {c | c = −c}, where
{c | c = −c} has one or two elements. If there is such an ε in C, then we have b ≤0 ε ≤0 −a
for all (a, b) ∈ P ×P . If not, then ε will denote the element of the Dedekind completion of
(C,≤0) such that for any a, b ∈ P , b ≤0 ε ≤0 −a. In both cases, we define ≤ε by: a ≤ε b if
and only if either (a, b) ∈ −P × (P ∪{0}), or (a, b) ∈ (−P × (−P ∪{0}))∪ ((P ∪{0})×P )
and a ≤0 b.

The linear part l(C) of C defined in the introduction is the largest totally ordered
subgroup of (C,≤ε). (C is a linear cyclically ordered group if and only if C = l(C).) As
mentioned, l(C) is the image of the maximal convex subgroup l(G) of G not containing z
under the canonical epimorphism p : G → C. Its restriction to l(G) is a monomorphism
of totally ordered groups. We lift this monomorphism to k[[l(G)]] by setting pl(λXg) =
λXpl(g) for λ ∈ k and g ∈ l(G), and then using additivity and multiplicativity, such that
pl becomes a field embedding. Via this embedding, we can assume k[[l(G)]] ⊂ k[[C]].

If k is a field, then every element of k[[l(G)]] \ {0} and every non-zero monomial is a
unit in k[[C]]. But k[[C]] may also contain units which are not monomials and do not
belong to k[[l(G)]]. Indeed, let m > 1 be an integer. If λ1, λ2 are elements of k such that
λm

1 − λm
2 = 1 and if there exists g such that mg = z, then

(λ1 − λ2X
g)(λm−1

1 + λm−2
1 λ2X

g + · · · + λm−1
2 X(m−1)g) = (λm

1 − λm
2 Xz) ∈ p−1

A ({1})
For example, if 2g = z, (

√
2 + Xg)(

√
2 − Xg) = 2 − Xz ∈ p−1

A ({1}).
Let us give yet another example of a unit. Let q be a positive integer and G be the

subgroup of Q
−→×Q generated by (1, 0) = z, (0, 1) and (1

q
, 1

q
). Now let C := G/(Zz),

k := Q, c := p(1
q
, 1

q
) ∈ C, Si := {p( i

q
, n + i

q
) | n ∈ N} = ic + p({0} ×N) for 0 ≤ i ≤ q − 1,

S :=
⋃q−1

j=0 Sj, and σ := Σs∈SXs = Σn∈NXp(0,n)(1 + Xc + · · · + X(q−1)c). Then σ ∈ k[[C]]

because S is a well-ordered subset of C. Since Xqc = Xp(0,1), we have:

(1 − Xc)σ = (1 − Xc)Σn∈NXp(0,n)(1 + Xc + · · · + X(q−1)c)
= (1 − Xqc)Σn∈NXp(0,n) = Σn∈NXp(0,n) − Σn∈N

∗Xp(0,n) = 1.

Hence, 1 − Xc and σ are units.

Proof of Proposition ??.
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(a) First we note that 1 − Xz is not a zero divisor. Indeed, 1 is a regular element, hence
for all σ in A, the lowest element of the support of σ remains the lowest element of the
support of (1 − Xz)σ. It follows that if σ1 /∈ (1 − Xz)A and there exists σ2 such that
σ1σ2 = 0, then we can assume that σ2 /∈ (1−Xz)A. Consequently, pA(σ1) is a zero divisor
in k[[C]].

Assume that σ1 is a regular element. Then pA(σ1) is a non-trivial zero divisor if and
only if pA(σ1) 6= 0 and there exists σ2 ∈ A such that pA(σ2) 6= 0 and pA(σ1)pA(σ2) = 0,
or equivalently:

(*) σ1 /∈ (1 − Xz)A and there exist σ2 /∈ (1 − Xz)A, τ ∈ A such that σ1σ2 = (1 − Xz)τ .

Now consider the condition σ1A ∩ (1 − Xz)A 6= σ1(1 − Xz)A. This is equivalent to
∃σ2 ∈ A, ∃τ ∈ A, σ1σ2 = (1 − Xz)τ and σ1σ2 /∈ σ1(1 − Xz)A (because σ1(1 − Xz)A ⊂
σ1A ∩ (1 − Xz)A). Since σ1 is a regular element, this condition is equivalent to (*).

(b) For all σ ∈ A,

pA(σ) is a unit ⇔ ∃σ′, pA(σσ′) − 1 = 0
⇔ ∃σ′, σσ′ − 1 ∈ (1 − Xz)A
⇔ ∃σ′, ∃τ, σσ′ − 1 = (1 − Xz)τ
⇔ ∃σ′, ∃τ, σσ′ + (1 − Xz)τ = 1.

2

Proof of Theorem ??.

First assume that k[[C]] is a field. Take σ ∈ k \ {0}, that is, Supp(σ) = {0}, and let
σ−1 be the inverse of σ in k[[C]]. {0} = Supp({1}) = Supp(σσ−1) = Supp(σ−1) (because
σ ∈ k), hence σ−1 ∈ k. Therefore, k is a field. From Lemma ??, it follows that C is
torsion free.

We know that C/l(C) embeds in the multiplicative group of all complex numbers of
absolute value 1. We prove that, under our present hypothesis, every element of C/l(C)
must be a root of unity. In order to deduce a contradiction, assume that there exists g ∈ G
such that l(G) < g < z + l(G) and that the class ḡ of g modulo l(G) and the class z̄ of z
modulo l(G) are rationally independent. Set c := p(g) ∈ C, c 6= 0, and σ := (1−Xc), and
let σ−1 := Σs∈CλsX

s be the inverse of (1 − Xc) in k[[C]]. Then 1 = Σs∈C(λs − λs−c)X
s.

Hence, for all s ∈ C,

λs − λs−c =

{

0 if s 6= 0
1 if s = 0

If λ0 6= 0, then λnc = λ0 6= 0 for all n > 0. If λ0 = 0, then λ−c = 1 6= 0, and λ−nc = λ−c =
1 6= 0 for all n > 0. Assume λnc 6= 0 for all n > 0 (the case of ∀n > 0, λnc 6= 0 for all
n > 0 is similar, because 0 6= −c ∈ C).

The quotient group Γ = G/l(G) is archimedean because Zz is cofinal in G. In the
archimedean group Γ, z̄ and c̄ are rationally independent, hence the image of Zc̄ in the
quotient group Γ/(Zz̄) is dense. In particular, it is not well-ordered. This implies that
{nc | n > 1} is a subset of Supp(σ−1) which is not well-ordered: a contradiction.

Now assume that C is torsion free and C/l(C) is finite. Let n be the cardinality of
C/l(C); then C/l(C) is isomorphic to the group of all nth roots of unity. By hypothesis,
there exist g in C and l in l(C) such that ng = l and C is the disjoint union l(C) ∪
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(g + l(C)) ∪ · · · ∪ ((n − 1)g + l(C)). Note that, for every element c of C, nc belongs
to l(C). For c1 and c2 in C we set c1 <′ c2 ⇔ nc1 <ε nc2. Then (C,<′) is a totally
ordered group. Let S ⊂ C. Then there exist subsets S0, S1, . . . , Sn−1 of l(C) such that
S = S0 ∪ (g + S1) ∪ · · · ∪ ((n − 1)g + Sn−1). It follows that S is well-ordered in (C,<ε) if
and only if S0, S1, . . . , Sn−1 are well-ordered, if and only if S is well-ordered in (C,<′).
Hence, k[[C]] is isomorphic to k[[l(C)]][Y ], with Y n = X l ∈ k[[l(C)]]. In particular, k[[C]]
is a field. 2

¿From Lemma ??, we see that a necessary condition for k[[C]] to be an integral domain
is that C is torsion free. Another condition is that k be an integral domain. We shall
prove that for the ring of polynomials k[C], these conditions are also sufficient. For this
purpose, we need the following well known lemma.

Lemma 4.3. Let k be a field containing a primitive n-th root of unity ζ, where n ≥ 2.
Then 1 − Xn =

∏n−1
i=0 (ζ i − X). Let P (X) = 1 + · · · and Q(X) = 1 + · · · be two

polynomials of k[X] such that P (X)Q(X) = 1 − anXn, with a ∈ k. Then, there exists a
partition {I, J} of {0, . . . , n− 1} such that P (X) = (

∏

i∈J ζ i)
∏

i∈I(ζ
i − aX) and Q(X) =

(
∏

i∈I ζ i)
∏

i∈J(ζ i − aX). In particular, P (X) and Q(X) belong to Z(ζ)[aX].

Proposition 4.4. Assume that k is an integral domain. Then 1 − Xz is prime in k[G+]
if and only if z is not divisible by any natural number bigger than 1 in G.

Proof. First assume that there are two polynomials P and Q in k[G+] such that
P (X)Q(X) = 1 − Xz. After multiplying with a suitable constant, we can assume that
P (X) = 1 + λ1X

a1 + · · · , Q(X) = 1 + λ′
1X

b1 + · · · . Then P (X)Q(X) = 1 + λ1X
a1 +

λ′
1X

b1 + λ1λ
′
1X

a1+b1 + T (X), where all terms in T (X) are of degree > min(a1, b1) > 0. It
follows that λ1X

a1 +λ′
1X

b1 = 0. In particular, a1 = b1 and therefore, Supp(P )∩ Supp(Q)
contains non-zero elements.

Since k is assumed to be an integral domain, we may replace it by its fraction field. So
we may assume k is a field. For further purposes, we also assume that k is closed under
roots of unity.

Let D(G) be the divisible hull of G. The number of exponents of the polynomials is
finite. So we can find rationally independent exponents α1, . . . , αn, such that z and the
exponents of P and Q are all in Nα1 + · · ·+ Nαn (the existence of the αi’s can be proved
by an iterative process like the Algorithm of Perron quoted in [?]). Set X1 = Xα1 , . . . ,
Xn = Xαn .

Let z = c1α1 + · · · + cnαn, with ci ∈ N , so

1 − Xz = 1 − Xc1
1 · · ·Xcn

n .

We have P (X1, . . . , Xn)Q(X1, . . . , Xn) = 1 − Xc1
1 · · ·Xcn

n . But Supp(P )∩ Supp(Q) con-
tains non-zero elements. Hence there exists i, say i = n, such that degXn

(P ) ≥ 1 and
degXn

(Q) ≥ 1 (hence cn = degXn
(P ) + degXn

(Q) ≥ 2). Therefore, P and Q are in

k(X
1/cn

1 , . . . , X
1/cn

n−1 )[Xn].

Let ζ ∈ k be an n-th root of unity, and set Y := X
c1/cn

1 · · ·Xcn−1/cn

n−1 Xn. Then, by
Lemma ??, P and Q are elements of Z(ζ)[Y ]. Furthermore, since degXn

(P ) ≥ 1 and
degXn

(Q) ≥ 1, we have degY (P ) ≥ 1 and degY (Q) ≥ 1. Set d := degY (P ). Then there

exists rd ∈ Z(ζ) \ {0} such that one of the monomials in P is rdX
dc1/cn

1 · · ·Xdcn−1/cn

n Xd
n =

rdX
(d/cn)(c1α1+···+cnαn) = rdX

(d/cn)z. Hence (d/cn)z ∈ G.
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Set d
cn

= u
v

with u, v in N∗ and gcd(u, v) = 1, and let u′, v′ in Z such that uu′ +vv′ = 1.

Then d
cn

z = u
v
z, hence v′z + u′ u

v
z = vv′+uu′

v
z = 1

v
z and 1

v
z ∈ G. But d < cn, therefore

v > 1. Hence z has a proper divisor in G.
If 1 − Xz divides P (X)Q(X), then we can assume that P (X), Q(X), and Xz are

polynomials (in the usual sense) with a finite number of variables, and they belong to
a factorial ring (by embedding k in its fraction field). Therefore, there exist P1(X) and
Q1(X) such that P1(X)Q1(X) = 1−Xz, and as in the previous case, we see that z has a
proper divisor. 2

Proof of Theorem ??.

The condition “z is not divisible by an integer bigger than 1” is equivalent to “C is torsion
free”. Now, Theorem ?? follows from Proposition ??. 2

5. Cyclic valuations

In this section, k is an integral domain. If C contains a non-trivial 2-torsion element,
then we let ε be this element; otherwise, <ε has been defined in Definition ??. We set
Cε = C ∪{ε}. We define a mapping v from Cε × k[[C]] onto C∞ by setting v(a, σ) = mina

Supp(σ) if σ 6= 0 and v(a, 0) = ∞.

It is routine to check that (k[[C]], +, v(a, ·)) is a valued group, for every a ∈ Cε. In
particular, for all σ1 and σ2 in k[[C]], v(a, σ1 − σ2) ≥a mina(v(a, σ1), v(a, σ2)), and if
v(a, σ1) 6= v(a, σ2), then v(a, σ1 − σ2) = mina(v(a, σ1), v(a, σ2)).

The behaviour of the v(a, ·)’s with respect to multiplication is not trivial. However,
observe that for all a, b in C and σ in k[[C]], v(a, σ) = v(b,Xb−aσ) + a − b. If τ is a
monomial of degree b − a, then v(a, σ) = v(b, τσ) + a − b.

If C is a linear cyclically ordered group, then k[[C]] is the usual ring of formal power
series, and we know that there is a canonical valuation defined on k[[C]]. This valuation
is v(ε, ·) but is not among the v(a, ·)’s, a ∈ C. Indeed, for all a ∈ C, we can find some
σ ∈ k[C] (for instance, a sum of two monomials) such that v(ε, σ) 6= v(a, σ).

If C is not a linear cyclically ordered group, then there exist a and b in P with a + b ∈
−P , with P as defined in Definition ??. Therefore, v(ε, 1 + Xa) = v(ε, 1 + Xb) = 0,
v(ε, (1 + Xa)(1 + Xb)) = a + b 6= 0 = v(ε, 1 + Xa) + v(ε, 1 + Xb). Hence, v(ε, ·) is not a
valuation in the usual sense.

We consider k[[C]] ∪Cε as a structure of a two-sorted language L containing the usual
function, relation and constant symbols for the ring and the value group sort. Then L∪{v}
will be the language L together with a function symbol interpreted by the mapping v.

The support mapping is interpretable in the language L ∪ {v}. Indeed, let σ ∈ k[[C]].
Then the support of σ is the set Supp(σ) = {v(a, σ) | a ∈ C} \ {∞}. It follows that
the set of all monomials and the degree map of monomials are definable in the language
L∪ {v}. In the same way, the set of all constant polynomials is definable in the language
L ∪ {v}.
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Observe that we can also characterize the monomials by other means. Indeed, σ ∈
k[[C]] \ {0} is a monomial if and only if ∀τ ∈ k[[C]], v(v(0, σ), τσ) = v(0, σ) + v(0, τ). If
σ is a monomial, its degree is v(a, σ) = v(0, σ) for all a ∈ C.

Another characterization of the constant polynomials follows from:

Remark 5.1. Let σ ∈ k[[C]] \ {0}, then σ is a constant if and only if one of the following
equivalent formulas is satisfied in M .

(a) ∀a ∈ Cε, ∀τ ∈ k[[C]], v(a, στ) = v(a, τ).
(b) ∃a ∈ C, ∀τ ∈ k[[C]], v(a, στ) = v(a, τ).

Proof. If σ is a constant, then (a) holds. (a) =⇒ (b) is trivial.
Assume that σ is not a constant and take a ∈ C. If v(a, σ) 6= 0 and if τ = 1, then

v(a, στ) 6= v(a, τ) = 0. So we suppose that v(a, σ) = 0. Then there exist λ, λ1 ∈ k,
g1 ∈ C, with λ1 6= 0 6= λ, and 0 <0 g1 <0 a, such that σ = λ + λ1X

g1 + · · · , (necessarily,
all the elements of the support are in [0, a[, that is, greater than or equal to 0 with respect
to ≤a). Then set τ = Xa−g1 , v(a, στ) = a 6= v(a, τ). This proves that (b) implies that σ
is a constant. 2

Before we define structures in the language L ∪ {v}, we focus on two languages for
the rings k[[C]]. First, we let M be a unary predicate interpreted by: M(σ) ⇔ σ is a
monomial. Then we have the following

Proposition 5.2. In our structure k[[C]]∪C∞, the languages L∪{v} and L∪{v(0, ·), M}
are bi-interpretable.

Proof. The set of all monomials is definable in L ∪ {v}. Hence, L ∪ {v(0, ·), M} is
interpretable in L∪{v}. Now, let a ∈ C and σ ∈ k[[C]] and take τ an invertible monomial
such that v(0, τ) = a. Then, v(a, σ) = v(0, τ−1σ) + a. Hence, L ∪ {v} is interpretable in
L ∪ {v(0, ·), M}. 2

In the ring k[[C]], the multiplicative subgroup {Xc | c ∈ C} is isomorphic to the group
C. We can introduce a cyclic order on {Xc | c ∈ C} which is isomorphic to the cyclic
order of C. We can also define a valuation in a different way: set v′(Xa, σ) := Xb if and
only if v(a, σ) = b, and for all a ∈ C, set v′(Xa, 0) := 0 (the 0 of the ring replaces the ∞
of C). Now, we consider k[[C]] as a structure of a language L′ consisting of the language
of rings together with the predicate v, a predicate interpreted by the multiplicative group
{Xc | c ∈ C}, and a predicate for the cyclic order on {Xc | c ∈ C}, with, for all a, b in C,
(Xa, Xb, 0).

Proposition 5.3. The subgroup {Xc | c ∈ C} is not definable in the language L ∪ {v}.
Proof. Assume that k is algebraically closed, and that C contains a torsion free divisible

subgroup C1, such that C1 is a direct summand, C = C1 ⊕ C2. We know that C1 is a
Q-vector space, hence it admits a basis. For all element c in this basis, we let αc be a
constant, with 0 6= αc 6= 1. For c ∈ C2, we set αc = 1, and we extend c 7→ αc as an
isomorphism from the group C into (k, ·). Now, we set ∀c ∈ C, ϕ(Xc) := αcX

c, and we
extend ϕ to a homomorphism from k[[C]] onto k[[C]], such that the restriction of ϕ to
k is the identity. Then ϕ induces an L′ ∪ {v′(X0, ·)}-isomorphism. We have constructed
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two distinct L′ ∪{v′(X0, ·)}-structures on k[[C]]. But in both cases, the induced L∪{v}-
structure is the same. It follows that the subgroup {Xc | c ∈ C} is not definable in the
language L∪ {v}. However, it is interpretable because it is isomorphic to the quotient of
the group of invertible monomials by the group of invertible constants. 2

The remainder of this section is devoted to the definition of L∪{v}-structures involving
the rings k[[C]]. We will specify which of them can be embedded in a ring of formal power
series with cyclically ordered exponents.

Definition 5.4. Let (R, +, · ) be a domain, v a mapping from C ×R onto C ∪ {∞}, and
σ ∈ R. The support of σ is the set Supp(σ) := {v(a, σ) | a ∈ C}; σ is a monomial if the
support of σ is a singleton. σ is a constant if σ = 0 or Supp(σ) = {0}. We will say that
(R, v) is a cyclically valued ring if the following conditions hold.
(1) For all a ∈ C, (R, +, v(a, ·)) is a valued group.
(2) For all σ ∈ R and a ∈ C, if v(a, σ) = a, then there exists a unique monomial µa,σ such
that v(a, σ − µa,σ) 6= a.
(3) For all σ ∈ R and a ∈ C, mina(Supp(σ)) exists and is equal to v(a, σ).
(4) For all σ and σ′ in R, Supp(σσ′) ⊂ Supp(σ) + Supp(σ′).
(5) For all n ∈ N∗, a ∈ C, σ ∈ R and σ′ ∈ R, if Supp(σ) ∩ (a − Supp(σ′)) = {a1, . . . , an},
then µa,σσ′ = µa1,σµa−a1,σ′ + · · · + µan,σµa−an,σ′ .

Clearly, in the language L ∪ {v}, the ring k[[C]] is a cyclically valued ring.

Observe that if (R, v) is a cyclically valued ring, then the set of all constants of R is a
subring of R. Indeed, let σ1 and σ2 be constants. By condition (4), σ1σ2 is a constant.
Let a ∈ Supp(σ1 + σ2). Then a = v(a, σ1 + σ2) ≥a mina(v(a, σ1), v(a, σ2)) = 0. Hence
a = 0. Theorem ?? now follows from:

Theorem 5.5. Let (R, v) be a cyclically valued ring with ring of constants k. Assume
that the support of every element of R is well-ordered, and that there is an isomorphism
c 7→ mc from (C, +) to (R, ·) such that for all c ∈ C, mc is a monomial of degree c. Then
the cyclically valued ring (R, v) is isomorphic to a subring of k[[C]].

Proof. Let σ ∈ R and a ∈ C. If v(a, σ) 6= a, we set σa := 0; if v(a, σ) = a, we
set σa := µa,σm

−1
a . In any case, σa is a constant. We have Σa∈CσaX

a ∈ k[[C]], because
the support of σ is well-ordered. Now, we set ϕ(σ) := Σa∈CσaX

a. From (3), we deduce
∀a ∈ C, ∀σ ∈ R, v(a, ϕ(σ)) = v(a, σ).

Take σ, σ′ ∈ R. For all a ∈ C, (σ + σ′)a = σa + σ′
a, hence ϕ(σ + σ′) = ϕ(σ) + ϕ(σ′). By

(5), we have ϕ(σσ′) = ϕ(σ)ϕ(σ′). We have proved that ϕ is a homomorphism.
Assume that σ 6= σ′, and let a ∈ Supp(σ − σ′). Then v(a, σ − σ′) = a, and

v(a, (σ − σ′) − (σama − σ′
ama)) = v(a, (σ − σama) − (σ′ − σ′

ama))
≥a mina(v(a, σ − σama), v(a, σ′ − σ′

ama))
>a a.

Hence, v(a, σama−σ′
ama) = a. In particular, σa 6= σ′

a. It follows that ϕ is one-to-one. 2
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