
STRATIFICATIONS IN VALUED FIELDS

IMMANUEL HALUPCZOK

Abstract. In these notes, I present a new, strong notion of stratifications

which describe singularities of sets in Henselian valued fields. In the first part,

I give the definition, some examples, and I state the main result about their
existence; in the second part, I explain how such a stratification in a valued

field induces a classical Whitney stratification in R.

1. Introduction

A classical tool to describe singularities of a subset X of Rn (or of Cn) are
Whitney stratifications. More precisely, if X is, say, a semi-algebraic subset of Rn
(i.e., a set given by polynomial equations and inequations), then by a “Whitney
stratification for X”, in these notes we mean a partition of Rn into smooth sub-
manifolds S0, . . . , Sn where Sd has dimension d, such that X is a union of some of
the connected components of these sets, and such that certain regularity conditions
relating the different sets Sd are satisfied. (Often, one only considers partitions
S0, . . . , SdimX of X, but for the purpose of these notes, it is more handy to work
with partitions of Rn.) Roughly, these regularity conditions imply that S0 contains
all the points where X is most singular, S1 contains the slightly less singular points,
etc.; see Fig. 1 for an example and Definition 3.1 for a precise definition.

The main goal of these notes is to present “t-stratifications”, a somewhat similar
notion in Henselians valued fields, which has been introduced in [1]; I will first define
and explain that notion and then show how it is related to Whitney stratifications.
Let us fix some notation for the remainder of these notes.
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Figure 1. A surface X with a Whitney stratification (S3 is the
whole complement R3 \X).
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Notation 1.1. Let K be a Henselian valued field of equi-characteristic zero (i.e.,
both K and its residue field have characteristic zero). We set:

valued field K
v−→ Γ ∪ {∞} value group

∪
valuation ring OK

res−→ k residue field
∪

maximal ideal MK

A t-stratification is a partition S0 ∪̇ . . . ∪̇ Sn = Kn that describes singularities
of a set X ⊆ Kn. Again, Sd is of dimension d and again, S0 contains the worst
singularities, and so on. However, the regularity conditions which ensure this are
different and in a certain sense much stronger than the ones of Whitney stratifica-
tions. First of all, they imply that a t-stratification for a set X does not only see
the singularities of X itself, but also those of its image in the residue field. (To be
precise, some singularities might only become visible to the t-stratification if one
works in the algebraic closure of K.)

Describing the singularities in the residue field is, by itself, not yet a strong
property of t-stratificatoins. However, the notion of t-stratification is invariant
under translation by elements of Kn and scaling by elements of K×. Thus, instead
of intersecting X with the closed ballOnK and quotienting by the corresponding open
ball Mn

K (which yields the image of X in the residue field), we can also intersect
X with any other closed ball B ⊆ Kn and take the corresponding quotient. The
strength of t-stratifications lies in the fact that a single stratification simultaneously
describes the singularities in all those quotients.

2. Definition of t-stratifications

We will need the notion of a ball in Kn. The most natural norm in a valued
field is the maximum norm, so a ball in Kn is just a product of one ball in each
coordinate, all of which are of the same radius. More precisely, we define:

Definition 2.1. For a tuple a = (a1, . . . , an) ∈ Kn, we set v(a) := mini v(ai). An
open ball in Kn is a set of the form

B(a,> λ) := {x ∈ Kn | v(x− a) > λ}

for some a ∈ Kn and λ ∈ Γ.

Before we go on, let us first fix the context in which we will be working. Whitney
stratifications exist in different contexts: algebraic sets, semi-algebraic sets, analytic
sets, and several others. We have similar choices for t-stratifications, the simplest
one being to work with algebraic subsets of Kn. However, since we will use balls in
the definition of a t-stratification and since balls are not algebraic sets, it is more
natural to work with a larger class of sets, namely definable sets in the sense of
model theory (to be more precise: sets definable in the language of rings, with a
predicate for the valuation ring). These should be thought of as the right analogue
in Henselian valued fields of the semi-algebraic sets in Rn. Readers who are not
interested in definable sets can just stay in the algebraic world everywhere, except at
one place (in Definition 2.3), where we need to work with a definable map between
balls; however, by simply ignoring the word “definable” there, one still gets a good
approximation to the notion of t-stratification.
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For readers who want to know it more precisely, here is a quick formal definition
of definable sets.

Definition 2.2. The class of definable sets is the smallest class of subsets of Kn

(for all n) which satisfies:

(1) algebraic sets (i.e., zero sets of polynomials) are definable;
(2) if x is an n-tuple of variables and f, g ∈ K[x] are polynomials, then {x ∈

Kn | v(f(x)) ≥ v(g(x))} is definable;
(3) boolean combinations of definable sets are definable;
(4) if X ⊆ Kn is definable, then so is π(X), where π : Kn � Kn−1 is a

coordinate projection.

A map between definable sets is called definable if its graph is definable.

To get a rough idea of what this means: if K is algebraically closed, then (1)–
(3) suffice to obtain all definable sets (this result, called quantifier elimination,
was first proven in [3]); there are other results describing definable sets even more
precisely, and one can also obtain similar results for general Henselian K; the most
important one is probably the cell decomposition result by Denef–Pas [2]. This
allows for example to define a good notion of dimension for definable sets.

Now let us come back to our t-stratifications and introduce the regularity con-
dition. The central ingredient is a notion of being “roughly translation invariant
in d dimensions” on a given ball B. More precisely, for suitable balls B ⊆ Kn, we
will require that there exists a d-dimensional vector space V ⊆ Kn such that all
sets Si ∩B and also the set X ∩B are “translation invariant in the directions V up
to a small perturbation”. Here, one has to be careful about the notion of “small
perturbation”; the following definition makes this precise.

Definition 2.3. Suppose B ⊆ Kn is a ball and Y1, . . . , Y` are arbitrary subsets of
Kn.

(1) We say that (Yi)i is V -translatable on B, where V ⊆ Kn is a vector space,
if there exists a definable bijection φ : B → B with the following properties:
(a) For each i and for any two points z, z′ ∈ B with z − z′ ∈ V , we have

z ∈ φ(Yi ∩B) iff z′ ∈ φ(Yi ∩B).
(b) For any two points y, y′ ∈ B, we have v

(
(φ(y) − φ(y′)) − (y − y′)

)
>

v(y − y′).
(2) We say that (Yi)i is d-translatable on B for some d ∈ N if there exists a

d-dimensional V ⊆ Kn such that (Yi)i is V -translatable on B.

Note that 0-translatable is an empty condition, whereas n-translatable means
that each of the sets Yi is either disjoint from B or contains B. Note also that if
Y ∩B 6= ∅ and Y is d-translatable on B, then Y has dimension at least d.

Remark 2.4. Condition (b) says: applying φ does not change the difference of two
points y, y′ too much. In particular, if φ is differentiable, then it implies that the
derivative of φ is close to the identity map Kn → Kn, which in turn implies that
the tangent space of each set Yi at any point of B is close to a space containing
V . Neither the derivative of φ nor these tangent space need to really exist, but
the statement about tangent spaces can be made precise anyway by introducing a
suitable notion of “approximate tangent space”.
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Now we can define the notion of a t-stratification describing the singularities of
a set X ⊆ Kn. A first attempt could be to require that for any point x ∈ Sd,
there exists an open ball B containing x such that everything is d-translatable on
B (everything means: X and all sets Sj). However, such a stratification would not
see the singularities of the image of X in the residue field: to get that, we need that
B is at least as big as the ball we are quotienting out when we pass to the residue
field (i.e.,Mn

K). It turns out that the right notion of t-stratification is obtained by
requiring d-translatability on every ball where we can possibly hope for it: any ball
which is disjoint from S0 ∪ · · · ∪ Sd−1. Indeed, if B would not be disjoint from Sj
for some j < d, then Sj would not be d-translatable on B since it has dimension
j < d. Here is the complete definition.

Definition 2.5. Let X ⊆ Kn be a subset. A t-stratification for X is a partition
Kn = S0 ∪̇ . . . ∪̇ Sn with the following properties; we write S≤d for the union
S0 ∪ · · · ∪ Sd.

(1) Each set S≤d is algebraic.
(2) Each Sd is either empty or of dimension d.
(3) For each open ball B ⊆ Kn, if B ∩ S≤d−1 = ∅ (for some d ≥ 1), then

(X,Sd, . . . , Sn) is d-translatable on B.

Now we can state the main theorem of [1].

Theorem 2.6 ([1, Theorem 1.1]). Let K be a Henselian valued field with charK =
char k = 0. For any algebraic (or more generally definable) subset X ⊆ Kn, there
exists a t-stratification (Si)i. Moreover, if X is defined over a subring R ⊆ K, then
the Si can also be chosen to be defined over R.

Note that even if X is allowed to be definable, we can find a t-stratification such
that the sets S≤i are algebraic. (And to make things precise: by a “definable set
which is defined over a subring R”, we mean that the polynomials appearing in (1)
and (2) of Definition 2.2 have coefficients from R.)

Remark 2.7. Such a result can also be formulated “uniformly in K”: using the
language from algebraic geometry, given X defined over R, we can find (Si)i defined
over R such that for all K containing R (Henselian and of equi-characteristic 0),
we have that (Si(K))i is a t-stratification for X(K).

Example 2.8. Consider the cusp curve X = {(x, y) ∈ K2 | x3 = y2} (see Figure 2).
Here, we set S0 := {(0, 0)} (the singularity), S1 := X \ S0, and S2 := K2 \
X. To check whether this is a valid t-stratification for X, we have to verify the
translatability condition on different balls B.

• By Definition 2.5, we have to check that (X,S2) is 2-translatable on any
ball B ⊆ S2; but in that case, we have B ∩X = ∅ and B ∩ S2 = S2, which
indeed implies 2-translatability.
• Now suppose B∩X 6= ∅. If B∩S0 6= ∅, no condition is required, so suppose

(0, 0) /∈ B; then we have to check that X is 1-translatable on B (or, more
precisely, that (X,S1, S2) is 1-translatable on B, but this then follows).
The computation is not very difficult and left to the reader.

Example 2.9. The surface in Figure 1 is a standard example for Whitney strat-
ifications illustrating that it is not enough to require the strata to be smooth.
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Figure 2. This is a picture of the cusp in R2, but nevertheless, it
illustrates well what happens in K2: in any square containing the
singularity (0, 0), the curve is not close to something translation
invariant; however, in the little squares which have been drawn, it
is almost straight, and indeed it can be made translation invariant
by a “small perturbation” in the sense of Definition 2.3.

(Otherwise, one could take S0 = ∅ and S1 to be the whole line.) The corre-
sponding surface also exists in valued fields and we get exactly the corresponding
t-stratification. Indeed, one can check:

• Away from S1, the surface is 2-translatable.
• On a ball intersecting S1 but not S0, the surface is V -translatable where V

is the direction of the line S1.
• The surface is not translatable on any ball containing S0, since the inter-

section with a plane Y perpendicular to S1 has a little loop if Y does not
contain S0, whereas it is just a cusp curve if Y does contain S0.

Example 2.10. Consider the hyperbola X = {(x, y) ∈ K2 | xy = 1}. Since this
does not seem to have a singularity, a first guess would be to set S1 := X and
S2 := K2 \ X. However, it turns out that X is not 1-translatable on any ball B
which contains O2

K , and the reason is a singularity which we overlooked. To see it,
first choose any element r ∈ K× of positive valuation and scale everything down
by a factor r; we get a new set X ′ = {(x, y) ∈ K2 | xy = r2}. Obviousely, a
t-stratification for X should also scale down to a t-stratification of X ′. Now the
image of X ′ in the residue field is {(x, y) ∈ k2 | xy = 0} (since v(r2) > 0), and
here, we see the missing singularity at (0, 0). To obtain a valid t-stratification, it
suffices to remove the point (0, 0) from S2 and to put it into S0 instead.

This example also illustrates one of the stranger properties of t-stratifications:
instead of adding (0, 0) to S0, any other point of O2

K would also have worked, so
t-stratifications are pretty uncanonical. One could get rid of this uncanonicity using
some abstract nonsense, but on the other hand, one strength of the theorem about
existence of t-stratifications is that in higher dimensions (i.e., if a whole stratum Sd
is uncanonical for d ≥ 1), we can choose those non-canonical points in a uniform
way.
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3. Connection to Whitney stratifications

Up to now, the relation between t-stratifications and Whitney stratifications
seems rather vague. In this section, we will make it precise. We start by recalling
the definition of a Whitney stratification.

The regularity condition in the definition of a Whitney stratification describes
the tangent space TySj of a stratum Sj at a point y ∈ Sj near a point x ∈ Sd for
d < j. Roughly, TySj should be close to a space T containing (a) the tangent space
TxSd and (b) the line connecting y to the closest point of Sd. Here is a formal
definition.

Definition 3.1. Let X ⊆ Rn be a subset. A Whitney stratification for X is a
partition Kn = S0 ∪̇ . . . ∪̇ Sn satisfying the following properties; we write S≤d for
the union S0 ∪ · · · ∪ Sd.

(1) X is a union of some of the connected components of the sets Sd.
(2) Each set S≤d is algebraic.
(3) For each d, Sd is either empty or smooth of dimension d.
(4) Whitney’s condition (b): suppose that for some d, j with d < j we have

one sequence of points xµ ∈ Sd and one sequence yµ ∈ Sj , both of which
converge to the same point x ∈ Sd for µ → ∞. Suppose moreover that
the limit spaces T := limµ→∞ TyµSj and T ′ := limµ→∞ R · (xµ − yµ) both
exist (these limits are computed in the corresponding Grassmanians). We
require that under these assumptions, we have T ′ ⊆ T .

Before the definition, I claimed that T is also required to contain TxSd (this
is called Whitney’s condition (a)); indeed, this can be deduced from Whitney’s
condition (b) by choosing a sequence xµ which converges to x more slowly than yµ,
and which approaches x from any direction of TxSd.

Remark 3.2. For a t-stratification, we have d-translatability on a neighbourhood
of any point x ∈ Sd; intuitively, this is closely related to the condition TxSd ⊆ T
of Whitney stratifications: by Remark 2.4, the approximate tangent space of Sj at
y contains the approximate tangent space Sd at x; so one just needs to remove the
words “approximate” and instead insert “for y → x” to obtain Whitney’s condition
(a).

However, up to now we saw no obvious relation between the d-translatability
condition of a t-stratifications and the full condition (b) of Whitney; indeed, to get
such a relation, we will first need to prove an additional property of t-stratifications.

3.1. t-stratifications induce Whitney stratifications. Now we can formulate
a precise relation between Whitney stratifications and t-stratifications, namely that
for suitable valued fields K, a t-stratification of Kn induces a Whitney stratification
of Rn. I only proved this under a rather strong assumption on K coming from model
theory: K is an ℵ1-saturated elementary extension of R; however, it is plausible
that the only assumption which is really needed (and which follows from the model
theoretic one) is that K is a real closed field strictly containing R.

On such a field K, there is a natural valuation, obtained by defining the valuation
ring to be the convex closure of R: OK =

⋃
r∈R>0

(−r, r). With this definition,
one easily checks that the maximal ideal conists of all “infinitesimal” elements:
MK =

⋂
r∈R>0

(−r, r), that the residue field is isomorphic to R, and that K is
Henselian.
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Theorem 3.3 ([1, Theorem 6.11]). Let K be as above and let X(R) ⊆ Rn be a
semi-algebraic set. Suppose that (Si(K))i is a t-stratification for the corresponding
semi-algebraic set X(K) ⊆ Kn, and suppose that it is defined over R ⊂ K. (Such
t-stratifications exist by Theorem 2.6, since X is defined over R.) Then (Si(R))i is
a partition of Rn which is a Whitney stratification for X(R), except that the strata
might be only C1 instead of smooth.

We obtain smooth strata if we additionally assume that (Si(K̃))i is a t-stratification

for X(K̃), where K̃ is the algebraic closure of K. (This can be assumed by Re-
mark 2.7.)

The reason for this slightly strange additional condition to get smooth strata is
that we did not put any smoothness condition in the definition of t-stratifications.
However, a variant of Theorem 3.3 also works for R replaced by C (also yielding a
Whitney stratification whose strata are C1), but there, C1 already implies smooth.

The philosophy behind the proof of this theorem is that if we have a statement
in R which speaks about a limit for some ε → 0, then this can be translated to
an equivalent statement in K, where ε is replaced by an “infinitesimal” element
of K, i.e., an element of positive valuation. A standard example (which already
works when K is any field extension of R, with the natural valuation defined as
above) is that the derivative of a polynomial f(x) ∈ R[x] at a ∈ R is equal to

res( f(a+h)−f(a)h ) for any h ∈ K of positive valuation. If K is an ℵ1-saturated
elementary extension of R, then this philosophy can be formulated as a precise
theorem, which allows to translate a pretty large class of statements. In particular,
it can be applied to the intutitive similarity between translatability and Whitney’s
condition (a) from Remark 3.2, yielding an actual implication. In a similar way, one
obtains that each Sd(R) is C1 and all the other properties of Whitney stratifications,
except for (the full version of) Whitney’s condition (b). In the last part of these
notes, I will present a result about t-stratifications in general which shows that
they automatically satisfy an analogue of Whitney’s condition (b) in the valued
field setting, thus filling the gap.

4. An additional property of t-stratifications

Let nowK again be an arbitrary Henselian valued fieldK with charK = char k =
0, and let us suppose that (Si)i is a t-stratification for some set X ⊆ Kn. Consider
an open ball B ⊆ Kn which is disjoint from S0 ∪ · · · ∪ Sd−1 and an open sub-ball
B′ ⊆ B which additionally is disjoint from Sd. By definition of t-stratification, we
have V -translatability on B for some d-dimensional V and V ′-translatability on
B′ for some V ′ of dimension at least d + 1. It is not hard to check that we can
choose V ′ to contain V , but apart from that, we do not (yet) know anything about
V ′. Under the assumption that B′ is sufficiently close to Sd, we can prove such an
additional statement, which corresponds exactly to the missing part of Whitney’s
condition (b).

Theorem 4.1. Let K, X, (Si)i, d, and B be as above. Then there exists a λ ∈ Γ
with the following property. Suppose that B′ ⊆ B is an open subball which is disjoint
from Sd and suppose that we have points x ∈ Sd ∩B and y ∈ B′ with v(x− y) ≥ λ.
Then (X,Sd+1, . . . , Sn) is K · (x− y)-translatable on B′.
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Figure 3. An evil example: no matter how close y gets to x,
the logarithmic spiral restricted to the square around y is far from
being translatable in the direction x− y.

This result really consists of two statements: first, for any x, we get a statement
about all y which are sufficiently close, and second, this “sufficiently close” is, to
some extend, uniform in x.

A counter-example to the first statement would be (a valued field version of) a
logarithmic spiral (see Figure 3): here, no matter how close to x the point y is, S1

will not be K · (x−y)-translatable on any ball containing y. The idea to prove that
such a counter-example does not exist is that otherwise, we could find a straight
line L through x such that the intersection L∩S1 would be an infinite discrete set,
and for such a set, there would be no t-stratification.

Once we have a bound λ which works for one single x ∈ Sd ∩B, we may simply
apply an “almost-translation” sending x to any other point x′ ∈ Sd ∩ B to verify
that the same λ also works for x′.
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