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Abstract. Take a two-dimensional regular local ring R. The space of all val-

uations centered at R has a non-metric tree structure. However, the notion of

non-metric tree appearing in the literature does not guarantee the existence of

infimum for a non-empty set of valuations. We give a more general definition

of a rooted non-metric tree and prove that the set of all valuations has this

more general property, namely we prove that every non-empty set of valua-

tions centered at a two-dimensional regular domain has an infimum. We also

generalize some topological results related to a non-metric tree, for instance

that the weak tree topology is always coarser than the metric topology given

by any parametrization.

1. Introduction

Favre and Jonsson prove in [3] that the set of normalized valuations centered

at C[[x, y]] has a tree structure. In [4] Granja generalizes this result for the set of

normalized valuations centered at any two-dimensional regular local ring. In both

works, the definition of rooted non-metric tree is not satisfactory (see discussion

after definition 3.1). That is because the definition given in the cited papers does

not guarantee the existence of infimum of a non-empty set of valuations. The

existence of the infimum (of two valuations) is necessary in order to define some

important concepts, such as the weak tree topology (see definition 3.5 item (iv))

and the metric associated to a parametrization (definition 3.5 item (vi)).

In [3] it is stated that the existence of an infimum is a consequence of the given

definition, which is not the case (see example 3.3). In order to make the theory

developed there consistent, one needs to prove that there exists an infimum for

any given pair of valuations. In the case of R = C[[x, y]] it is proved in [3], using

the sequence of key polynomials associated to a valuation, that the infimum of

two valuations exists as long as we can find an element which “minimizes” both

valuations. An easy argument (Corollary 3.10) shows that one always can get such

an element (in fact, we can get it for any two-dimensional regular ring).

An interesting question which arises naturally is whether we can find an infimum

of any non-empty set of valuations centered at a two-dimensional regular local ring.

One of the purposes of this paper is to give a positive answer for this question.
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Theorem 1.1. Let R be a two-dimensional regular local ring and take any non-

empty S = {νi}i∈I of centered valuations νi : R −→ R∞ normalized by νi(m) = 1

(see definition 2.5). Then there exists a valuation ν : R −→ R∞ which is the

infimum of S with respect to the order given by ν ≤ µ if and only if ν(φ) ≤ µ(φ)

for every φ ∈ R.

By use of this theorem, it follows from [3] and [4] that the set of all centered

normalized valuations on R has a tree structure and associated to that a weak tree

topology (see definitions and discussions in section 3). Every parametrization (see

definition 3.5) of a tree induces a metric on that tree. A natural question is whether

this metric topology and the weak tree topology are comparable. The next theorem

answers positively this question.

Theorem 1.2. Let (T ,≤) be a rooted non-metric tree and let Ψ : T −→ [1,∞] be

a parametrization of T . The weak tree topology on T is coarser than or equal to

the topology associated with the metric dΨ.

In [3], two parametrizations (skewness and thinness) are presented to prove that

the normalized centered valuations on C[[x, y]] form a parametrized non-metric tree.

Also, in [4], Granja presents a new approach and a different parametrization that

proves the same result for any two-dimensional regular local ring. In [3], Favre and

Jonsson compare the topologies generated by their parametrizations and the weak

tree topology. Our theorem above gives a more general comparison, which does not

depend on the valuative origin of such tree.

We also show (Theorem 4.10) that if the tree has a point with uncountably many

branches, then these topologies are different.

2. Preliminaries

Definition 2.1. Take a commutative ring R with unity. A valuation on R is a

non-constant mapping ν : R −→ Γ∞ := Γ ∪ {∞} where Γ is an ordered abelian

group (and the extension of addition and ordering to ∞ is as usual), with the

following properties:

(V1): ν(φψ) = ν(φ) + ν(ψ) for all φ, ψ ∈ R.

(V2): ν(φ+ ψ) ≥ min{ν(φ), ν(ψ)} for all φ, ψ ∈ R.

(V3): ν(1) = 0 and ν(0) =∞.

We denote by W̃ the class of all valuations ν on R such that there exists φ ∈ R
with ν(φ) 6= 0 and ν(φ) 6=∞.

Definition 2.2. A valuation ν : R −→ Γ∞ is a Krull valuation if ν−1(∞) = {0}.

If R admits a Krull valuation ν then R is a domain and we can extend ν to a

valuation on the field K = Quot(R) by defining ν

(
φ

ψ

)
= νφ − νψ. The class of

all Krull valuations on R (or K) will be denoted by Ṽ. By definition Ṽ ⊆ W̃.
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Let ν : R −→ Γ∞ be a valuation. The subgroup of Γ generated by

{ν(φ) | φ ∈ R, ν(φ) 6=∞}

is called the value group of ν and is denoted by νR. The valuation is called trivial

if νR = {0}. The set pν := ν−1(∞) is a prime ideal of R, called the support of ν.

Given a valuation ν on R, we can define a Krull valuation

ν : R/pν −→ Γ∞

by defining ν(φ) = νφ. The local ring

Oν := {φ ∈ Quot (R/pν) | νφ ≥ 0}

with maximal ideal

mν := {φ ∈ Quot (R/pν) | νφ > 0}
is called the valuation ring of ν.

Definition 2.3. Two valuations ν and µ of R are called equivalent (ν ∼ µ) if the

following equivalent conditions are satisfied

i): For all φ, ψ ∈ R, ν(φ) > ν(ψ) if and only if µ(φ) > µ(ψ).

ii): There is an order preserving isomorphism f : νR −→ µR such that µ =

f ◦ ν.

iii): pν = pµ and Oν = Oµ.

Remark 2.4. If ν and µ are Krull valuations on R, then ν ∼ µ if and only if

Oν = Oµ. Also, if ν and µ are two real valued valuations, then ν ∼ µ if and only

if ν = Cµ for some C ∈ R and C > 0.

We denote by W (V) for the quotient of W̃ (Ṽ) by the equivalence relation

defined above.

If R is a local ring with maximal ideal m we define

νm(φ) = max{n | φ ∈ mn}.

We will say that a valuation ν is centered if ν(φ) ≥ 0 for all φ ∈ R and ν(φ) > 0

for all φ ∈ m. If R is Noetherian we get that m is finitely generated, so we can

define

ν(m) := min{ν(φ) | φ ∈ m}.
Observe that νm is a centered Krull valuation with νm(m) = 1.

Definition 2.5. Let R be a Noetherian local ring with maximal ideal m. Given

an ordered abelian group Γ and a positive element γ ∈ Γ we say that a valuation

ν : R −→ Γ∞ is normalized by γ if ν(m) = γ.

Fix an ordered abelian group Γ and consider the set

W̃Γ := {ν ∈ W̃ | ν : R −→ Γ∞}.

The family (
{ν ∈ W̃Γ | ν is normalized by γ }

)
γ∈Γ>0
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forms a partition of W̃Γ. If we consider the particular case of Γ = R, then every

valuation on W̃R is equivalent to a unique valuation normalized by 1.

Since Ṽ ⊆ W̃, we can ask whether there exists a natural subset of W̃ which can

be identified with Ṽ. Would W̃R work? We are looking here for a mapping

W̃R −→ Ṽ

which is surjective and injective. Moreover, would this map respect equivalence

classes? We present below a mapping which respects equivalence classes, is injective,

but not surjective.

Take an element ν ∈ W̃R. If pν = (0) then ν is a Krull valuation and we define

krull[ν] := ν. If pν 6= (0) we have that (0) ( pν ( m which means that pν = (φ)

where φ ∈ R is an irreducible element. Indeed, pν 6= m by assumption and if we

take any irreducible element φ ∈ m then

(0) ( (φ) ⊆ pν ( m

and (φ) = pν because (φ) is a prime ideal and dim(R) = 2. Define now the Krull

valuation

krull[ν] : R −→ Z× R

given by krull[ν](ψ) = (r, ν(ψ′)) where ψ = φrψ′ and (φ, ψ′) = 1.

Observe that this definition does not depend on the choice of φ. Indeed, since R

is an UFD, any irreducible element ψ ∈ pν = (φ), would be of the form u · φ where

u ∈ R×. It is easy to see that given two valuations ν, µ ∈ W̃R, then

ν ∼ µ⇐⇒ krull[ν] ∼ krull[µ].

Therefore, the mapping krull induces an injective mapping WR −→ V (which we

call again krull). We want to study the properties of this mapping.

Take any Krull valuation ν : R −→ Γ∞. If rk(Γ) = 1 then we can embed Γ in

R, so there exists a valuation ν′ ∈ W̃R equivalent to ν. If rk(Γ) = 2 then we can

embed Γ into RqR with the lexicographic order. If the projection of νR onto the

second coordinate of Rq R is non-zero, then we consider the valuation given by

ν′(φ) :=

{
π2(ν(φ)) , if π1(ν(φ)) = 0

∞ , otherwise.

This is a valuation on R and krull[ν′] ∼ ν. If the projection of νR onto the second

coordinate is zero, then there is no valuation ν′ on R such that krull[ν′] = ν.

Therefore, the mapping krull :WR −→ V is not surjective.

Example 2.6. Let’s give a few examples for the case of R = C[[x, y]]. The

monomial valuation on R defined by ν(x) = α and ν(y) = β is given by

ν
(∑

aijx
iyj
)

= min{iα+ jβ | aij 6= 0}.

(i): Take the monomial valuation defined by ν(x) = ν(y) = 1. Then ν is a

Krull valuation and ν = krull[ν].
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(ii): Let ν be the monomial valuation defined by ν(x) = 1 and ν(y) = ∞.

Then pν = (y) and krull[ν] is the monomial Krull valuation defined by

ν(x) = (0, 1) and ν(y) = (1, 0).

(iii): Consider the Krull monomial valuation µ : R −→ (Z× Z)∞ (with lexi-

cographic order) given by µ(x) = (1, 0) and µ(y) = (1, 1). This is a Krull

valuation on R such that there is no valuation ν on R with krull[ν] = µ.

This shows that krull :WR −→ V is not surjective.

3. The existence of infimum of a set of valuations

We will now define rooted non-metric trees and discuss the difference of our way

of defining it and the definition given in [3] and [4].

Definition 3.1. A rooted non-metric tree is a poset (T ,≤) such that:

(T1): There exists a (unique) smallest element τ0 ∈ T .

(T2): Every set of the form Iτ = {σ ∈ T | σ ≤ τ} is isomorphic (as ordered

set) to a real interval.

(T3): Every totally ordered convex subset of T is isomorphic to a real interval.

(T4): Every non-empty subset S of T has an infimum in T .

Remark 3.2. In [3] and [4] the authors define a rooted non-metric tree without

the condition (T4). In [3] the authors state that the property (T4) follows from

the completeness of the real numbers and the previous properties, which is not true,

as the following example shows.

Example 3.3. Take X = [0, 1) ∪ {x, y} and extend the natural order on [0, 1) to

X by setting x, y > [0, 1) and stating that x and y are incomparable. Then (T1),

(T2) and (T3) hold for (X,≤), but the set {x, y} does not have an infimum.

Lemma 3.4. Under the conditions (T1) and (T2), the following conditions are

equivalent:

(T4): Every non-empty subset S ⊆ T has an infimum.

(T4’): Given two elements τ, σ ∈ T , the set {τ, σ} has an infimum τ ∧ σ.

Proof. (T4’) is a particular case of (T4). Assume now that (T4’) holds and take

S ⊆ T a non-empty subset. We have to prove that S has an infimum. Fix an

element τ ∈ S and let

Φτ : [τ0, τ ] −→ [a, b] ⊆ R
be the isomorphism given by property (T2). For each σ ∈ S, by property (T4’),

there exists an element τ ∧ σ ∈ T which is the infimum of {τ, σ} in T . Define the

element

aσ = Φτ (τ ∧ σ) ∈ [a, b].

Since R is complete, we have that {aσ | σ ∈ S} has an infimum a0 ∈ [a, b]. Define

the element σ0 = Φ−1
τ (a0) ∈ T . Let’s prove that σ0 = inf S. If not, there would be

an element σ′0 ∈ T such that σ0 < σ′0 ≤ σ for all σ ∈ S. Then σ′0 ≤ τ ∧σ and hence
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a0 = Φτ (σ0) < Φτ (σ′0) ≤ aσ for all σ ∈ S, which shows that a0 < inf{aσ | σ ∈ S},
a contradiction. �

We will now define some properties associated with a non-metric tree.

Definition 3.5. (i): Given a non-empty subset S ⊆ T we define the join∧
τ∈S

τ of S to be the infimum of S.

(ii): Given two elements τ, σ ∈ T we define the closed segment connecting

them by

[τ, σ] := {α ∈ T | (τ ∧ σ ≤ α ≤ τ) ∨ (τ ∧ σ ≤ α ≤ σ)}.

We define similarly ]τ, σ] and [τ, σ[.

(iii): Take a point τ ∈ T and define an equivalence relation on T \{τ} by

setting

σ ∼τ α⇐⇒ ]τ, σ] ∩ ]τ, α] 6= ∅.

The tangent space of T at τ is the set of equivalence classes of T \{τ}.
An equivalence class [σ]τ ∈ T \{τ}/ ∼τ is called a tangent vector at τ .

(iv): The weak tree topology on T is the topology generated by the tangent

vectors at points of T , i.e., the open sets are unions of finite intersections

of sets of the form [σ]τ .

(v): A parametrization of a rooted non-metric tree is an increasing (or

decreasing) mapping Ψ : T −→ [−∞,∞] such that its restriction to every

totally ordered convex subset of T is an isomorphism (of ordered sets) onto

a real interval.

(vi): Given a (increasing) parametrization Ψ : T −→ [1,∞] we define a metric

on T by setting

dΨ(τ, σ) =

(
1

Ψ(τ ∧ σ)
− 1

Ψ(τ)

)
+

(
1

Ψ(τ ∧ σ)
− 1

Ψ(σ)

)
.

Remark 3.6. Observe that the definitions above depend strongly on the existence

of an infimum for any two given elements.

We will start to prove now that every pair of valuations centered at a two-

dimensional regular local ring (R,m) admits an infimum.

Let (R,m) be a local ring and consider the set

S =
(
R× ∪ {0}

)2 \ {(0, 0)}.

Define a relation on S by setting

(a1, b1) ∼ (a2, b2)⇐⇒ a1b2 − a2b1 ∈ m.

Lemma 3.7. This relation is an equivalence relation.
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Proof. This relation is clearly reflexive and symmetric, so it remains to show that it

is transitive. Suppose that (a1, b1) ∼ (a2, b2) and (a2, b2) ∼ (a3, b3). By definition,

we have that a1b2 − a2b1, a2b3 − a3b2 ∈ m. If a2 6= 0 then we have that

a2(a3b1−a1b3) = a3a2b1−a3a1b2+a1a3b2−a1a2b3 = a3(a2b1−a1b2)+a1(a3b2−a2b3) ∈ m

and since a2 ∈ R× we have that a3b1 − a1b3 ∈ m. If a2 = 0 then b2 6= 0 and we

have

b2(a3b1−a1b3) = b1a3b2−b1a2b3+b3a2b1−b3a1b2 = b1(a3b2−a2b3)+b3(a2b1−a1b2) ∈ m

and again a3b1 − a1b3 ∈ m. �

Suppose that (R,m) is a two-dimensional regular local ring and let (x, y) be a

regular system of parameters of m. Take a valuation ν centered at R.

Lemma 3.8. Take (a1, b1), (a2, b2) ∈ S with (a1, b1) ∼ (a2, b2). Then

ν(a1x+ b1y) > ν(m)⇐⇒ ν(a2x+ b2y) > ν(m).

Also, if there exist (a1, b1), (a2, b2) ∈ S such that ν(a1x+ b1y) > ν(m) and ν(a2x+

b2y) > ν(m) then (a1, b1) ∼ (a2, b2).

Proof. For the first statement, suppose that a1 6= 0 (and so a2 6= 0). Then

a2x+ b2y =
a2

a1

(
a1x+

a1b2
a2

y

)
=
a2

a1

(
a1x+ b1y − b1y +

a1b2
a2

y

)
=
a2

a1
(a1x+ b1y) +

a1b2 − a2b1
a1

y

Since (a1, b1) ∼ (a2, b2) we have that

ν

(
a1b2 − a2b1

a1
y

)
= ν(a1b2 − a2b1)− ν(a1) + ν(y) > ν(y) ≥ ν(m).

If ν(a1x+ b1y) > ν(m) then

ν(a2x+ b2y) ≥ min

{
ν

(
a2

a1
(a1x+ b1y)

)
, ν

(
a1b2 − a2b1

a1
y

)}
> ν(m),

and if ν(a1x+ b1y) = ν(m) < ν

(
a1b2 − a2b1

a1
y

)
then

ν(a2x+ b2y) = min

{
ν

(
a2

a1
(a1x+ b1y)

)
, ν

(
a1b2 − a2b1

a1
y

)}
= ν(m).

If a1 = 0 then b1 6= 0 6= b2 and we proceed similarly to get

a2x+ b2y =
b2
b1

(a1x+ b1y) +
a2b1 − a1b2

b1
x.

For the second statement, suppose that

ν(a1x+ b1y) > ν(m) and ν(a2x+ b2y) > ν(m)
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and that (a1, b1) � (a2, b2). This would mean that a1b2 − a2b1 /∈ m, so ν(a2b1 −
a1b2) = 0. Then we would have that

ν(x) = ν(a2b1x− a1b2x)

= ν(a2b1x+ b1b2y − b1b2y − a1b2x)

= ν(b1(a2x+ b2y)− b2(a1x+ b1y))

> ν(m)

and
ν(y) = ν(a2b1y − a1b2y)

= ν(a2b1y + a1a2x− a1a2x− a1b2y)

= ν(a2(a1x+ b1y)− a1(a2x+ b2y))

> ν(m)

which is a contradiction to ν(m) = min{ν(x), ν(y)}. �

Definition 3.9. Take an element λ ∈ S/ ∼. We say that

ν(x+ λy) > ν(m)

if ν(a1x + b1y) > ν(m) for some (and hence for every) (a1, b1) ∈ λ. Analogously,

we say that

ν(x+ λy) = ν(m)

if ν(a1x+ b1y) = ν(m) for some (and hence for every) (a1, b1) ∈ λ.

Corollary 3.10. Given two centered valuations ν, µ : R −→ R∞, there exist

elements a, b ∈ R× ∪ {0} such that ν(m) = ν(ax+ by) and µ(m) = µ(ax+ by).

Proof. By the second part of the Lemma above, there exist at most one λν ∈ S/ ∼
and at most one λµ ∈ S/ ∼ such that ν(x+ λνy) > ν(m) and µ(x+ λµy) = µ(m).

Since |S/ ∼ | ≥ 3 for any ring R there exists an element λ ∈ S/ ∼ with λν 6= λ 6= λµ.

Take any (a, b) ∈ λ and we have that ν(ax+by) = ν(m) and µ(ax+by) = µ(m). �

Corollary 3.11. If R = k[[x, y]] for an algebraically closed field k and ν 6= ν(m)·νm
then there exists λ ∈ P1(k) such that ν(x+ λy) > ν(m).

Proof. We will prove that if R = k[[x, y]] and ν 6= ν(m) · νm where k is any field,

then there exists a homogeneous polynomial m in (x, y) such that ν(m) > νm(m) ·
ν(m). Consequently, if k is algebraically closed then we can find a homogeneous

polynomial m of degree 1 such that ν(m) > νm(m) · ν(m) = deg(m) · ν(m) = ν(m).

Since ν 6= νm · ν(m) there exists a power series

p(x, y) =

∞∑
i=1

mi ∈ k[[x, y]] where mi are monomials in x and y,

such that ν(p) > νm(p) · ν(m) = k · ν(m) where k := ordm(p). Write p as sum of

homogeneous polynomials, i.e.,

p(x, y) =
∑
j≥k

pj , where pj =
∑

deg(mi)=j

mi.
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Since ν(pj) ≥ min{ν(mi) | deg(mi) = j} ≥ j · ν(m) and ν(p − pk) > k · ν(m) we

have that ν(pk) > k · ν(m). Indeed, if ν(pk) = k · ν(m) we would have that

ν(p) = min{ν(p− pk), ν(pk)} = ν(pk) = k · ν(m) = νm(p) · ν(m).

Therefore, there exists a homogeneous polynomial m ∈ k[[x, y]] (namely m = pk)

such that ν(m) > νm(m) · ν(m). If k is algebraically closed then m can be chosen

to be of degree one. �

Remark 3.12. In [3] Corollary 3.19, page 48, it is proved that if two valuations ν

and µ on C[[x, y]] are given where (x, y) are coordinates such that ν(x) = µ(x) =

1 ≤ min{ν(y), µ(y)} then there exists the infimum for ν and µ. By the Corollary

above, we conclude that every pair of valuations on C[[x, y]] have an infimum.

For each valuation ν centered at R take a regular system of parameters (x, y)

such that ν(x) ≤ ν(y). Let ν′ be the unique extension of ν to R
[y
x

]
with ν′

(y
x

)
=

ν(y)− ν(x) and let

q(1)
ν =

{
r ∈ R

[y
x

]
| ν′(r) > 0

}
.

Then the local ring

R(1)
ν = R

[y
x

]
q
(1)
ν

is called the quadratic dilatation of R with respect to ν. If dimR
(1)
ν = 1 then

ν = a · νm for some a > 0. If dimR
(1)
ν = 2 then we proceed as before to get a new

local ring R
(2)
ν which is the quadratic dilatation of R

(1)
ν with respect to ν(1). We

can construct inductively a sequence (finite or infinite)

R ⊆ R(1)
ν ⊆ R(2)

ν ⊆ . . . ⊆ R(n)
ν ⊆ . . .

of regular local rings such that R
(i)
ν is the quadratic dilatation of R

(i−1)
ν with respect

to ν(i−1) (here R
(0)
ν := R). Let λ(ν) be the length of the sequence above, i.e.,

λ(ν) =

n+ 1 , if dim
(
R

(n)
ν

)
= 2 and dim

(
R

(n+1)
ν

)
= 1

∞ , if dim
(
R

(n)
ν

)
= 2 for every n ∈ N.

It is proved in [1] that

Okrull[ν] =

λ(ν)⋃
i=0

R(i)
ν

where Okrull[ν] is the valuation ring of krull[ν] in Quot(R). The sequence
{
R

(i)
ν

}λ(ν)

i=0

is called the sequence of quadratic dilatations of ν and the sequence
{
m

(i)
ν

}λ(ν)

i=0

where m
(i)
ν = ν(i)

(
m

(i)
ν

)
is called the multiplicity sequence of ν.

Fix a regular system of parameters (x, y) of m. For each φ ∈ R \ {0} there exists

a unique decomposition φ = a1M1 + . . .+ anMn where ai ∈ R \m and Mi = xriysi
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is a pure monomial in (x, y), 0 ≤ i ≤ n. Take γ1, γ2 ∈ R∞ not both equal to ∞.

Then we define the valuation

ν(φ) = min
1≤i≤n

{riγ1 + siγ2}.

This is indeed a valuation (see Lemma 7 of [4]) and it is called a monomial valuation

in (x, y). It is a Krull valuation if γ1 6= ∞ 6= γ2 and it is centered if γ1 > 0 and

γ2 > 0 (see Lemma 8 of [4]).

To prove Theorem 1.1 we will use the following Theorem (Theorem 18 of [4]):

Theorem 3.13. Let ν and µ be two centered valuations of R and suppose that

µ ≤ ν. Assume that there exists s ≥ 0 such that dim
(
R

(i)
µ

)
= 2, m

(i)
ν = m

(i)
µ for

0 ≤ i ≤ s and either dim
(
R

(s+1)
ν

)
= 1 or dim

(
R

(s+1)
ν

)
= 2 and m

(s+1)
ν > m

(s+1)
µ .

Then R
(i)
ν = R

(i)
µ and 0 ≤ µ(i)(φ) ≤ ν(i)(φ) for each φ ∈ R(i), 0 ≤ i ≤ s. Moreover,

we have the following possibilities:

(a): If dim
(
R

(s+1)
ν

)
= 1, then λ(ν) = λ(µ) = s + 1 and ν(s) = µ(s) =

m
(s)
ν · νm(s) .

(b): If dim
(
R

(s+1)
ν

)
= 2 and dim

(
R

(s+1)
µ

)
= 1, then s + 1 = λ(µ) < λ(ν)

and there exists a monomial valuation µ(s+1) on R
(s+1)
ν such that µ(s) is

the restriction of µ(s+1) to R
(s)
ν .

(c): If dim
(
R

(s+1)
ν

)
= 2 and dim

(
R

(s+1)
µ

)
= 2, then s+1 < min{λ(ν), λ(µ)},

R
(s+1)
ν = R

(s+1)
µ , 0 ≤ µ(s+1)(φ) ≤ ν(s+1)(φ) for all φ ∈ R(s+1) and µ(s+1) is

a monomial valuation on R(s+1).

Proof of Theorem 1.1. Take two centered valuations ν, µ : R −→ R∞ such that

ν(m) = µ(m) = 1. Since R
(0)
ν = R = R

(0)
µ and 1 = ν(m) = m

(0)
ν = m

(0)
µ we can

define

s = max{i | R(i)
ν = R(i)

µ and m(i)
ν = m(i)

µ }.
If s = ∞ then Okrull[ν] = Okrull[µ] and consequently ν ∼ µ. Since these valuations

are normalized by ν(m) = 1 = µ(m) we must have that ν = µ and there is nothing

to prove. Therefore, assume that s < ∞. We define R(i) := R
(i)
ν = R

(i)
µ and

m(i) := m
(i)
ν = m

(i)
µ for 0 ≤ i ≤ s.

We will divide our proof in cases, starting with the case where R
(s+1)
ν 6= R

(s+1)
µ .

By Corollary 3.10 there exists x(s) ∈ m(s) such that

ν(s)
(
x(s)

)
= ν(s)

(
m(s)

)
= µ(s)

(
m(s)

)
= µ(s)

(
x(s)

)
.

Take any y(s) ∈ m(s) such that
(
x(s), y(s)

)
is a regular system of parameters for

m(s). Define ω(s) to be the monomial valuation on R(s) defined by

ω(s)
(
x(s)

)
= ν(s)

(
x(s)

)
= µ(s)

(
x(s)

)
and ω(s)

(
y(s)
)

= min{ν
(
y(s)
)
, µ
(
y(s)
)
}.

Let ω be the restriction of ω(s) to R. From the definition of monomial valuation,

we conclude that ω ≤ ν and ω ≤ µ. We want to prove that if ω′ is a valuation of

R such that ω ≤ ω′ ≤ ν and ω ≤ ω′ ≤ µ, then ω = ω′.
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If dim
(
R

(s+1)
ω′

)
= 1, applying Theorem 3.13 (a) for ω ≤ ω′ we have that ω = ω′.

If dim
(
R

(s+1)
ω′

)
= 2 then dim

(
R

(s+1)
ν

)
= 2 and dim

(
R

(s+1)
µ

)
= 2. Moreover,

applying Theorem 3.13 (c) for ω′ ≤ ν and ω′ ≤ µ we have that R
(s+1)
µ = R

(s+1)
ω′

and R
(s+1)
ν = R

(s+1)
ω′ . Consequently, R

(s+1)
ν = R

(s+1)
µ , which is a contradiction with

our assumption. Therefore, dim
(
R

(s+1)
ω′

)
= 1 and ω = ω′.

The remaining case is if R
(s+1)
ν = R

(s+1)
µ =: R(s+1) and m

(s+1)
ν 6= m

(s+1)
µ ,

say m
(s+1)
ν < m

(s+1)
µ . Define the valuation ω(s+1) in R

(s+1)
ν to be the monomial

valuation given by

ω(s+1)
(
x(s+1)

)
= min

{
ν(s+1)

(
x(s+1)

)
, µ(s+1)

(
x(s+1)

)}
and

ω(s+1)
(
y(s+1)

)
= min

{
ν(s+1)

(
y(s+1)

)
, µ(s+1)

(
y(s+1)

)}
,

where
(
x(s+1), y(s+1)

)
is a regular system of parameters for R(s+1) with the property

that ν(s+1)
(
x(s+1)

)
= ν(s+1)

(
m(s+1)

)
and µ(s+1)

(
x(s+1)

)
= µ(s+1)

(
m(s+1)

)
(such

x(s+1) exists by Corollary 3.10). Let ω be the restriction of ω(s+1) to R. Take a

valuation ω′ in R such that ω ≤ ω′ ≤ ν and ω ≤ ω′ ≤ µ. We want to prove that

ω = ω′.

From our definition, we get that m
(s+1)
ω = m

(s+1)
ν < m

(s+1)
µ . If m

(s+1)
ω′ > m

(s+1)
ω

then we would have that ω′ � ν which is a contradiction. Thus m
(s+1)
ω′ = m

(s+1)
ω .

Since ω′ ≤ µ and m
(s+1)
µ > m

(s+1)
ω′ we are in the situation of the Theorem 3.13, so

by (c) we have that ω′(s+1) is monomial (on
(
x(s+1), y(s+1)

)
). Therefore, ω′(s+1) =

ω(s+1) and consequently ω = ω′. �

Remark 3.14. In the proof, we used the fact that in the situation above, the

valuation ω′(s+1) is a monomial valuation on the coordinates
(
x(s+1), y(s+1)

)
. This

fact was not explicitly stated but appears in the proof of Theorem 3.13 in [4].

4. Comparison of topologies

In this section we compare the topologies defined above with classical topolo-

gies. Also, we compare the weak tree topology and the metric topology given by a

parametrization of a rooted non-metric tree.

The most well known topology on space of Krull valuations is the Zariski Topol-

ogy:

Definition 4.1. The Zariski topology on V is the topology generated by the sets

of the form

{[ν] ∈ V | φ ∈ Oν}

where φ ∈ K.

Remark 4.2. It is proved in [6] that this topology is compact (quasi-compact) but

not Hausdorff.
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The coarsest Hausdorff topology which is finer than the Zariski topology on V
is the Patch-Zariski topology:

Definition 4.3. The Patch-Zariski topology on V is defined to be the topology

generated by the sets of form

{[ν] ∈ V | φ ∈ Oν}

and

{[ν] ∈ V | ψ ∈ mν}

where φ, ψ ∈ K.

Remark 4.4. It is proved in [5] that the Zariski topology is spectral and that the

patch topology associated to it is indeed the Patch-Zariski topology defined above.

We will describe below an approach used by Berkovich in [2] and by Favre in [3]

to define topologies on sets of valuations.

Definition 4.5. Consider the subset Wm of W̃R consisting of all valuations nor-

malized by 1. The set Wm is called the valuative tree of R. We define the weak

topology on Wm to be the topology generated by the sets of the form

{ν ∈ Wm | ν(φ) > α} and {ν ∈ Wm | ν(φ) < α}

where α ∈ R and φ ∈ R.

Remark 4.6. It is easy to see that Wm ⊆ (R∞)
R

and that the topology defined

above is the topology on Wm induced by the product topology on (R∞)
R

where

R∞ is regarded with the order topology.

An interesting fact, proved in [3] (Theorem 5.1) is the following:

Proposition 4.7. The weak tree topology and the weak topology in Wm are the

same.

We will proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. It is enough to show that every subbasic set [σ]τ in the weak

tree topology is open in the metric topology, i.e., for every γ ∈ [σ]τ there exist ε > 0

such that

Bε(γ) = {α ∈ T | dΨ(γ, α) < ε} ⊆ [σ]τ .

By definition γ 6= τ so ε := dΨ(γ, τ) > 0. Let’s prove that Bε(γ) ⊆ [σ]τ .

Claim 4.8. α /∈ [σ]τ ⇐⇒ τ ∈ [α, σ].

Proof. Suppose first that α /∈ [σ]τ . This means that ]τ, α] ∩ ]τ, σ] = ∅. Suppose

towards a contradiction that τ > α, σ. Then we would have that α and σ are

comparable, say α ≤ σ. This means that ]τ, σ] ⊆ ]τ, α] which is a contradiction.

Consequently, τ < σ or τ < α. It remains to show that τ ≥ α ∧ σ. Suppose not,
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i.e., that τ < α ∧ σ. Then we would have that α ∧ σ ∈ ]τ, α] ∩ ]τ, σ] which is again

a contradiction.

For the converse, assume that τ ∈ [α, σ]. If τ = α ∧ σ then we get by definition

of α ∧ σ that ]τ, α] ∩ ]τ, σ] = ∅. Otherwise, assume w.l.o.g. that α ∧ σ < τ < α.

Then

]τ, α] = {γ ∈ T | τ < γ ≤ α}
and

]τ, σ] = {γ ∈ T | (α ∧ σ ≤ γ < τ) ∨ (α ∧ σ ≤ γ ≤ σ)}
which are disjoint sets. Therefore, α �τ σ, so α /∈ [σ]τ . �

Claim 4.9. If τ ∈ [α, σ] then dΨ(α, σ) = dΨ(α, τ) + dΨ(τ, σ)

Proof. Suppose w.l.o.g that α ∧ σ ≤ τ ≤ σ. Then we have that α ∧ τ = α ∧ σ and

that τ ∧ σ = τ . Therefore,

dΨ(α, σ) =

(
1

Ψ(α ∧ σ)
− 1

Ψ(α)

)
+

(
1

Ψ(α ∧ σ)
− 1

Ψ(σ)

)
=

(
1

Ψ(α ∧ τ)
− 1

Ψ(α)

)
+

(
1

Ψ(α ∧ τ)
− 1

Ψ(σ)

)
+

(
2

Ψ(τ ∧ σ)
− 2

Ψ(τ)

)
=

(
1

Ψ(α ∧ τ)
− 1

Ψ(α)

)
+

(
1

Ψ(α ∧ τ)
− 1

Ψ(τ)

)
+

(
1

Ψ(τ ∧ σ)
− 1

Ψ(σ)

)
+

(
1

Ψ(τ ∧ σ)
− 1

Ψ(τ)

)

= dΨ(α, τ) + dΨ(τ, σ).

�

Take an element α /∈ [σ]τ = [γ]τ . By Claim 4.8 we have that τ ∈ [α, γ]. By

Claim 4.9 we have that

dΨ(α, γ) = dΨ(α, τ) + dΨ(τ, γ) = dΨ(α, τ) + ε ≥ ε.

Therefore, α /∈ Bε(γ) and consequently, Bε(γ) ⊆ [σ]τ . �

We now analyse if these topologies are the same:

Theorem 4.10. If there is an element σ ∈ T with uncountably many branches

(|Tσ| > |N|) then the weak tree topology is not first countable. In particular, the

metric topology given by any parametrization is strictly coarser than the weak tree

topology.

Proof. Take an element σ ∈ T which has uncountably many branches. Observe that

[σ]τ contains all branches emanating from σ except for the one on which τ lies. That

means that any basic open set (therefore any open set) that contains σ contains

uncountably many branches emanating from σ. Take now any family {Vn}n∈N of

open sets containing σ. Since each Vn contains uncountably many branches, their

intersection contains uncountably many branches. Take one of these branches and

choose an element α on it. Take now the subbasic open set [σ]α. Then α ∈ Vn for
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all n ∈ N and α /∈ [σ]α, so Vn * [σ]α. Therefore, there is no countable system of

neighbourhoods for the element σ. �

Corollary 4.11. In the valuative tree, the weak tree topology is strictly coarser

than the topology generated by a parametrization.

Proof. It is proved in [3] that divisorial valuations have uncountably many branches.

By the theorem above we get that the weak tree topology and the metric topology

defined by a parametrization are different. �

Remark 4.12. As a criterion for the topologies to be equal or different, the fact

that there exists a point with uncountably many branches is the best that we

can get. We can present examples of trees in which every point has finitely (or

countably) many branches and the topologies are equal and examples where they

are different.
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