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Abstract. We show that dependent �elds have no Artin-Schreier extension,
and that simple �elds have only a �nite number of them.

1. Introduction

In [15], Macintyre showed that an in�nite ω-stable commutative �eld is algebraically
closed; this was subsequently generalized by Cherlin and Shelah to the superstable
case; they also showed that commutativity need not be assumed but follows [5]. It
is known [21] that separably closed in�nite �elds are stable; the converse has been
conjectured early on [1], but little progress has been made. In 1999 the second
author published on his web page a note proving that an in�nite stable �eld of
characteristic p at least has no Artin-Schreier extensions, and hence no �nite Galois
extension of degree divisible by p. This was later generalized to �elds without the
independence property (dependent �elds) by (mainly) the �rst author.

In the simple case, the situation is even less satisfactory. It is known that an
in�nite perfect, bounded (i.e. with only �nitely many extensions of each degree)
PAC (pseudo-algebraically closed: every absolutely irreducible variety has a ratio-
nal point) �eld is supersimple of SU-rank one [12]. Conversely, Pillay and Poizat
have shown that supersimple �elds are perfect and bounded; it is conjectured that
they are PAC, but the existence of rational points has only been shown for curves of
genus zero (and more generally Brauer-Severi varieties) [18], certain elliptic or hy-
perelliptic curves [16], and Abelian varieties over pro-cyclic �elds [17, 14]. Bounded
PAC �elds are simple [2] and again the converse is conjectured, with even less of
an idea on how to prove this [20, Conjecture 5.6.15]; note though that simple and
PAC together imply boundedness [3]. In 2006 the third author adapted Scanlon's
argument to the simple case and showed that simple �elds have only �nitely many
Artin-Schreier extensions.

In this paper we present the proofs for the simple and the dependent case, and
moreover give a criterion for a valued �eld to be dependent due to the �rst author.

We would like to thank Martin Hils and Françoise Delon for some very helpful
comments and discussion on valued �elds.

2. Preliminaries

Notation 2.1. If k is a �eld we denote by ka its algebraic closure.

1



ARTIN-SCHREIER EXTENSIONS IN DEPENDENT AND SIMPLE FIELDS 2

De�nition 2.2. Let K be a �eld of characteristic p > 0. A �eld extension L/K
is called an Artin-Schreier extension if L = K(α) for some α ∈ L \ K such that
αp − α ∈ K.

Note that if α is a root of the polynomial xp − x− a then {α, α+ 1, . . . , α+ p− 1}
are all the roots of the polynomial. Hence, if α /∈ K then L/K is Galois and cyclic
of degree p. The converse is also true: if L/K is Galois and cyclic of degree p then
it is an Artin-Schreier extension [10, Theorem VI.6.4].

LetK be a �eld of characteristic p > 0, and ℘ : K → K the additive homomorphism
given by ℘(x) = xp − x. Then the Artin-Schreier extensions of K are bounded by
the number of cosets in K/℘(K). Indeed, if K(α) and K(β) are two Artin-Schreier
extensions, then a = ℘(α) and b = ℘(β) are both in K \ ℘(K), and

a− b = ℘(α− β) ∈ ℘(K)

implies α− β ∈ K (since K contains ker℘ = Fp) and hence K(α) = K(β).

Remark 2.3. In fact, the Artin-Schreier extensions of a �eld k are in bijection

with the orbits under the action of F×p on k/℘(k).

Proof. Let G = Gal(ksep/k). From [19, X.3] we know that k/℘(k) is isomor-
phic to Hom(G,Z/pZ), and that the isomorphism is induced by taking c ∈ k to
ϕc : G → Z/pZ, where ϕc(g) = g(x) − x for any x satisfying ℘(x) = c. Now,
every Artin-Schreier extension corresponds to the kernel of a non-trivial element in
Hom(G,Z/pZ). From this it is easy to conclude: Take an Artin-Schreier extension
L/k to some ϕc such that ker(ϕc) = Gal(ksep, L), and from there to the orbit of
c+ ℘(k). One can check that this is well de�ned and a bijection. �

We now turn to vector groups.

De�nition 2.4. A vector group is a group isomorphic to a �nite product of the
additive group of a �eld.

Fact 2.5. [8, 20.4, Corollary] A closed connected subgroup of a vector group is a

vector group.

Using in�nite Galois cohomology (namely, that H1 (Gal(ka/k), (ka)×) = 1 for a
perfect �eld k, for more on that see [19, X]), one can deduce the following fact:

Corollary 2.6. Let k be a perfect �eld, and G a closed connected 1-dimensional al-

gebraic subgroup of (ka,+)n de�ned over k, for some n < ω. Then G is isomorphic

over k to (ka,+).

This fact can also proved by combining Théorème 6.6 and Corollaire 6.9 in [11,
IV.3.6].

We shall be working with the following group:

De�nition 2.7. Let K be a �eld and (a1, . . . , an) = ā ∈ K. Put

Gā = {(t, x1, . . . , xn) ∈ Kn+1 | t = ai (xpi − xi) for 1 ≤ i ≤ n}.

This is an algebraic subgroup of (K,+)n+1.

Recall that for an algebraic group G we denote by G0 the connected component
(subgroup) of the unit element of G.



ARTIN-SCHREIER EXTENSIONS IN DEPENDENT AND SIMPLE FIELDS 3

Lemma 2.8. Let K be an algebraically closed �eld. If ā ∈ K is algebraically

independent, then Gā is connected.

Proof. By induction on n := length(ā). If n = 1, then Gā = {(t, x) | t = a ·(xp−x)}
is the graph of a morphism, hence isomorphic to A1 and thus connected. Assume
the claim for n, and for some algebraically independent ā ∈ K of length n + 1
let ā′ = ā � n. Consider the projection π : Gā → Gā′ . Since K is algebraically
closed, π is surjective. Let H = G0

ā be the connected component of Gā. As
[Gā′ : π(H)] ≤ [Gā : H] < ∞, it follows that π(H) = Gā′ by the induction
hypothesis. Assume that H 6= Gā.

Claim. For every (t, x̄) ∈ Gā′ there is exactly one xn+1 such that (t, x̄, xn+1) ∈ H.

Proof. Suppose for some (t, x̄) there were x1
n+1 6= x2

n+1 such that (t, x̄, xin+1) ∈ H
for i = 1, 2. Hence their di�erence (0, 0̄, α) ∈ H. But 0 6= α ∈ Fp by de�nition
of Gā. Hence, (0, 0̄, 1) ∈ H, and (0, 0̄, β) ∈ H for all β ∈ Fp. But then for every
(t, x̄, xn+1) ∈ Gā there is some x′n+1 such that (t, x̄, x′n+1) ∈ H; as
xn+1 − x′n+1 ∈ Fp we get (t, x̄, xn+1) ∈ H and Gā = H, a contradiction. �

So H is a graph of a function f : Gā′ → K de�ned over ā. Now put t = 1 and
choose xi ∈ K for i ≤ n such that ai · (xpi − xi) = 1. Let L = Fp(x1, . . . , xn) and
note that ai ∈ L for i ≤ n. Then

xn+1 := f(1, x̄) ∈ dcl(an+1, x1, . . . , xn) = L(an+1)ins ,

where L(an+1)ins is the inseparable closure
⋃
n<ω L(an+1)p

−n

of L(an+1). Since
xn+1 is separable over L(an+1), it follows that xn+1 ∈ L(an+1). By assumption,
an+1 is transcendental over ā′, whence over L, and so xn+1 /∈ L. Hence xn+1 =
h(an+1)/g(an+1) for some mutually prime polynomials g, h ∈ L[X]. But then

an+1 ·
[
h(an+1)p/g(an+1)p − h(an+1)/g(an+1)

]
= 1

implies
an+1 ·

[
h(an+1)p − h(an+1)g(an+1)p−1

]
= g(an+1)p.

This implies that h divides gp, whence h ∈ L is constant. Similarly, g(X) divides
X, which easily yields a contradiction. �

Corollary 2.9. If K is perfect and ā ∈ K is algebraically independent, then Gā is

isomorphic over K to (Ka,+). In particular, Gā(K) is isomorphic to (K,+).

Proof. Over Ka the projection to the �rst coordinate of Gā is onto and has �nite
�bers, so dimGā = 1 (as a variety). But then G0

ā(Ka) is isomorphic over K to
(Ka,+) by Corollary 2.6; this isomorphism sends G0

ā(K) onto (K,+). Finally,
Gā = G0

ā by Lemma 2.8. �

3. Simple fields

For background on simplicity theory, the interested reader may consult [20]. The
only property we shall need is a type-de�nable variant of Schlichting's Theorem.

Fact 3.1. [20, Theorem 4.5.13] Let G and Γ ≤ Aut(G) be type-de�nable groups in

a simple theory, and let F be a type-de�nable Γ-invariant family of subgroups of

G. Then there is a Γ-invariant type-de�nable subgroup N ≤ G containing some

bounded intersection of groups in F such that [N : N ∩F ] is bounded for all F ∈ F.
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Theorem 3.2. Let K be a type-de�nable �eld in a simple theory. Then K has only

boundedly many Artin-Schreier extensions.

This means that in any elementary extension M, the number of Artin-Schreier ex-
tensions of KM remains bounded. In particular, by compactness, if K is de�nable,
it has only �nitely many Artin-Schreier extensions.

Proof. If K is �nite, then it has precisely one Artin-Schreier extensions. So we may
assume it is in�nite, and that the model is su�ciently saturated. Let k = Kp∞ =⋂
Kpn

, a perfect in�nite type-de�nable sub-�eld. Let ℘ : K → K be the additive
homomorphism given by ℘(x) = xp − x. We shall show that ℘(K) has bounded
index in K.

Let F = {a℘(K) | a ∈ k}; this is a type-de�nable k×-invariant family of additive
subgroups of K. By Fact 3.1 there exists a type-de�nable additive k×-invariant
subgroup N ≤ K containing a bounded intersection of groups in F, such that
[N : N ∩ F ] is bounded for all F ∈ F.

If N contains
⋂
a∈A a℘(K) for some bounded A ⊂ k, then for any �nite ā ∈ A

the group G0
ā(k) is isomorphic to (k,+) by Corollary 2.9. Since k is in�nite, the

projection to the �rst coordinate is in�nite, as is
⋂
a∈ā a℘(k), and even

⋂
a∈A a℘(k)

by compactness, so N ∩ k is in�nite as well. But N ∩ k is k×-invariant, hence an
ideal in k, and must equal k. Since [N : ℘(K)] is bounded, so is [k : k ∩ ℘(K)].
Now a = ap + ℘(−a) for any a ∈ K, whence K = Kp + ℘(K). Assume K =
Kpn

+ ℘(K). Then Kp = Kpn+1
+ ℘(Kp), whence

K = Kp + ℘(K) = Kpn+1
+ ℘(Kp) + ℘(K) = Kpn+1

+ ℘(K);

by compactness K = k + ℘(K). Thus [K : ℘(K)] = [k : k ∩ ℘(K)] is bounded. �

Remark 3.3. The important category of objects in simple theories are the hyper-

de�nable ones: Quotients of a type-de�nable set by a type-de�nable equivalence

relation. However, a hyper-de�nable �eld is easily seen to be type-de�nable: If K
is given by a partial type π modulo a type-de�nable equivalence relation E, then for

a, b ∈ K the inequivalence ¬aEb is given by the partial type ∃x [π(x)∧ (a− b)xE1].
By compactness, E is de�nable on π.

4. Dependent fields

De�nition 4.1. A theory T has the independence property if there is a formula
ϕ(x̄, ȳ) and some model M containing tuples (āi : i ∈ ω) and (b̄I : I ⊂ ω) such that
M |= ϕ(āi, b̄I) if and only if i ∈ I.

De�nition 4.2. A theory T is dependent if it does not have the independence
property.

Remark 4.3. Let k be a �eld, and let f : k → k be an additive polynomial, i.e.

f(x + y) = f(x) + f(y). Then f is of the form
∑
aix

pi

. Furthermore, if k is

algebraically closed and ker(f) = Fp, then f = a · (xp − x)p
n

for some n < ω and

a ∈ k.

Proof. The �rst part appears in [7, Proposition 1.1.5]. Assume now that k is
algebraically closed and | ker(f)| = p. If a0 6= 0, then (f, f ′) = 1, hence f has
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no multiple factors and deg(f) = p. If a0 = 0, then f = (g(x))p for some additive
polynomial g with | ker(g)| = p. So by induction f = (a0x + a1x

p)p
n

for some
n < ω. If moreover ker(f) = Fp, then a0 + a1 = 0 hence f = a · (xp−x)p

n

for some
a ∈ k. �

Theorem 4.4. Let K be an in�nite dependent �eld. Then K is Artin-Schreier

closed.

Proof. We may assume that K is ℵ0-saturated, and we put k = Kp∞ , a type-
de�nable in�nite perfect sub-�eld. For a ∈ k put

Ha = {t ∈ K | ∃x ∈ K a · (xp − x) = t}.

By dependency the Baldwin-Saxl condition [23] holds, which means that there is
n < ω such that for every n+ 1 tuple ā, there is a sub-n-tuple ā′ with

⋂
a∈āHa =⋂

a∈ā′ Hā′ . This implies that the projection π : Gā(K)→ Gā′(K) is onto, where

Gā = {(t, x1, . . . , xn) ∈ Kn+1 | t = ai (xpi − xi) for 1 ≤ i ≤ n}

is the group de�ned in De�nition 2.7. We �x some algebraically independent (n+1)-
tuple ā ∈ k.
By Corollary 2.9 we have algebraic isomorphisms Gā → (Ka,+) and Gā′ → (Ka,+)
over k. Hence we can �nd an algebraic map ρ over k which makes the following
diagram commute:

Gā(Ka) π //

��

Gā′(Ka)

��
(Ka,+)

ρ // (Ka,+)

As all groups and maps are de�ned over k ⊆ K, we can restrict toK. But π � Gā(K)
is onto Gā′(K), so ρ � K must be onto as well. Moreover,

| ker(ρ)| = | ker(π)| = |(0, 0̄)× Fp| = p ;

since ker(π) is contained in Gā(K), this remains true in the restrictions to K.
Finally, ρ is a group homomorphism, i.e. additive, and a polynomial, as it is an
algebraic morphism of (Ka,+).
Suppose that 0 6= c ∈ ker(ρ) ⊆ K, and put ρ′(x) = c−1 ·ρ(x). Then ρ′ is an additive
polynomial whose kernel is Fp. By Remark 4.3 there are a ∈ k and n < ω such that

ρ′(x) = a · (xp−x)p
n

. As ρ′ � K is onto K, for any y ∈ K there is some x ∈ K with

a · (xp − x)p
n

= a · yp
n

,

so ℘(x) = xp − x = y and we are done.

In fact, n must be 0, as the degree of π (as algebraic morphism) is p, and so is the
degree of ρ′, since the vertical arrows are algebraic isomorphisms. �

Corollary 4.5. If K is an in�nite dependent �eld of characteristic p > 0 and L/K
is a �nite separable extension, then p does not divide [L : K].
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Proof. Assume not, and let L′ be the normal closure of L/K. Then p | [L′ : K], so
we may assume that L/K is Galois. Let G ≤ Gal(L/K) be a subgroup of order p,
and let KG ⊆ L be its �xed �eld. As KG is interpretable in K, it is also dependent.
But L/KG is an Artin-Schreier extension, contradicting Theorem 4.4. �

Corollary 4.6. Let K be an in�nite dependent �eld of characteristic p > 0. Then
K contains Fap.

Proof. Let k = K ∩ Fap, the relative algebraic closure of Fp in K. As K is Artin-
Schreier closed, so is k. Hence k is in�nite, perfect, and pseudo-algebraically closed.
But [6, Theorem 6.4] of Duret states that a �eld with a relatively algebraically closed
PAC sub�eld which is not separably closed has the independence property. Hence
k is algebraically closed, i.e. k = Fap. �

One might wonder what happens for a type-de�nable �eld in a dependent theory.
We were unable to generalize our theorem to this case. However, one easily sees:

Proposition 4.7. Let K be a type-de�nable �eld in a dependent theory. Then K
has either no, or unboundedly many Artin-Schreier extensions.

Proof. By [13, Proposition 6.1] there is a minimal type-de�nable subgroup K00 of
(K,+) of bounded index. Since it is an ideal, it must equal K. On the other
hand, the image of ℘ is a type-de�nable subgroup of (K,+). Remark 2.3 tells us
that it has bounded index if and only if there are boundedly many Artin-Schreier
extensions. But if it has bounded index, then it contains K00 = K, and K is
Artin-Schreier closed. �

In an attempt to prove the theorem for type de�nable �elds, we found the following
lemma concerning type de�nable groups in dependent theories:

De�nition 4.8. Let G be a group, H a family of subgroups of G and κ a cardinal.
The κ-almost intersection is the subgroup⋂

κ H = {g ∈ G | card({H ∈ H | g /∈ H}) < κ.}.

Proposition 4.9. Let G be a type-de�nable group in a dependent theory. Then for

any type-de�nable family H0 of subgroups of G there is a cardinal κ0 such that for

any regular cardinal κ ≥ κ0, and subfamily H ⊆ H0 in any elementary extension,

the intersection
⋂

H is a subintersection of size less than κ intersected with the

κ-almost intersection
⋂
κ H. In fact, if κ1 is a bound for the number of parameters

de�ning a group in H0 and every g ∈ G is a tuple of length κ2, then we can take

κ0 = |T |+ + κ1 + κ2.

Proof. Let κ ≥ κ0 be regular. Sets of cardinality less than κ will be called small.
Assume that there is some family H = {Hi | i < λ} of uniformly type-de�nable
subgroups of G which is not equal to a small subintersection intersected with the
κ-almost intersection. For g ∈ G de�ne Jg = {i < λ | g ∈ Hi}. So g ∈

⋂
κ H if and

only if λ \ Jg is small.

We shall de�ne inductively on i < κ elements gi ∈
⋂
κ H, subsets Ii ⊆ λ and ordinals

αi < λ, such that

(1) Ii ∩ [0, αi] = ∅,
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(2) Ii is decreasing,
(3) αi is increasing,
(4) Ii ⊆ Jgi ,
(5)

⋂
j∈λ\Ii

Hj ⊇
⋂
κ H ∩

⋂
j∈J Hj for some small J ⊆ λ, and

(6) for i 6= j we have gi ∈ Hαj \Hαi .

Assume that gj , Ij , αj have been chosen for j < i. Put I ′i =
⋂
j<i Ij (where I

′
0 = λ).

Let αi ∈ I ′i be minimal such that there is some element

gi ∈
(⋂

κ H ∩
⋂
j<i

Hαj

)
\Hαi

.

Such an αi must exist, as otherwise
⋂
κ H ∩

⋂
j<iHαj

⊆
⋂
j∈I′i

Hj , so⋂
H =

⋂
κ H ∩

⋂
j<i

Hαj
∩
⋂

j∈λ\I′i

Hj .

But now [0, i) is small, and by (5) and regularity of κ there is a small J with⋂
j∈λ\I′i

Hj ⊇
⋂

κ H ∩
⋂
j∈J

Hj .

This contradicts our assumption on H.

Let Ii = {j ∈ I ′i | j > αi} ∩ Jgi
. This takes care of (1) and (4). Now (2) is obvious,

and (3) follows from (1) in the induction. By the minimality of αi,⋂
κ H ∩

⋂
j<i

Hαj
⊆

⋂
j∈I′i∩[0,αi)

Hj .

So ⋂
j∈[0,αi]

Hj ∩
⋂

j∈λ\I′i

Hj =
⋂

j∈(λ\I′i)∪([0,αi]∩I′i)
Hj ⊇

⋂
κ H ∩

⋂
j≤i

Hαj ∩
⋂
j∈J

Hj .

As ⋂
j∈λ\Ii

Hj =
⋂

j∈λ\Jgi

Hj ∩
⋂

j∈[0,αi]

Hj ∩
⋂

j∈λ\I′i

Hj

we get (5). Finally for j < i we have gi ∈ Hαj
\Hαi

by choice of gi, and for j > i
we have gi ∈ Hαj since αj ∈ Ii ⊂ Jgi , so (6) holds as well.

Now the usual argument works: Since d1 · gi · d2 /∈ Hi for any d1, d2 ∈ Hi, by com-
pactness there is some formula ϕi(x, bi) containing Hαi such that ¬ϕi(d1gid2, bi)
for all d1, d2 ∈ Hαi

. As κ > |T |, we can extract in�nite subset I of κ such that
the same formula ϕ (x, y) will work for all i ∈ I. Now for any �nite subset s of
I let gs be the product

∏
i∈s gi. Then ϕ(gs, bi) if and only if i /∈ s, contradicting

dependency. �

5. Some corollaries on dependent valued fields

Here we �nd a nice characterization of �nice� dependent valued �elds of character-
istic p > 0. First we recall the de�nitions and notations:

De�nition 5.1. A valued �eld is a pair (K, v): K is a �eld and v : K → Γ ∪ {∞}
where Γ is an ordered group such that:

(1) v (x) =∞ i� x = 0,
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(2) v (x · y) = v (x) + v (y), and
(3) v (x+ y) ≥ min {v (x) , v (y)}.

If (K, v) is a valued �eld, then Γ = v (K×) is the value group, OK = {x ∈ K |
v(x) ≥ 0} is the (local) ring of integers, mK = {x ∈ K | v(x) > 0} is its maximal

ideal, and k = OK/mK is the residue �eld. As a structure we think of it as a
3-sorted structure (K,Γ, k) equipped with the valuation map v : K× → Γ, and the
quotient map π : OK → k. Other interpretations are known to be equivalent (i.e.
bi-interpretable, and hence preserving properties such as dependency).

We shall discuss here valued �elds of characteristic p, i.e. with char(K) =char(k) =
p.

Corollary 5.2. If (K, v) is a dependent valued �eld of characteristic p > 0, then
the residue �eld contains Fap.

Proof. Given ā ∈ k, choose a lifting a ∈ OK . Since K is Artin-Schreier closed,
there is b ∈ K with bp − b = a. If v(b) < 0, then v(bp) = p v(b) < v(b), whence
v(bp − b) = v(bp) < 0, contradicting v(a) > 0. Hence v(b) ≥ 0 and b ∈ OK . Thus
b̄ ∈ k, and b̄p − b̄ = ā. In other words, k is also Artin-Schreier closed, and hence
in�nite; since it is interpretable, it is dependent, and contains Fap by Corollary
4.6. �

Corollary 5.3. If (K, v) is a dependent valued �eld of characteristic p > 0, then
the value group Γ is p-divisible.

Proof. Let 0 > α ∈ Γ. So α = v (a) for some a ∈ K×. As K is Artin-Schreier
closed, there is some b ∈ K× such that bp − b = a. Clearly v(b) ≥ 0 is impossible.
Hence v(bp) = p v(b) < v(b), and

α = v(a) = v(bp − b) = min{v(bp), v(b)} = v(bp) = p v(b).

So α is p-divisible, as is Γ (for α positive, take −α). �

As a corollary we obtain a result of Cherlin [4].

Corollary 5.4. Fp ((t)) is independent, and so is Fap ((t)).

For the other direction we shall �rst recall two de�nitions.

De�nition 5.5. A valued �eld (K, v) of characteristic p > 0 is called a Kaplansky
�eld if it satis�es:

(1) The value group Γ is p-divisible,
(2) The residue �eld k is perfect, and does not admit a �nite separable extension

divisible by p.

This de�nition is taken from the unpublished book on valuation theory by Franz-
Viktor Kuhlmann [9]. It is �rst-order, as the last two conditions are equivalent to
saying that for every additive polynomial f ∈ k [x], and every a ∈ k, there is a
solution to f (x) = a in k.

De�nition 5.6. A valued �eld (K, v) is called algebraically maximal if it does not
admit any non-trivial algebraic immediate extension (i.e. keeping both the residue
�eld and the value group).
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Note that this is also �rst order axiomatizable. It always implies Henselianity, and
is equivalent to it in characteristic 0. In characteristic p, it is equivalent to being
Henselian and defectless.

We shall use the following result of Bélair.

Fact 5.7. [22, Corollaire 7.6] A valued �eld of characteristic p which is Kaplansky

and algebraically maximal is dependent if and only if k is dependent.

So now we can conclude with:

Corollary 5.8. Let (K, v) be an algebraically maximal valued �eld of characteristic

p whose residue �eld k is perfect. Then (K, v) is dependent if and only if k is

dependent and in�nite and Γ is p-divisible.

Proof. If (K, v) is dependent then k is in�nite (it even contains Fap), and dependent,
and Γ is p-divisible, by the last two corollaries. On the other hand, if k is dependent
and in�nite, by Corollary 4.5 we get that (K, v) is Kaplansky and we can apply
Fact 5.7. �

It is interesting to note the connection to Kuhlmann's notion of a tame valued �eld
(see [9, Chapter 13.9]). A valued �eld (K, v) is called tame i� it is algebraically
maximal, Γ is p divisible and k is perfect. Note the di�erence between this and
Kaplansky. And so, another corollary would be

Corollary 5.9. Let (K, v) be a valued �eld. Then, if K is tame and dependent,

then it is Kaplansky.
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