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Abstract

If the absolute Galois group GK of a field K is a direct product
GK = G1 × G2 then one of the factors is prosolvable and either G1

and G2 have coprime order or K is henselian and the direct product
decomposition reflects the ramification structure of GK . So, typically,
the direct product of two absolute Galois groups is not an absolute
Galois group.

In contrast, free (profinite) products of absolute Galois groups are
known to be absolute Galois groups. The same is true about free pro-p
products of absolute Galois groups which are pro-p groups. We show
that, conversely, if C is a class of finite groups closed under forming
subgroups, quotients and extensions, and if the class of pro-C absolute
Galois groups is closed under free pro-C products then C is either the
class of all finite groups or the class of all finite p-groups.

As a tool, we prove a generalization of an old theorem of Neukirch
which is of interest in its own right: If K is a non-henselian field then
every finite group is a subquotient of GK , unless all decomposition
subgroups of GK are pro-p groups for a fixed prime p.

Introduction

Problem 12.19 in [FJ] asks whether it is possible that the compositum of two
non-trivial Galois extensions L1, L2 of a hilbertian fieldK with L1∩L2 = K is
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separably closed. In [HJ] it was shown that the answer is no, since such a com-
positum is again hilbertian (for even stronger generalizations of Weissauer’s
Theorem cf. [Ha]). In this paper we show that this is not a specifically hilber-
tian phenomenon, but rather general. It rarely happens that the separable
closure Ksep of a field K is the compositum of non-trivial linearly disjoint
Galois extensions, i.e. that the absolute Galois group GK := Gal(Ksep/K)
of K is a proper direct product:

Theorem A Let K be a field with GK = G1×G2 for two non-trivial normal
subgroups G1, G2 of GK. Then GK is torsion-free, one of the factors is pro-
solvable and either G1 and G2 are of coprime order or K admits a non-trivial
henselian valuation. For each prime p dividing the order of both factors at
least one of the factors has abelian p-Sylow subgroups.

As a consequence of Theorem A we obtain a new proof for the negative
solution to the problem mentioned at the beginning (Corollary 2.4). It is
another consequence of Theorem A that the class of absolute Galois groups
is not closed under direct products: GQ×GQ, for example, is not an absolute
Galois group. In fact, the class of absolute Galois groups is not even closed
under semidirect products, not even if the factors have coprime order: If G1

and G2 are Sylow-subgroups of GQ w.r.t. distinct primes, then no group of
the form G1 XIG2 is an absolute Galois group (Proposition 2.6).

Theorem A is based on our general account ([K3]) of how valuations on
a field K are reflected in GK . We recall the necessary definitions and facts
in section 1. Section 2 proves a more detailed version (Theorem 2.3) as well
as a pro-p version (Proposition 2.2) of Theorem A and some consequences.
Section 3 generalizes an old Theorem of Neukirch:

Theorem B Let K be a non-henselian field. Then any finite group occurs
as subquotient of GK, unless all decomposition subgroups of GK (w.r.t. non-
trivial valuations) are pro-p groups for a fixed prime p.

Theorem 3.1 gives a refined variant.
The last section uses this result together with the machinery from [K3]

to characterize those classes of pro-C absolute Galois groups which are closed
under free pro-C products:

Theorem C Let C be a class of finite groups closed under forming subgroups,
quotients and extensions, let GC be the class of absolute Galois groups which
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are pro-C groups. Then GC is closed under free pro-C products iff

• either C is the class of all finite groups

• or, for some prime p, C is the class of all finite p-groups.

Acknowldgement: I would like to thank the referee for numerous very
helpful comments.

1 Background from ‘valois theory’

In this section we collect several facts from ‘valois theory’ (or ‘galuation
theory’, if you prefer), the Galois theory of valued fields, in particular how
henselianity determines and is determined by the absolute Galois group. We
always consider general (Krull) valuations, not just discrete or rank-1 val-
uations. For background in general valuation theory see e.g. [E], or the
Appendix of [DP], for a systematic developement of ‘valois theory’ see [K3].

For a valued field (K, v) we denote the valuation ring, its maximal ideal,
the residue field and the (additive) value group by Ov, Mv, Kv and Γv

respectively, always bearing in mind the three canonical exact sequences
associated to any valuation:

0 → Mv → Ov
φv→ Kv → 0

1 → O×
v → K× v→ Γv → 0

1 → 1 +Mv → O×
v

φv→ Kv× → 1

v is henselian, if it has a unique prolongation w to the separable closure
Ksep of K, or, equivalently, if Hensel’s Lemma holds which says that simple
zeros lift, i.e. that any monic f ∈ Ov[X], for which f ∈ Kv[X] (obtained
by applying the residue map φv to the coefficients of f) has a simple zero
a ∈ Kv, has a zero x ∈ Ov with φv(x) = a. In this case the action of GK on
Ksep is compatible with w (i.e. w(σ(x)) = w(x) for all σ ∈ GK , x ∈ Ksep)
and induces a canonical epimorphism GK →→ GKv with kernel

T = {σ ∈ GK | ∀x ∈ Ow : σ(x)− x ∈Mw},

the inertia subgroup of GK (w.r.t. w). And there is a canonical epimor-
phism

T →→ Hom(Γw/Γv, (K
sepw)×)
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with kernel

V = {σ ∈ GK | ∀x ∈ Ow : σ(x)− x ∈ xMw},

the ramification subgroup of GK , which is trivial for charKv = 0, and
which is the unique Sylow-q subgroup of T if q = charKv > 0. In particular,
V is a characteristic subgroup of T and thus normal in GK . The image T/V
is torsion-free abelian, the p-Sylow sugroups of T/V being free Zp-modules
of rank dimFp Γv/pΓv. Moreover, the three exact sequences split:

1 → T/V → GK/V → GKv → 1
1 → V → GK → GK/V → 1
1 → T → GK → GKv → 1

(the first by adjoining to K a compatible system of n-th roots of elements x ∈
K with v(x) 6∈ nΓv, the second, because the q-th cohomological dimension
cdqGK/V = cdqGKv ≤ 1 for charKv = q > 0, hence any epimorphism onto
G/V with pro-q kernel splits (cf. [KPR]), and the third by ‘transitivity’).
So GK/V ∼= T/V XIGKv, where the kernel of the action of GKv on the non-
trivial p-Sylow subgroups of T/V (which are characteristic subgroups of T/V ,
and thus normal in GK/V ) is GKv(µp∞ ), where µp∞ denotes the group of all
p-power roots of unity. This accounts for the well known example:

Example 1.1 Let K be a field with charK = 0 and assume that K contains
all roots of unity. Let Γ be an ordered abelian group and let

F := K((Γ)) := {α =
∑
γ∈Γ

aγt
γ | aγ ∈ K s.t. supp(α) is well-ordered}

be the generalized power series field with coefficients in K and exponents
in Γ, where supp(α) := {γ ∈ Γ | aγ 6= 0} is the ‘support’ of α. Then
v(α) := min supp(α) defines a henselian valuation on F with Fv = K and
Γv = Γ. Hence

GF
∼= (

∏
p prime

Z
dimFp Γ/pΓ
p )×GK .

Any torsion-free abelian profinite group A is of the shape A ∼=
∏

p prime Zαp
p for

some cardinals αp. For each prime p we consider the p-adic rationals Zp :=
Q∩Zp as ordered abelian subgroup of Q and and let Γp be the lexicographically
ordered direct sum of αp copies of Zp. Then Γp = qΓp for each prime q 6= p

4



and the Fp-dimensions of Γp/pΓp is αp. Taking Γ to be the lexicographic direct
sum of all Γp we obtain A as absolute Galois group, and, more generally,

GK((Γ))
∼= A×GK .

This isomorphism holds even if K does not contain all roots of unity but only
all p-power roots of unity for primes p with αp > 0.

Whenever v is henselian with Γv 6= pΓv and charKv 6= p, the intersection of
T with a p-Sylow subgroup P of GK is a non-trivial abelian normal subgroup
of P . This property, in turn, goes as Galois code for henselianity:

Fact 1.2 (Theorem 1 of [K3]) Let K be a field, let p be a prime, let P be a
p-Sylow subgroup of GK and assume that P is not procyclic or isomorphic to
Z2 XI Z/2Z.

Then K admits a henselian valuation v with charKv 6= p and Γv 6= pΓv

iff P has a non-trivial normal abelian subgroup.

We shall also need a pro-p version of Fact 1.2. We denote by K(p) the
maximal pro-p extension of K, i.e. the compositum of all finite Galois
extensions of K with Galois group a p-group. Then (K(p))(p) = K(p), i.e.
K(p) is p-closed, and GK(p) := Gal(K(p)/K) is the maximal pro-p quotient
of GK . We call a valued field (K, v) p-henselian if v extends uniquely to
K(p).

Fact 1.3 (for p = 2 section 4 of [EN], for p > 2 Main Theorem of [EK], new
proof in Theorem 2.15 in [K3]) Let p be a prime, let K be a field containing
a primitive p-th root ζp of unity (so charK 6= p) and assume that GK(p) is
not procyclic and not isomorphic to Z2 XI Z/2Z.

Then K admits a p-henselian valuation v with charKv 6= p and Γv 6= pΓv

iff GK(p) has a non-trivial abelian normal subgroup.

A field may have more than one henselian or p-henselian valuation. If v
and w are two valuations of a field K we say that v is finer than w (w is
coarser than v) if Ov ⊆ Ow or, equivalently (!), Mw ⊆ Mv. In this case,
v induces a valuation v/w on Kw, and v is henselian (resp. p-henselian) iff
both w and v/w are. In particular, coarsenings of (p-)henselian valuations
are (p-)henselian, the coarsest (p-)henselian valuation always being the trivial
valuation.
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Fact 1.4 ([EE] resp. Prop. 2.8 in [K3]) If v and w are henselian (resp.
p-henselian) valuations on a field K such that Kv is not separably (resp.
p-)closed then v is comparable to, i.e. finer or coarser than w. So if K is
not separably (resp. p-)closed, there is a canonical (p-)henselian valua-
tion on K, namely the coarsest (p-)henselian valuation with separably (resp.
p-)closed residue field, if there is any such, and the finest (p-)henselian valua-
tion otherwise. In particular, K admits a non-trivial (p-)henselian valuation
iff the canonical (p-)henselian valuation on K is non-trivial.

It is immediate from the definition that if v is a (p-)henselian valuation on
K and if w is any coarsening of v then Tw ⊆ Tv, where Tv and Tw are the
corresponding inertia subgroups of GK resp. GK(p). As a consequence of
Fact 1.3 and Fact 1.4 one now obtains

Fact 1.5 (for p = 2, section 4 of [EN], for p > 2, Cor. 2.3 and Cor. 3.3 of
[EK], also Cor. 2.17 of [K3]) Let p be a prime, let K be a field containing ζp,
and if p = 2 assume K to be nonreal. Let v be the finest coarsening of the
canonical p-henselian valuation on K with charKv 6= p and let T denote the
inertia subgroup of GK(p) w.r.t. v.

Then

1. There is a (unique) maximal normal abelian subgroup N / GK(p) con-
taining all normal abelian subgroups of GK(p).

2. GK(p) is abelian iff GKv(p) = 1 or µp∞ ⊆ Kv and GKv(p) ∼= Zp.

3. If 1 6= N 6= GK(p) then N = T .

Fact 1.4 together with the fact that any two distinct prolongations of a
valuation to a Galois extension are incomparable immediately gives

Fact 1.6 Let L/K be a Galois (resp. pro-p Galois) extension with L not
separably (resp. p-)closed, let v be coarser than the canonical henselian (resp.
p-henselian) valuation on L. Then v |K is also (p-)henselian, and coarser
than the canonical (p-)henselian valuation on K.

Somewhat more surprising is the following fact that henselianity is also in-
herited from ‘Sylow extensions’:

Fact 1.7 ([K3], Proposition 3.1) Let K be a field, let F be the fixed field of a
non-trivial p-Sylow subgroup P = GF of GK in Ksep. Let v be a coarsening
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of the canonical henselian valuation on F , and if p = 2 and if Fv is real
closed assume v to be the coarsest henselian valuation on F with real closed
residue field.

Then v |K is also henselian, and coarser than the canonical henselian
valuation on K.

Finally, we recall a generalization of Satz I of [N] which may be consid-
ered one of the starting points of ‘valois theory’. Neukirch’s Satz says that
perfect fields with prosolvable absolute Galois group are henselian unless,
for some fixed prime p, the absolute Galois group of all completions w.r.t.
(archimedean or non-archimedean) absolute values on K are pro-p groups
or pro-{2, 3} groups. The generalizsation combines [G], Satz 7.2, and [P],
Proposition on p. 153 (where a different, but euqivalent hypothesis is made;
cf. our Lemma 3.5):

Fact 1.8 Let K be a field with GK prosolvable, let p < q be primes, and
assume that K has separable extensions L and M such that GL is a non-
trivial pro-p group (infinite if p = 2 and q = 3), GM is a non-trivial pro-q
group and v resp. w is a non-trivial (not necessarily proper) coarsening of
the canonical henselian valuation on L resp. M .

Then v |K and w |K are comparable and the coarser valuation is henselian.

We shall generalize this fact even further in Theorem 3.1.
Valois theory was modelled as valuation theoretic analogue to Artin-

Schreier theory for real fields. Since we shall also need Becker’s relative
variant of Artin-Schreier theory we recall it as last fact in this section:

Fact 1.9 ([B2], Chapter II, §2, Theorem 3) Let L/K be a Galois extension
such that L is p-closed for each prime p with p | [L : K]. Then for any
subextension F/K of L/K the following conditions are equivalent:

1. 1 < [L : F ] <∞

2. F is a relative real closure of K in L

3. [L : F ] = 2

In particular, the non-trivial elements of finite order in Gal(L/K) are pre-
cisely the involutions.
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2 Direct products as absolute Galois groups

We first observe that absolute Galois groups which are direct products are
torsion-free. More generally, one has:

Lemma 2.1 Let L/K be a Galois extension with group G = Gal(L/K) such
that L = L(p) for each prime p with p | ]G. If G = G1×G2 for two nontrivial
normal subgroups G1, G2 / G then G is torsion-free.

Proof: By Fact 1.9, the only non-trivial torsion elements in G are involutions
and the only non-trivial finite subgroups of G are of order 2.. In particular,
all involutions are contained in one of the direct factors, say in G2: if ε =
(ε1, ε2) ∈ G is an involution with ε1, ε2 6= 1 then ε1 and ε2 would generate a
4-Klein subgroup of G. If ε ∈ G2 is of order 2 then the fixed field F = Fix〈ε〉
is euclidean and, by [B1], Satz 2, this implies that all K-automorphisms of
F are trivial. But 1 6= G1

∼= Gal(FixG2/K) ⊆ AutK(F ): contradiction. So
G must be torsion-free. q.e.d.

Let us now prove a pro-p version of Theorem A:

Proposition 2.2 Let p be a prime and let F be a field of characteristic 6= p
containing a primitive p-th root of unity. Assume that GF (p) = P1 × P2 for
two non-trivial normal subgroups P1, P2 of GF (p).

Then GF (p) is torsion-free, µp∞ ⊆ F , and one of the factors Pi is abelian.
If v denotes the finest coarsening of the canonical p-henselian valuation

on F with char Fv 6= p then Γv 6= pΓv and either GF (p) is abelian and GFv(p)
is procyclic or one of the Pi is contained in the inertia subgroup of GF w.r.t.
v.

Proof: By the previous lemma, GF (p) is torsion-free. In particular, by Fact
1.9, F is non-real if p = 2.

Now we show that µp∞ ⊆ F . Assume the contrary, say ζpn 6∈ F for some
n > 1. Let E/F be a maximal subextension of F (p)/F with ζpn 6∈ E. Then
GE(p) = Gal(F (p)/E) = 〈σ〉 ∼= Zp for some σ = (σ1, σ2) ∈ P1 × P2: note
that E(ζpn) is the unique Galois-extension of degree p over E, so as pro-p
group with cyclic Frattini quotient, GE(p) is procyclic pro-p and torsion-free,
i.e. ∼= Zp. We hence find some τ ∈ P1 × P2 with

〈τ, σ〉 = 〈τ〉 × 〈σ〉 ∼= Zp × Zp :
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if σ1 = 1 pick τ ∈ P1 \ {1}, if σ2 = 1 pick τ ∈ P2 \ {1} and if σ1 6= 1 6= σ2

take τ = σ1. Let L be the fixed field of 〈τ, σ〉. Then, by Fact 1.5, µp∞ ⊆ L,
and L ⊆ E 63 ζpn gives the contradiction we are after.

If GF (p) is abelian, then each factor Pi is abelian, and, again by Fact 1.5,
GFv(p) is procyclic.

If GF (p) is non-abelian, then one of the factors, say P2, is non-abelian.
For each σ ∈ P1 \ {1}, let Kσ be the fixed field of 〈σ〉 × P2 and observe
that 〈σ〉 × 1 is a nontrivial abelian normal subgroup of GKσ(p) = 〈σ〉 × P2.
Let vσ be the finest coarsening of the canonical p-henselian valuation on Kσ

with charKσvσ 6= p. Then, by Fact 1.5.1. and 3., σ is contained in the
inertia subgroup of GKσ(p) w.r.t. vσ. As P2 is non-abelian, so is GKσvσ , and,
therefore, the residue field of the unique prolongation of vσ to the fixed field
F2 of P2 (in F (p) = Kσ(p)) is not p-closed, i.e. this prolongation still is a
coarsening of the canonical p-henselian valuation on F2. Thus, by Fact 1.6,
wσ := vσ | F is a coarsening of the canonical p-henselian valuation on F ,
and so of v. Hence the inertia subgroup T of GF (p) w.r.t. v contains the
inertia subgroup Twσ of GF (p) w.r.t. wσ (cf. the remarks following Fact 1.4).
But Twσ contains the inertia subgroup Tvσ of GKσ w.r.t. vσ: by definition of
inertia groups, Tvσ = Twσ ∩GKσ . This shows that σ ∈ T , and, as σ ∈ P1 \{1}
was arbitrary, that P1 ⊆ T . q.e.d.

Now we can prove a refined version of Theorem A:

Theorem 2.3 Let K be a field with GK = G1×G2 for two non-trivial normal
subgroups G1, G2 of GK, let v be the canonical henselian valuation on K and
let π : GK →→ GKv be the canonical epimorphism.

Then GK is torsion-free, GKv = π(G1)×π(G2) and (]π(G1), ]π(G2)) = 1.
In particular, one of the factors Gi is prosolvable and v is non-trivial if
(]G1, ]G2) 6= 1.

If p is a prime dividing (]G1, ]G2) then charK 6= p, µp∞ ⊆ K(ζp), the
p-Sylow subgroups of G1 or of G2 are abelian, and Γvp 6= pΓvp for the finest
coarsening vp of v with residual characteristic 6= p (and hence also Γv 6= pΓv).

Proof: Again, by Lemma 2.1, GK is torsion-free.

For i = 1, 2, we defineKi to be the fixed field ofGi, and Ti to be the inertia
subgroup of Gi w.r.t. the unique prolongation of v to Ksep. Then T1 × T2 is
the inertia subgroup T of GK : clearly, T1× T2 ⊆ T ; the canonical restriction
isomorphisms G1 → Gal(K2/K) and G2 → Gal(K1/K) carry inertia onto
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inertia and the compositum of the corresponding inertia subfields of K1/K
and K2/K (which is the fixed field of T1×T2) is again inert, i.e. T ⊆ T1×T2.

Thus ker π = ker (π |G1) × ker π |G2) and so GKv = π(GK) = π(G1) ×
π(G2).

Now let p be a prime with p | (]G1, ]G2). Then, for any p-Sylow subgroups
P1 of G1, P2 of G2, P := P1 × P2 is a p-Sylow subgroup of GK . Since GK

(and hence P ) is torsion-free, P contains subgroups of the shape Zp × Zp.
Let F be the fixed field of P . Then cdpGF = cdpP ≥ cdp(Zp × Zp) = 2 > 1,
so char F = charK 6= p. As GF is a pro-p group, ζp ∈ F : adjoining ζp to any
field of characteristic 6= p is an extension of degree < p, because ζp is a zero
of the polynomial Xp−1 +Xp−2 + . . . +X + 1. Proposition 2.2 now implies
that µp∞ ⊆ F (so also µp∞ ⊆ K(ζp)), that P1 or P2 is abelian, and that the
finest coarsening wp of the canonical henselian valuation on F with residual
characteristic 6= p has non-p-divisible value group. By Fact 1.7, wp |K is a
coarsening of the canonical henselian valuation on K, and so a coarsening of
vp. In particular, Γvp 6= pΓvp and Γv 6= pΓv, so v is certainly non-trivial if the
orders of G1 and G2 have a common factor.

Now π(G1) and π(G2) must be of coprime order: otherwise, the residue
field Kv of v is not separably closed, so v is the finest henselian valuation on
K, but, by what we have just seen, the canonical henselian valuation on Kv
would also be non-trivial, giving rise to a proper henselian refinement of v:
contradiction.

Finally, for i = 1 or 2, ]π(Gi) is odd, and so, by Feit-Thompson, π(Gi) is
pro-solvable. But then so is Gi

∼= Ti XI π(Gi). q.e.d.

Corollary 2.4 Let K be a field such that Ksep = L1L2 for non-trivial incom-
parable Galois extensions L1, L2 of K. Then K has a non-trivial henselian
valuation or (]GL1 , ]GL2) = 1. In both cases, K is not hilbertian.

Proof: If GL1 and GL2 are not of coprime order, then by the Theorem,
L1 ∩ L2 admits a non-trivial henselian valuation, since GL1∩L2 = GL1 ×GL2 .
Hence the canonical henselian valuation on L1∩L2 is nontrivial, and, by Fact
1.6, its restriction to K remains henselian (L1 ∩ L2/K is Galois).

If K is henselian it cannot be hilbertian ([FJ], Ch. 14, Exercise 8). If K
is not henselian, then GL1 and GL2 are of coprime order, say 2 6 | ]GL1 . If K
were hilbertian, then, by Weissauer’s Satz 9 ([We]), a proper finite separable
extension of L1 would also be hilbertian, yet allowing no separable quadratic
extension: contradiction. q.e.d.
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Products of coprime order

Let us recall that a profinite group G is projective if any projection π :
H →→ G splits, or, equivalently, if all p-Sylow subgroups of G are free pro-
p groups. Direct products of projective absolute Galois groups of coprime
order are again absolute Galois groups. More generally:

Observation 2.5 If G1 and G2 are any projective profinite groups of co-
prime order and if G is any semidirect product G = G1 XIG2 then G is an
absolute Galois group of some field.

Proof: G is again projective since any Sylow-subgroup of G is either in G1

or conjugate to a Sylow-subgroup of G2. And any projective group is an
absolute Galois group ([LvD]). q.e.d.

However, not any direct or semidirect product of absolute Galois groups
of coprime order is an absolute Galois group:

Proposition 2.6 Let p, q be distinct primes, let G1 resp. G2 be a pro-p
resp. pro-q group without nontrivial abelian normal subgroup, but containing
a torsion-free nonabelian metabelian subgroup Hi ≤ Gi for i = 1, 2 (e.g. if
G1 and G2 are Sylow subgroups of GQ).

Then G := G1 XIG2 (no matter what the action is) cannot be an absolute
Galois group.

Proof: Let us first explain the ‘e.g.’-bracket: Given a prime p we may choose
a prime l 6= p and recall that the p-Sylow subgroups of GQl

are non-abelian
subgroups of the shape Zp XI Zp. As GQl

↪→ GQ any p-Sylow subgroup G1

of GQ contains non-abelian metabelian subgroups. On the other hand, G1

contains no non-trivial abelian normal subgroup, since, by Fact 1.2, this
would give a non-trivial henselian valuation on Q. But there aren’t any.

Now suppose G = GK for some field K. Then H2 is a non-abelian
metabelian Sylow-q subgroup of G1 XIH2. By Fact 1.2, the fixed field L of
G1 XIH2 admits a henselian valuation v with char Lv 6= q, Γv 6= qΓv and, as
H2 is non-abelian, q | ]GLv: H2 is a q-Sylow subgroup of GL, so if q 6 | ]GLv,
then Lsep/F ixH2 is totally and tamely ramified, so H2 = GFix H2 is abelian.
Let L1 be the fixed field of G1 and let v1 be the unique prolongation of v
to L1. Let M be the fixed field of H1. Then, again by Fact 1.2, M admits
a henselian valuation w with charMw 6= p, Γw 6= pΓw and, as H1 is non-
abelian, p | ]GMw. Therefore, w is a coarsening of the canonical henselian
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valuation on M and thus comparable to the unique prolongation of v to M .
Hence the restriction w1 of w to L1 is comparable to v1.

If w1 is coarser than v1 then w1 is henselian with residual characteristic
not p and with value group not p-divisible. But then the inertia subgroup of
G1 is a non-trivial abelian normal subgroup, contradicting our hypothesis.

If w1 is finer than v1 then p | ]GL1v1 , and so v1 is a coarsening of the
canonical henselian valuation on L1, hence, by Fact 1.7, v1 restricts to a
henselian valuation vK on K. Note that vK = v |K inherits from v the
properties regarding residual characteristic and value group: charKv 6= q
and ΓvK

6= qΓvK
. Since G2 = GL2 is a q-Sylow subgroup of GK , these

properties pass to the unique prolongation v2 of vK to L2. But this would
imply that G2 contains a nontrivial abelian normal subgroup (the inertia
subgroup w.r.t. v2), again contradicting our hypothesis. q.e.d.

While the Sylow subgroups of GQ encode the existence of valuations with
non-divisible value group, the p-Sylow subgroups Gp of GQp can be realised
as absolute Galois groups of fields having no valuations with non-divisible
value group (cf. [MW]). We have no answer to the following

Question 2.7 Is Gp ×Gq an absolute Galois group if p 6= q?

Note that, by Proposition 2.2, Gp ×Gp cannot be an absolute Galois group,
because Gp is not abelian.

3 Generalizing a theorem of Neukirch

In this section we stay the course set by Neukirch, Geyer and Pop to prove the
perhaps ultimate generalization of Fact 1.8, the refined variant of Theorem
B promised in the Introduction. The crucial new ingredients are Lemma 3.2
and Lemma 3.3 which were hard to find, though easy to prove.

Theorem 3.1 Let K be a field, let L and M be algebraic extensions of K
with non-trivial henselian valuations, and assume that GL is a non-trivial
pro-p group and GM is a non-trivial pro-q group, where p < q are primes. Let
v resp. w be non-trivial (not necessarily proper) coarsenings of the canonical
henselian valuation on L resp. M , and, if p = 2 and Lv is real closed, assume
v to be the coarsest henselian valuation on L with real closed residue field.

Then either any finite group occurs as subquotient of GK or vK := v |K
and wK := w |K are comparable and the coarser valuation is henselian on K.
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It is clear that Theorem 3.1 does generalize Fact 1.8, since a prosolvable
group cannot have any finite group as subquotient. And, obviously, Theorem
B is an immediate consequence.

For the proof of Theorem 3.1 we need four simple lemmas.

Lemma 3.2 Let p < q be primes. Then there are infinitely many k ∈ N
such that

p | qk + p− 1 and
l 6 | qk + p− 1 for all primes l < p.

Proof: If (p−1) | k then qk ≡ 1 mod p and so the first condition is satisfied.
If l is a prime < p and (l−1) | k then qk ≡ 1 mod l and the second condition is
satisfied: p−1 6≡ −1 mod l as l 6= p. Hence any multiple k of

∏
l≤p prime(l−1)

will do. q.e.d.

Recall that a transitive subgroup G of the symmetric group Sn is called
imprimitive, if there is an imprimitivity domain for G, i.e. a subset
∆ ⊆ {1, . . . , n} with 1 < ]∆ < n such that

∀σ ∈ G : σ(∆) = ∆ or σ(∆) ∩∆ = ∅.

One easily checks that in this case ]∆ | n (cf. e.g. [Hu], II, Satz 1.2b)). G is
called primitive if it is not imprimitive.

Lemma 3.3 Let q be a prime, let k and r be integers ≥ 1 with r < q, and
assume that l 6 | qk + r for all primes l < r. Set n = qk + r and assume that
G is a transitive subgroup of Sn containing a qk-cycle. Then G is primitive.

Proof: Assume to the contrary that ∆ ⊆ {1, . . . , n} is an imprimitivity
domain for G. Let σ ∈ G be a qk-cycle, say, acting on {1, 2, . . . , qk} as ‘+1’
(except that σ(qk) = 1).

We first claim that ∆ ⊆ {1, 2, . . . , qk}. Otherwise pick j ∈ ∆ with j > qk.
Then σ(j) = j ∈ ∆, and so σ(∆) = ∆. On the other hand ]∆ > r since
1 < ]∆ | n and l 6 | n for any prime l ≤ r (if l = r then l 6 | n as r < q). So
there is some i ∈ ∆ with i ≤ qk. But then σ(i) = i+ 1 ∈ ∆ etc., so

{1, 2, . . . , qk} = {i, σ(i), . . . , σqk−1(i)} ⊆ ∆,

and hence n
2
< qk ≤ ]∆ | n. This is only possible when ]∆ = n, which is not

allowed for an imprimitivity domain. This contradiction proves the claim.

13



Now 〈σ〉 acts transitively on {1, 2, . . . , qk} and so either ∆ is also an
imprimitivity domain for the subgroup 〈σ〉 ≤ Sqk or ]∆ = qk. In any case,
]∆ is a non-trivial q-power, and so ]∆ 6 | n: contradiction. q.e.d.

Lemma 3.4 Let 1 ≤ m ≤ n be integers and let G be an m-transitive sub-
group of Sn. Then G has a copy of Sm as subquotient.

Proof: Let H := {σ ∈ G | σ({1, . . . ,m}) = {1, . . . ,m}}. Then H is a
subgroup of G and, by m-transitivity of G, the canonical homomorphism

H → Sm

σ 7→ σ |{1,...,m}

is onto. q.e.d.

Lemma 3.5 Let (K, v) be a valued field with henselization (Kh, vh), let p be
a prime with p | ]GKh and let L be the fixed field of a p-Sylow subgroup of
GKh.

(a) Then the following are equivalent:

1. The (unique) prolongation vL of vh to L is a coarsening of the canonical
henselian valuation on L

2. For some non-separably closed algebraic extension L′/L, the (unique)
prolongation of vh to L′ is a coarsening of the canonical henselian val-
uation on L′

3. p | ]GKhu for any proper coarsening u of vh.

(b) Moreover, these conditions pass to any coarsening of v, and, if p > 2
to any finite extension of K.

In the terminology of [P], condition 3. says that v equals its ‘p,K-core’.
Note that condition 3. is, in general, stronger than the condition that p |
]GKw for any proper coarsening of v.

Proof of Lemma 3.5:
(a) 1. ⇒ 2. is trivial
2. ⇒ 3. Let L′/L be as in 2., let u be a proper coarsening of vh, so (Kh, u)

is again henselian, and let u′ be the unique prolongation of u to L′. Then
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u′ is a proper coarsening of the canoncial henselian valuation on L′. By the
definition of the canonical henselian valuation, L′u′ is not separably closed.
Hence p | ]GL′u′ and, since GL′u′ is a subgroup of GKhu, also p | ]GKhu.

3. ⇒ 1. Condition 3. is inherited from (Kh, vh) to (L, vL), because GL

is a p-Sylow subgroup of GKh . And, by Fact 1.4, 3. for (L, vL) implies 1.
(b) is immediate from condition 3. and the fact that, for p > 2 and any

field F , the condition p | ]GF remains valid for any finite extension of F .
q.e.d.

Proof of Theorem 3.1: If one of the valuations vK , wK is henselian,
say vK is, then vK is comparable to wK : the unique prolongation vM of vK

to M is comparable to w, since w is a coarsening of the canonical henselian
valuation on M (Fact 1.4). Hence vK is comparable to wK .

Now assume that vK and wK are both non-henselian, and that G is a
given finite group. We have to show that G is a subquotient of GK . It
suffices to show this for some algebraic extension of K.

Let us begin with the essential
Case 1: vK and wK are independent
We will even show that in this case G is a subquotient of GL∩M . So we may
assume that K = L ∩M . This does not affect the independence of vK and
wK . By [He], Corollary 1.2 and Proposition 1.4, (L, v) is a henselization of
(K, vK), (M,w) is a henselization of (K,wK) and K is dense in L resp. M
w.r.t. the v- resp. w-topology.

There is a finite subextensionK ′/K of L/K such that wK has two distinct
prolongations to K ′: by Fact 1.6, GL is not a p-Sylow subgroup of GK ,
because vK is non-henselian. So we can chooseK ′ ⊆ L with p | [K ′ : K] <∞.
Let N/K be the Galois hull of K ′/K and let Nw = N ∩M . Then Nw is
the decomposition subfield of N/K w.r.t. w and wK has [Nw : K] many
prolongations to N . Assume that wK has only one prolongation wK′ to K ′.
K ′Nw is the decomposition subfield of N/K ′ w.r.t. w. In particular, wK′

(and so, by assumption, also wK) has [K ′Nw : K ′] many prolongations to
N . Hence [Nw : K] = [K ′Nw : K ′], and so [K ′Nw : Nw] = [K ′ : K]. Since
GM is a pro-q group, [N : Nw] is a q-power and, thus, so is [K ′Nw : Nw].
But this contradicts p | [K ′ : K], and the assumption that wK has only one
prolongation to K ′ was false.

Let (M ′, w′) and (M ], w]) be henselisations of K ′ w.r.t. two distinct
prolongations w′

K′ and w]
K′ of wK to K ′ (such distinct prolongations are

always incomparable, since K ′/K is algebraic). Then M ′ and M ] are finite
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extensions of some henselisations of (K,wK) so they are conjugate (over K)
to finite extensions of M . Therefore, GM ′ and GM] are non-trivial pro-q
groups, since q > 2. If w (and hence wK , w′ etc.) is a rank-1 valuation
then w′

K′ and w]
K′ are independent. If not, we may pass from w to a proper

non-trivial coarsening for which then, by Fact 1.4, the residue field is not
separably closed.

After these adjustments, and after replacing K once again by an algebraic
extension we may now assume that

1. K = L ∩M ′ ∩M ]

2. (K, vK) is dense in its henselisation (L, v)

3. vK is independent of w′
K and of w]

K

4. (M ′, w′) is a henselisation of (K,w′
K) withGM ′ a non-trivial pro-q group

5. (M ], w]) is a henselisation of (K,w]
K) with GM] a non-trivial pro-q

group

6. • either w′
K and w]

K are independent, (K,w′
K) is dense in (M ′, w′)

and (K,w]
K) is dense in (M ], w]) (independent case)

• or w′
K and w]

K are (dependent, but) incomparable, and the residue
fields Kw′

K = M ′w′ and Kw]
K = M ]w] admit Galois extensions

of degree q (dependent case)

We will apply [Wh], Theorem 2, by which any field admitting Galois exten-
sions of prime degree q > 2 admits a cyclic Galois extension of degree qk for
any integer k ≥ 1.

By Lemma 3.2, we may choose k ∈ N such that p | qk +p−1, l 6 | qk +p−1
for all primes l < p and qk + p− q ≥ ]G. Write n := qk + p− 1 = m · p.

Let g1 ∈ L[X], h′1 ∈M ′[X] and h]
1 ∈M ][X] be the irreducible polynomi-

als of a primitive element of a cyclic Galois extension of L of degree p resp.
of M ′ of degree qk resp. of M ] of degree q, where, in the dependent case, the
last two cyclic extensions are chosen purely inert, and the primitive element
is chosen as a unit inducing a primitive element of the residual extension.
Choose elements a1, . . . , ap−1 ∈ Ow′ with distinct residues in M ′w′ and el-
ements b1, . . . , bn−q ∈ Ow] with distinct residues in M ]w]: this is possible
because GM ′w′ and GM]w] are pro-q groups, and hence the fields M ′w′ and
M ]w] are infinite. Define g := gm

1 ∈ L[X], h′ := h′1 · (X−a1) · · · (X−ap−1) ∈
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M ′[X] and h] := h]
1 · (X − b1) · · · (X − bn−q) ∈ M ][X], and observe that

deg g = deg h′ = deg h] = n.

Approximate g w.r.t. v, h′ w.r.t. w′ and h] w.r.t. w] by a single monic
polynomial f ∈ K[X] well enough to guarantee that, by Krasner’s or by
Hensel’s Lemma, f decomposes into irreducible factors over L resp. M ′ resp.
M ] like g resp. h′ resp. h], and such that the splitting field of f and g over
L resp. that of f and h′ over M ′ resp. that of f and h] over M ] coincide.
In the independent case such an approximation is possible because then all
three valuations on K are independent. In the dependent case, one can
still simultaneously approximate g w.r.t. v arbitrarily well (by assumption
3. above) and approximate h′ resp. h] well enough by a monic polynomial
f ∈ (Ow′K

∩Ow]
K
)[X] such that the corresponding polynomials in the residue

field remain the same (by weak approximation for incomparable valuations).

Then f is an irreducible separable polynomial overK: The degree d of any
irreducible factor of f must be a multiple of p because of the decomposition
in L; so, in particular, d > 1. And the decomposition of f in M ′ gives d ≥ qk.
Then qk ≤ d ≤ qk + p − 1, so d = qk + p − 1 because qk + p − 1 is the only
p-divisible integer between qk and qk + p− 1. Separability is guaranteed e.g.
by f approximating the separable polynomial h′ sufficiently well.

Now let Gf be the Galois group of the splitting field of f over K. Gf

acts transitively on the n distinct roots of f and may thus be considered a
transitive subgroup of Sn. The decomposition subgroup of Gf w.r.t. w′ acts
on the roots of f like the Galois group of the splitting field of h′ (i.e. of h′1)
over M ′. In particular, Gf contains a qk-cycle. By the choice of k, no prime
l ≤ p − 1 divides n = qk + p − 1. Hence, Lemma 3.3 implies that G is a
primitive subgroup of Sn.

Gf also contains a cycle of length q, because the decomposition subgroup
of Gf w.r.t. w] does. By [Hu], II, Satz 4.5a), a primitive subgroup of Sn

containing a cycle of prime length q is (n − q + 1)-transitive. In particular,
by Lemma 3.4, it has a copy of Sn−q+1 as subquotient, and so also one of G
(]G ≤ n− q + 1 = qk + p− q). This completes the proof of Case 1.

The rest of the proof proceeds along the general valuation theoretic lines
of the proof of [P], Proposition p. 153.
Case 2: vK and wK are incomparable
Let u be the finest common coarsening of vK and wK and let vK resp. wK be
the valuations induced by vK resp. wK on the residue field Ku of u. Then
vK and wK are independent.
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By Lemma 3.5, the condition that v is a non-trivial coarsening of the
canonical henselian valution on L is equivalent to condition 3. of the Lemma
that for the henselization (Kh, vh

K) of (K, vK) one has p | ]GKv′ whenever v′

is a proper coarsening of vh
K on Kh. But this condition 3. is inherited by

(Ku, vK) which, again by the equivalence in Lemma 3.5, means that the fixed
field (L, v) of a p-Sylow subgroup of a henselization of (Ku, vK) satisfies the
same assumption as the one made in our Theorem on the valued field (L, v)
(note that, by construction, vK = v |Ku). And, of course, the assumption on
(M,w) has a corresponding counter part for suitable (M,w).

Since vK and wK are independent and have both non-separably closed
henselizations, they are both non-henselian. Applying now Case 1 to Ku,
(L, v) and (M,w) in place of K, (L, v) and (M,w) gives us G as subquotient
of GKu, and hence as subquotient of GK .

Case 3: vK and wK are comparable
By Lemma 3.5, the assumptions of the Theorem regarding (L, v) and (M,w)
are still valid when passing to non-trivial coarsenings of v and w. So we may
assume that vK = wK and that p · q | ]GKhu for any proper coarsening u of
vh

K , where (Kh, vh
K) is a henselization of (K, vK).

Because (K, vK) is non-henselian, there is a finite subextension K ′/K of
Kh/K such that besides v′ := vh

K |K′ there is also another prolongation w′ of
vK to K ′. v′ and w′ are then as distinct prolongations of vK to the algebraic
extension K ′/K incomparable.

The (L, v, p)-assumption on K passes to K ′ with vK replaced by v′, and,
as q > 2, the (M,w, q)-assumption passes to K ′ with wK replaced by w′.
Hence Case 2 applies to K ′, i.e. GK′ has G as subquotient, and then so does
GK . q.e.d.

4 Free pro-C products of absolute Galois groups

In this section we prove a generalization of Theorem C from the Introduction
(Theorem 4.2).

Throughout the section, C denotes a class of finite groups which is closed
under subgroups, quotients and direct products. Under these assumptions
it is well known that the free pro-C product of pro-C groups exists ([RZ],
Section 9.1), and the question arises whether the class GC of pro-C absolute
Galois groups is closed under free pro-C-products.
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The answer is known to be yes, if C is the class of all p-groups ([He],
Theorem 3.2), or if C is the class of all finite groups ([Mv], [Er], [K2]).

If C is a class of abelian groups then GC contains only torsion-free abelian
groups or the group Z/2Z. Since any torsion-free abelian group is an absolute
Galois group and since the free pro-C product is just the direct product,
GC \ {Z/2Z} is closed under free pro-C products. And, by Lemma 2.1, GC is
closed under free pro-C products iff C contains only odd order groups.

If, however, the class C is the class of all nilpotent groups or the class of
all metabelian groups or the class of all odd-order groups, or the class of all
solvable groups, the following Theorem 4.2 shows that the answer is no (for
metabelian groups, this also follows from the classification of all metabelian
absolute Galois groups in [K1]).

For the formulation of Theorem 4.2 we need the following definition:
Given an odd prime p we call a set Π of primes Galois-p admissible if
for each pro-p absolute Galois group G there is a field F with GF

∼= G such
that for all q ∈ Π, F contains a primitive q-th root ζq of unity (so, in par-
ticular, char F 6= q). Since any absolute Galois group can be realized in
characteristic 0, and since for any prime q and any field F of characteristic
6= q, [F (ζq) : F ] | q − 1, a set Π of primes is Galois-p-admissible whenever
Π ⊆ {q prime | q 6≡ 1mod p}. We don’t know whether any set of primes is
p-admissible. We have not even an answer to the following

Question 4.1 Given a pro-p absolute Galois group G and a prime q ≡
1mod p, is there a field F with GF

∼= G and ζq ∈ F?

For a set Π of primes we use the standard terminology of calling a
(pro)finite group G a (pro-)Π group if any prime dividing ]G is in Π.
G is a (pro-)Π′ group if no prime dividing ]G is in Π.

Let us now give the group-theoretic characerization of classes C of finite
groups for which GC is closed under free pro-C products:

Theorem 4.2 Let C be a class of finite groups closed under forming sub-
groups, quotients and direct products, and let GC be the class of absolute
Galois groups which are pro-C groups.

Then GC is non-trivial and closed under free pro-C products iff one of the
following four cases holds:

1. C is the class of all finite groups.
In this case the free pro-C product is the free profinite product, and GC
is the class of all absolute Galois groups.
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2. There is a prime p such that

• C contains all finite p-groups

• for each prime q 6= p, the exponent of q-groups in C is bounded

• if p 6= 2, all groups in C have odd order

• each group in C has a (unique) normal p-Sylow subgroup

In this case the free pro-C product of two pro-p groups is the free pro-p
product, and GC is the class of all pro-p absolute Galois groups.

3. There is a non-empty set Π of odd primes such that

• C contains all finite abelian Π-groups

• for each prime q 6∈ Π, the exponent of q-groups in C is bounded

• each G ∈ C is of the form G = A XIH, where A is an abelian
Π-group and H a Π′-group of odd order

In this case, the free pro-C product of two abelian pro-Π groups is the di-
rect product, and GC is the class of all torsion-free abelian pro-Π groups.

4. There is an odd prime p and a non-empty Galois-p admissible set Π of
odd primes 6= p such that

• C contains all finite p-groups and all abelian Π-groups

• for each prime q 6∈ Π ∪ {p}, the exponent of q-groups in C is
bounded

• each G ∈ C is of the form G = (A×P ) XIH, where A is an abelian
Π-group, P is a p-group and H is a (Π ∪ {p})′-group.

In this case, for any pair P1, P2 of pro-p groups and any pair A1, A2 of
abelian pro-Π groups,

(A1 × P1) ?C (A2 × P2) = (A1 × A2)× (P1 ?p P2),

and GC is the class of groups of the form A×P , where A is any torsion-
free abelian pro-Π group and P is any pro-p absolute Galois group.
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Theorem C from the Introduction is an immediate consequence of the above
Theorem 4.2: The class C of finite groups in Theorem C is also assumed to
be closed under extensions. So if for some prime q, C contains non-trivial
q-groups, it also contains non-abelian q-groups and q-groups of arbitrarily
high exponent. Hence case 3 and 4 cannot occur, and in case 2, C contains
only p-groups, i.e. C is exactly the class of all p-groups.

Before we prove Theorem 4.2 let us single out a few auxiliary results. The
first is about the subgroups generated in a free pro-C product by subgroups
of the factors. If the class C of finite groups is in addition extension closed
then for any pair of pro-C groups G1, G2 with subgroups H1 ≤ G1, H2 ≤
G2, the subgroup generated by H1 and H2 in G1 ?C G2 is the free pro-C
product: 〈H1, H2〉 ∼= H1?CH2 ([RZ], Corollary 9.1.7). Without this additional
assumption one only has the following

Lemma 4.3 For i = 1 and 2, let Gi be a pro-C group, let Ni/Gi be a normal
subgroup with a complement Hi in Gi, and consider H1 and H2 as subgroups
of G1 ?C G2 in the obvious way. Then 〈H1, H2〉 ∼= H1 ?C H2.

Proof: Let φi : Gi →→ Hi be epimorphisms with kernel Ni (i = 1, 2), let
φ′i be the isomorphism φi |Hi

, let φ : G1 ?C G2 →→ H1 ?C H2 be the (unique)
extension of φ1, φ2 (considered as maps into H1 ?CH2) and let φ′ = φ |〈H1,H2〉.
Then the image of φ′ is stillH1?CH2, and the partial inverses φ′−1

i of φ′ extend
(uniquely) to an epimorphismn ψ : H1 ?C H2 →→ 〈H1, H2〉 with φ′ ◦ ψ |Hi

=
idHi

. So, by uniqueness, φ′ ◦ ψ = idH1?CH2 . Hence ψ = φ′−1 and φ′ is the
isomorphism looked for. q.e.d.

In the next Lemma we prove the p-part of Theorem 4.2:

Lemma 4.4 Let p be a prime, assume that GC contains a nontrivial pro-p
group and that GC is closed under free pro-C products.

Then Zp ∈ GC and the class Cp of p-groups in C is either the class of all
finite p-groups or p > 2 and Cp is the class of all abelian p-groups.

Proof: If A and B are pro-C groups which are also pro-p groups we denote
the maximal pro-p quotient of A ?C B by A ?C,p B.

Let us first show that Zp ∈ GC. By assumption there is a field K such
that GK is a non-trivial pro-p group. If p > 2 or if p = 2 and K is not
formally real, choose 1 6= σ ∈ GK . By Artin-Schreier theory, 〈σ〉 is infinite,
and so as procyclic pro-p group ∼= Zp, as claimed. If p = 2, Z/2Z ∈ GC,
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and so Z/2Z ?C Z/2Z ∈ GC, say GF
∼= Z/2Z ?C Z/2Z. Then, by Fact 1.9,

GF (2) = Z/2Z ?C,2 Z/2Z is infinite. This implies that GF has an infinite 2-
Sylow subgroup, say GE, and so the previous case applies to the non-real field
K = E(

√
−1). Note also that for p = 2, C contains non-abelian 2-groups:

otherwise GF (2) = Z/2Z ?C,2 Z/2Z ∼= Z/2Z× Z/2Z, which contradicts Fact
1.9.

As C is closed under direct products it follows that for any n ∈ N, Zn
p ∈

GC, and so any finite abelian p-group is in C.
Now let us assume that C contains a non-abelian p-group. We have to

show that C contains all finite p-groups. By assumption, there is a field K
with

GK
∼= (Zp × Zp) ?C (Zp × Zp).

Let E and F be the fixed fields of the Zp × Zp-factors, so GK = GE ?C GF .
As cdp(GK) ≥ cdp(Zp × Zp) = 2, charK 6= p and, by fact 1.5, µp∞ ⊆ E and
µp∞ ⊆ F , so µp∞ ⊆ K = E ∩ F . Let E ′ and F ′ be the fixed fields of, say,
the second Zp-factor of GE resp. GF . Then the first Zp-factor of GE resp.
GF is a normal complement of GE′ resp. GF ′ in GE resp. GF , and so, by the
previous lemma,

GE′∩F ′ = 〈GE′ , GF ′〉 ∼= GE′ ?C GF ′ ∼= Zp ?C Zp,

and, therefore, GE′∩F ′(p) ∼= Zp ?C,p Zp.
By [Wa1], Theorem 4.1, 4.5 or Corollary 4.6 for p = 2, and by [Wa2],

Lemma 7 and Corollary 1 for p > 2, GE′∩F ′(p) is either metabelian, so
isomorphic to Zp XI Zp, or GE′∩F ′(p) is the free pro-p group of rank 2, and
hence contains free pro-p groups of arbitrary finite rank. In the last case
we are done: any finite p-group is the quotient of some free pro-p group
of finite rank and so in C. The metabelian case, however, cannot occur:
Since C contains a non-abelian p-group which we may take to be of rank 2,
Zp ?C,p Zp cannot be abelian. Now assume GE′∩F ′ ∼= Zp XI Zp. Then, by Fact
1.3, E ′∩F ′ has a p-henselian valuation w with residual characteristic 6= p and
with Γw 6= pΓw. Hence, the finest coarsening v of the canonical p-henselian
valuation on E ′∩F ′ with residual characteristic 6= p is a refinement of w and
so also Γv 6= pΓv. As GE′∩F ′ ∼= Zp XI Zp, this implies that G(E′∩F ′)v(p) is ∼= 1
or ∼= Zp. Moreover, µp∞ ⊆ K = E ∩ F ⊆ E ′ ∩ F ′. By Fact 1.5.2, however,
this implies that GE′∩F ′(p) ∼= Zp ?C,p Zp is abelian. But this contradicts that
C contains non-abelian p-groups which, again, may be chosen of rank 2, i.e.
as quotients of Zp ?C,p Zp. q.e.d.
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The next lemma gives a partial turnabout of Theorem A: a vague version
of Theorem A says that Sylow subgroups of absolute Galois groups which
decompose in a direct product tend to be abelian. The next lemma says that
abelian Sylow subgroups of pro-C absolute Galois groups tend to be direct
factors.

Lemma 4.5 Assume that GC is closed under free pro-C products and that p
is a prime for which all p-groups in C are abelian and for which GC contains
non-trivial pro-p groups.

Then any G ∈ GC is of the form G = Gp×H with Gp a p-Sylow subgroup
of G and all groups in C have odd order.

Proof: It suffices to prove the following
Claim: For all primes q 6= p with Zq ∈ GC,

Zp ?C Zq = Zp × Zq.

If the claim is proved we choose for any G ∈ GC q-Sylow subgroups Gq and
infer from the claim for any σ ∈ Gp, τ ∈ Gq, [σ, τ ] = 1, because there is an
epimorphism Zp ?C Zq →→ 〈σ, τ〉 and Zp ?C Zq is abelian. Hence for p 6= q,
〈Gp, Gq〉 = Gp×Gq and so G = Gp×H, where H = 〈Gq | q 6= p〉. Moreover,
if C contains groups of even order then Z/2Z ∈ GC, so by the previous lemma
Z2 ∈ GC and p 6= 2. Hence, by assumption, Zp ?C (Z/2Z) ∈ GC, but, using
the claim, Zp ? (Z/2Z) = Zp × (Z/2Z) which, by Theorem A, is not an
absolute Galois group: absolute Galois groups which are direct products are
torsion-free.

To prove the claim let q 6= p be a prime with Zq ∈ GC. By the previous
lemma, also Zp ∈ GC. Since C is closed under direct products, Zp × Zp and
Zq × Zq are pro-C groups which, by Example 1.1, occur as absolute Galois
groups. Hence, by assumption, we find a field K with

GK
∼= (Zp × Zp) ?C (Zq × Zq).

Let E and F be the fixed fields of the factors GE = Zp×Zp and GF = Zq×Zq.
Let v be the finest coarsening of the canonical henselian valuation on E with
char Ev 6= p and let vK = v |K .

Then, by Fact 1.2, v is non-trivial and Γv 6= pΓv. Moreover, vK is
henselian: As Zp × Zp ≤ GK , the p-Sylow subgroups of GK are not pro-
cyclic and not isomorphic to Z2 XI Z/2Z, but they are abelian, because all
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p-groups in C are. By Fact 1.2 and Fact 1.4, the canonical henselian val-
uation u on K is then non-trivial. The unique prolongation of u to E is
therefore finer than v, so vK is a coarsening of u, and, therefore, must be
henselian.

Let vF be the unique prolongation of vK to F and let w be the finest
coarsening of the canonical henselian valuation on F with char Fw 6= q.
Again, by Fact 1.2 and Fact 1.4, w is non-trivial and Γw 6= qΓw. Moreover,
w is comparable to vF .

Case 1: char Ev(= char FvF ) = q
In this case w is a proper coarsening of vF , char Fw = 0, and wK := w |K

is also henselian. Let Tw be the inertia subgroup of GK w.r.t. wK and choose
Zq-extensions F1, F2 of F such that GF1 ⊆ Tw and GF = GF1×GF2

∼= Zq×Zq:
this is possible because either GF = Tw or Tw

∼= Zq, GFw
∼= Zq and GF

∼=
Tw × GFw (cf. Fact 1.5). Choose Zp-extensions E1, E2 of E with ζq ∈ E1

(so µq∞ ⊆ E1) and such that GE = GE1 × GE2
∼= Zp × Zp: this is possible

as E(ζq)/E is cyclic, so we may lift a generator of Gal(E(ζq)/E) to some
σ ∈ GE = Zp × Zp and we may choose τ ∈ GE such that {σ, τ} becomes
an Fp-base in the Frattini quotient Fp × Fp of GE and set GE1 = 〈τ〉 and
GE2 = 〈σ〉.

Now let L = E1 ∩ F1, let wL be the unique prolongation of wK to L and
let TL = Tw∩GL be the inertia subgroup of GL w.r.t. wL. Then TL is abelian
as char Fw = char LwL = 0 and µq∞ ⊆ LwL: by Fact 1.5, µq∞ ⊆ F ⊆ F1,
so µq∞ ⊆ E1 ∩ F1 = L. But then the pro-q subgroup GF1 of TL is in the
center of GL: GL

∼= TL XIGLwL
and, as µq∞ ⊆ LwL, GLwL

acts trivially on the
q-Sylow subgroup Q of TL (which as characteristic subgroup of TL is normal
in GL), so with TL being abelian, Q is in the center of GL. In particular,
〈GE1 , GF1〉 = GE1 ×GF1 . By Lemma 4.3, this proves the claim in case 1:

Zp ?C Zq
∼= 〈GE1 , GF1〉 = GE1 ×GF1

∼= Zp × Zq.

Case 2: char Ev 6= q
In this case we work with v instead of w. Let Tv be the inertia subgroup

of K w.r.t. vK , choose Zp-extensions E1, E2 of E with GE
∼= GE1 × GE2

∼=
Zp × Zp and GE1 ⊆ Tv. Choose Zq-extensions F1, F2 of F with GF = GF1 ×
GF2

∼= Zq × Zq and ζp ∈ F1 (so µp∞ ⊆ F1), and let, again, L = E1 ∩ F1 with
prolongation vL of vK to L. Let V be the ramification subgroup of GL w.r.t.
vL. If V = 1, we argue — mutatis mutandis — as in case 1 to prove the
claim.
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If V 6= 1, then V is a pro-l group with l = charKv 6= p, q, and we can
only conclude that

Zp ?C Zq
∼= GL

∼= V XIG/V ∼= V XI (Zp × Zq).

In this case Zl ∈ GC and l | ](Zp ?C Zq). We shall make a detour in order to
show that this cannot be.

Let K ′ be a field with

GK′ ∼= (Zp × Zp) ?C (Zq × Zq) ?C (Zl × Zl)

and let E ′, F ′ and M be the fixed fields of the three abelian factors and
let v′ be defind as v above. Then, again, v′K′ := v′ |K′ is henselian. As
l | ](Zp ?C Zq), the above argument shows that charK ′v′ = l. Now let
u be the finest coarsening of the canonical henselian valuation on M with
charMu 6= l. Then, as in case 1, charMu = 0, uK′ is henselian and Zp?CZl =
Zp × Zl. Similarly, working with the prolongation of uK′ to F ′ ∩M , we get
Zq ?C Zl = Zq × Zl again as in case 1.

Returning to K and L above this implies that

Zp ?C Zq
∼= GL = V XI (Zp × Zq) ∼= V × Zp × Zq.

The two inclusion maps φp resp. φq embedding the Zp- resp. Zq-factor of GL

into GL will then, however, have two distinct extensions to a homomorphism
φ : GL → GL, one the identity map on GL, the other projection on the last
two coordinates with kernel V . This contradicts the uniqueness condition in
the universal property for free pro-C products. So V = 1 after all, and the
claim is proved in all cases. q.e.d.

The next two lemmas are rather easy:

Lemma 4.6 Let p be a prime. Assume that C contains all finite p-groups
and that each G ∈ C has a unique normal p-Sylow subgroup. Let P1 and P2

be pro-p groups. Then P1 ?C P2 = P1 ?p P2.

Proof: Let G be any pro-C group. Then G has a unique p-Sylow subgroup
Gp. Let φi : Pi → G be given homomorphisms (i = 1, 2). Then the images
of φi lie in the pro-p group Gp and there is a unique homomorphism φ :
P1 ?p P2 → Gp with φ |Pi

= φi (i = 1, 2). Since any homomorphism from
P1 ?pP2 to G extending the φi has image in 〈imφ1, imφ2〉 ⊆ Gp, φ is also the
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unique homomorphism from P1 ?p P2 to G extending φ1 and φ2. So P1 ?p P2

satisfies the universal property for the free pro-C product P1 ?C P2, and, by
uniqueness of the free pro-C product (up to isomorphism), equality holds.
q.e.d.

Lemma 4.7 Let Π be a set of primes and assume that each G ∈ C is of the
form G = A XIH with A an abelian Π-group and H a Π′-group. Let A1 and A2

be abelian pro-Π groups which are also pro-C groups. Then A1?CA2 = A1×A2.

Proof: Let G be any pro-C group. Then G = A XIH with A an abelian pro-Π
group and H a pro-Π′ group. Let φi : Ai → G be any given homomorphisms
(i = 1, 2). Then the images of φi are in the abelian pro-Π group A, and we
can proceed as in the previous lemma. q.e.d.

The last ingredient for the proof of Theorem 4.2 is Corollary 4.9, a purely
group theoretic result which, however, happens to follow from a more general
field theoretic fact:

Proposition 4.8 Let p be a prime, let E and F be fields whose absolute
Galois groups GE, GF are non-trivial pro-p groups, not both of order 2. Then
GE ?p GF has no non-trivial abelian normal subgroup.

Note that for GE
∼= GF

∼= Z/2Z, by [BEK] and by [EV], Proposition 4,

GE ?2 GF
∼= Z/2Z ?2 Z/2Z ∼= Z2 XI Z/2Z.

Proof: By [He], Theorem 3.2, there is a field K with two independent val-
uations v, w such that GK

∼= GE ?p GF , where GE resp. GF becomes a
decomposition subgroup of GK w.r.t. (some prolongation to Ksep of) v resp.
w. GK is obviously not procyclic, and also not ∼= Z2 XI Z/2Z: all infinite
subgroups of this last group are of finite index, but GE or GF is infinite, and
so, by Fact 1.6, either v or w would be henselian and so the deomposition
subgroup would be GK rather than the smaller group GE resp. GF .

We therefore may apply Fact 1.2. Assuming that GK has a non-trivial
abelian normal subgroup this implies that K has a non-trivial henselian valu-
ation u. Since the henselisation of (K, v) is not separably closed, this implies
that u and v must be dependent, and the same holds for u and w. Hence, v
and w must be dependent as well, but, by construction, they are not.q.e.d.
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By [LvD], any projective profinite group is an absolute Galois group,
and by Example 1.1, so is any torsion-free abelian profinite group. As a
consequence we obtain

Corollary 4.9 Let A and B be non-trivial pro-p groups each of which is
either projective or torsion-free abelian. Then A ?p B has no non-trivial
abelian normal subgroup.

Proof of Theorem 4.2: In each of the four cases an assertion (‘In this
case . . . ’) is made about free pro-C products of certain pro-C groups and
about the structure of the groups in GC (‘. . . and GC is the class of . . . ’). Let
us first prove these assertaions.

They are obvious in Case 1. In Cases 2, 3 and 4, the assertions about free
pro-C products of pro-p groups (Case 2), pro-abelian groups (Case 3) and
direct products of pro-p and pro-abelian groups (Case 4) follow immediately
from Lemma 4.6, Lemma 4.7 and Lemma 4.3. And the assertions about the
structure of the groups in GC are simple consequences of the three following
well known facts (the first from Artin-Schreier theory, the second and third
from Example 1.1):

• the only torsion elements in absolute Galois groups are involutions

• any torsion-free abelian profinite group A is an absolute Galois group

• if Π is a set of primes and if F is a field of characteristic 0 containing
all primitive p-th roots of unity (p ∈ Π), if GF is a pro-Π′ group and
if A is any torsion-free abelian pro-Π group then GF ((Γ))

∼= A × GF ,
where Γ is chosen as in Examples 1.1: note that F contains all p-power
roots of unity for p ∈ Π.

It now easily follows that in all four cases, GC is non-trivial, i.e. contains
non-trivial groups, and is closed under free pro-C products. We already know
that the free profinite product of absolute Galois groups is an absolute Galois
group (this gives Case 1), and that the free pro-p product of pro-p absolute
Galois groups is a pro-p absolute Galois group (this gives Case 2). That
any torison-free abelian group is an absolute Galois group and that direct
products of torsion-free abelian groups are again torsion-free abelian, gives
Case 3. And, similarly, for Case 4: by Galois-p admissibility of Π, we can
realize any pro-p absolute Galois group P by a field F of characteristic 0
containing all ζq (q ∈ Π).
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For the converse direction, assume that GC is closed under free pro-C
products and that GC is non-trivial. Then there are primes p for which GC
contains non-trivial pro-p absolute Galois groups. Let

Σ := {p prime | C contains all finite p-groups},

Π := {q prime | the q-groups ∈ C are exactly all abelian q-groups}.

Then, by Lemma 4.4, Π ∪ Σ 6= ∅, each G ∈ GC is a pro-(Π ∪ Σ) group and
2 6∈ Π. In particular, the exponent of all l-groups in C with l 6∈ Π ∪ Σ are
bounded: otherwise Zl is a pro-C group in GC.

If ]Σ > 1 choose two distinct primes p, q ∈ Σ, choose fields E and F with
GE

∼= Zp ?p (Zp × Zp) and GF
∼= Zq ?q (Zq × Zq), and let K be a field with

GK
∼= GE ?C GF . We may assume that K = E ∩ F . Let L be the fixed

field of Zp × Zp ≤ GE and let M be the fixed field of Zq × Zq ≤ GF , let
v and w be the finest coarsening of the canonical henselian valuation on L
and M with residue characteristic 6= p resp. 6= q, and let vK := v |K and
wK := w |K . Then, by Fact 1.2, v and w are non-trivial, Γv 6= pΓv and
Γw 6= qΓw. However, vE := v |E and wF := w |F are non-henselian, because,
by Corollary 4.9, GE and GF have no non-trivial abelian normal subgroup
and, for henselian vE resp. wF the inertia subgroups would have to be of this
kind (char EvE = char Lv 6= p and char FwF = charMw 6= q). Hence vK

and wK are non-henselian, and so, by Theorem 3.1, any finite group occurs
as subquotient of GK . As GK is a pro-C group this means that C contains
all finite groups, and we are in Case 1.

If ]Σ = 1, say Σ = {p}, and if Π = ∅, then we are in Case 2: If p 6=
2 then all groups in C have odd order (otherwise the non-(Π ∪ Σ) group
Z/2Z is in GC). Moreover, each G ∈ C has normal p-Sylow subgroups: if
P1 and P2 are distinct p-Sylow subgroups of G we can choose epimorphisms
φi : Gi →→ Pi (i = 1, 2) for suitable Gi ∈ GC, because GC contains all pro-p
absolute Galois groups and so, in particular, all free pro-p groups. But then
the unique homomorphism φ : G1 ?C G2 → G with φ | Gi = φi (i = 1, 2)
has image 〈P1, P2〉 which is not a p-group. So G1 ?C G2 is not a pro-p group:
contradiction.

If ]Σ = 1, say Σ = {p} and if Π 6= ∅ then we are in Case 4: Any G ∈ C
has normal Sylow-q subgroups Gq for each q ∈ Π ∪ {p} (as in the previous
case). As any Π-group and any p-group in C is epimorphic image of a pro-Π
group resp. pro-p group in GC, Lemma 4.5 implies that all Π-groups in C
are abelian and all (Π ∪ {p})-groups in C are of the form A × P with A an
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abelian Π-group and P a p-group. Hence 〈Gq | q ∈ Π ∪ {p}〉 is of this shape
A × P , and by a well-known theorem of Zassenhaus (e.g. [Hu], I. 18.1), it
has a complement H in G, so G = (A× P ) XIH. Moreover, again by Lemma
4.5, all groups in C have odd order.

If, finally, Σ = ∅ then Π 6= ∅ and, arguing exactly as in the previous case,
we are in Case 3. q.e.d.
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