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Abstract. For arbitrary real closed fields R, we study the structure of the
space M(R(y)) of R-places of the rational function field in one variable over
R and determine its dimension to be 1. We determine small subbases for
their topology and discuss a suitable metric in the metrizable case. In the
case of non-archimedean R, we exhibit the rich variety of homeomorphisms of
subspaces that can be found in such spaces.

1. Introduction

Let X (K) be the space of orderings, given in the form of positive cones (not
containing 0), of a formally real field K and M(K) be the space of R-places of
K, i.e., places ξ : K → R, where R = R∪{∞}, i.e., a circle. It is well known that
X (K) is a Boolean space (i.e., it is compact, Hausdorff and totally disconnected)
under the Harrison topology given by the subbasis of sets

H(a) := {P ∈ X (K) | a ∈ P} , a ∈ K \ {0} .

The natural surjection

(1) λ : X (K) −→M(K)

makesM(K) (with the quotient topology) a compact Hausdorff space. A subbasis
for the quotient topology onM(K) is given by the family of open sets of the form

U(a) = {ξ ∈M(K) | ξ(a) ∈ R+}, a ∈ K.

Here, “ξ(a) ∈ R+” means that ∞ ̸= ξ(a) > 0. For details, see [9]. In the present
paper the quotient topology will be called the Harrison topology on M(K).

Let R be a real closed field. The unique ordering Ṙ2 of R determines a natural
valuation

v : R→ vR ∪ {∞}
with vR a divisible ordered abelian group. This turns R into an ultrametric
space, where the ultrametric distance u is defined as follows:

u(a, b) = v(a− b).

Take any cut (S, T ) in vR. The ultrametric ball with center in a ∈ R and radius
T is defined as:

BT (a) = {b ∈ R : v(b− a) ∈ T}.
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If B1 and B2 are ultrametric balls in R, then one of the following holds: B1 ⊂ B2,
B2 ⊂ B1 or B1 ∩ B2 = ∅. Every ball B determines two cuts in R: B− with the
lower cut set {a ∈ R | a < B} and B+ with the upper cut set {a ∈ R | a > B}.

Throughout this paper, R(y) will always denote the rational function field in
one variable over the field R. Let C(R) be the set of cuts in R (which includes
the improper cuts (∅, R) and (R, ∅)).

Proposition 1. If R is a real closed field, then there is a bijection χ from C(R)
onto X (R(y)) given by

(2) (D,E) 7→ P = {f ∈ R(y) | ∃d∈D∪{−∞}∃e∈E∪{∞}∀c∈(d,e)f(c) > 0}
for (D,E) ∈ C(R). The inverse mapping is

(3) P 7→ (DP , EP ),

where DP = {d ∈ R | d < y} and EP = {e ∈ R | y < e} for P ∈ X (R(y)).

Indeed, it is well known that since R is a real closed field, the mapping (3) is a
bijection, and it is an easy exercise to prove that the set P in (2) is a positive
cone. It contains y− c if and only if c ∈ D and therefore, P is the unique positive
cone that mappings to (D,E) via the mapping in (3).

The set of cuts of an ordered set is an ordered set, so it carries the order
topology. In fact, the bijection given above is a homeomorphism between the
spaces C(R) with order topology and X (R(y)) with Harrison topology. For details
see [8]. In that paper we also gave a handy criterion for two orderings on R(y)
to be sent to the same R-place by λ . We say that C1, C2 are equivalent cuts
if C1 = C2 or {C1, C2} = {B−, B+} for some ultrametric ball B in R.

Theorem 2. Take a real closed field R and two distinct orderings P1, P2 of R(y).
Let C1, C2 be the corresponding cuts in R. Then λ(P1) = λ(P2) if and only if C1

and C2 are equivalent.

For any a ∈ R the set {a} is an ultrametric ball since {a} = BT (a) for T = ∅.
Also R = BvR(0) is an ultrametric ball. The cuts a− := {a}− and a+ := {a}+
determined by a ball {a} are called principal cuts. The cuts determined by the
ball R, i.e., the cuts (∅, R) and (R, ∅), are called improper cuts. The R-places of
R(y) determined by principal and improper cuts will be called principal places.
Note that since the set of principal cuts is dense in the space X (R(y)), the set of
principal places is dense in M(R(y)).

In Section 2 we will show that a subbasis for the space M(R(y)) can be given
by the rather small collection of all sets U(f) where f runs through all linear
function and functions of the form y−a

y−b , all of them with coefficients in any dense

subfield of R.
The space M(R(y)) is metrizable if and only if R contains a countable dense

subfield (see [8]). In Section 3 we will use the subbasis described above to obtain
a metric on M(R(y)) in the metrizable case.

In Section 4 we determine the dimension of the space M(R(y)). In general
dimension theory there are three basic notions of dimension of a topological space:
the covering dimension, the small inductive dimension and the large inductive
dimension. If a compact space is not metrizable, then the values of the various
dimensions may differ. However, we prove:
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Theorem 3. If R is any real closed field, then the (small or large) inductive
dimension as well as the covering dimension of M(R(y)) is 1.

It is well known that for any archimedean real closed field R the spaceM(R(y))
is homeomorphic to a circle. In fact, this is an easy consequence of Theorem 2.
This theorem can be employed to show the amazingly rich topological structure
of M(R(y)) when R is non-archimedean real closed. Indeed, any non-trivial au-
tomorphism of the field R(y) generates a non-trivial homeomorphism ofM(R(y))
which reveals homeomorphisms between subspaces of this space. In particular
cases the spaceM(R(y)) can be self-homeomorphic, i.e., homeomorphic to proper
subspaces. We will describe these types of homeomorphisms of M(R(y)) in Sec-
tion 6.

Analysing the gluings, we obtain in Section 6 the big picture of what we have
named the “densely fractal pearl necklace”. While a rich self-similarity structure
is commonly seen as an indication for a fractal, it is usually not taken as the
only criterion, However, M(R(y)) is compact, hence in the metrizable case (see
Section 3) it is automatically called “fractal” by some authors. Using the results
from Sections 2 and 3, we will study in a subsequent paper in which wayM(R(y))
meets other classical definitions of fractals. In the non-metrizable case the use of
the notion “fractal” is even more delicate, as there seems to be no authoritative
literature on possible definitions in this case. We will try to make a contribution
to this problem in another subsequent paper.

2. A small subbasis for M(R(y))

Take any real closed field R. Denote by v the natural valuation on R with
value group vR and by ξ0 the corresponding unique R-place of R. A subbasis of
M(R(y)) is given by the sets

U(f) = {ξ ∈M(R(y)) | ξ(f) ∈ R+}, f ∈ R(y).

In this chapter, we will present a much smaller subbasis. We need some prepa-
rations. We will say that f ∈ R(y) is Q+-bounded on a subset S ⊆ R if there
are positive rational numbers q1, q2 such that q1 ≤ f(c) ≤ q2 for every c ∈ S.

Lemma 4. Take f ∈ R(y), ξ ∈M(R(y)) and P ∈ λ−1(ξ). Let (D,E) be the cut
in R corresponding to P . Then ξ ∈ U(f) if and only if there are d ∈ D ∪ {−∞}
and e ∈ E ∪ {∞} such that f is Q+-bounded on (d, e).

Proof: Assume first that ξ ∈ U(f). Then there are positive rational numbers
q1 and q2 such that q1 < ξ(f) < q2. Therefore, q1 <P f <P q2 . By (2), there
exist d ∈ D ∪ {−∞} and e ∈ E ∪ {∞} such that q1 < f(c) < q2 holds in R for
every c ∈ (d, e).

Now suppose that there are d ∈ D∪{−∞}, e ∈ E ∪{∞} and positive rational
numbers q1 and q2 such that q1 ≤ f(c) ≤ q2 for every c ∈ (d, e). Then there
are also positive rational numbers q′1 and q′2 such that q′1 < f(c) < q′2 for every
c ∈ (d, e). This implies by (2) that q′1 <P f <P q′2 , whence q

′
1 ≤ ξ(f) ≤ q′2 and

ξ ∈ U(f). 2
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Corollary 5. Take g ∈ R(y) and suppose that g is Q+-bounded on (d, e). If
(D∗, E∗) is a cut in (d, e), i.e., d ∈ D∗ ∪ {−∞} and E∗ ∪ {∞}, then the R-place
η determined by the ordering corresponding to the cut (D∗, E∗) is in U(g).

Corollary 6. Assume that f is a linear polynomial and ξ ∈M(R(y)) is induced
by the ball-cuts generated by a ball B. Then ξ ∈ U(f) if and only if f is Q+-
bounded on B.

Proof: Denote by (D,E) and (D′, E′) with D ⊂ D′ the two ball cuts induced
by B. Then Lemma 4 shows that ξ ∈ U(f) if and only if there are d ∈ D∪{−∞},
e ∈ E, d′ ∈ D′, and e′ ∈ E′ ∪ {∞} such that f is Q+-bounded on (d, e) and on
(d′, e′). This in turn holds if and only if f is Q+-bounded on (d, e) ∪ (d′, e′).

Assume that the latter holds. Because f is linear, we then have for every b ∈ B
that f(b) lies between f(d) and f(e′), so f is Q+-bounded on B.

Now assume that f is Q+-bounded on B, that is, there are positive rational
numbers q1, q2 such that q1 ≤ f(c) ≤ q2 for every c ∈ B. Take positive rational
numbers q′1, q

′
2 such that q′1 < q1 and q2 < q′2. If f is not constant, then define

d = min{f−1(q′1), f
−1(q′2)} and e′ = max{f−1(q′1), f

−1(q′2)}. Then d, e′ /∈ B and
therefore, d ∈ D and e′ ∈ E′. If f is constant and Q+-bounded on the ball B,
then f is Q+-bounded on R and hence also on (d, e) ∪ (d′, e′). 2

Remark 7. The Baer-Krull theorem says that the number of orderings of the
field F determining the same R-place ξ is equal to the number of characters of
the quotient group Vξ/2Vξ, where Vξ denotes the value group of the valuation
vξ originating from ξ. In [6] the authors described all possible value groups
determined by orderings of the field R(y). Either the group is equal to vR (in the
immediate and in the residue transcendental case), or it is isomorphic to vR⊕Z
(in the value transcendental case). Since vR is divisible, ξ is determined by a
single ordering if Vξ = vR, and by two orderings if Vξ = vR ⊕ Z. On the other
hand, Theorem 2 gives us that ξ ∈M(R(y)) is determined by a single ordering if
and only if the cut corresponding to this ordering is a non-ball cut. We conclude
that Vξ = vR⊕ Z if ξ is induced by a ball cut, and Vξ = vR otherwise.

If ξ ∈M(R(y)) is induced by the ball-cuts generated by a ball BT (a), then by
[8, Lemma 2.6] we have that

v(a− d) > vξ(y − a) > v(a− e),

for every d ∈ BT (a) and e /∈ BT (a), that is, vξ(y − a) is not an element of vR,
and it induces the cut (vR \ T, T ) in vR. Conversely, if vξ(y − a) ∈ vR(y) \ vR
induces the cut (vR \ T, T ) in vR, then the cut induced by y − a is a ball cut
induced by the ball BT (a). ⋄

Suppose that F is any dense subfield of R. Consider the following family F of
functions:

F = {a+ by,
y − a

y − b
| a, b ∈ F}.

Theorem 8. The family {U(f) | f ∈ F} forms a subbasis for the Harrison
topology on M(R(y)).
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Proof: Take any g ∈ R(y). We will show that U(g) is the union of finite
intersections of sets U(f) for suitable f ∈ F . For this it is enough to show that for
each ξ ∈ U(g) there is a finite intersection U of sets U(f) such that ξ ∈ U ⊂ U(g).

Let P be an ordering corresponding to ξ ∈ U(g). We will consider two cases,
depending on whether the cut (D,E) corresponding to P is a ball cut or not.

Case 1. Assume that (D,E) is a non-ball cut, i.e., P is the unique ordering
determining ξ and (D,E) is a proper cut. Denote by Vξ the value group of
the valuation vξ which corresponds to ξ. According to Remark 7, we have that
Vξ = vR. By Lemma 4, and since D ̸= ∅ and E ̸= ∅, there are d ∈ D and e ∈ E
such that g is Q+-bounded on (d, e). Since (D,E) is a non-ball cut, it cannot
be principal, i.e., D does not have a last element and E does not have a first
element. So we can choose elements d and e closer and closer to the cut, and
by the density of F in R we can assume that d, e ∈ F . Suppose first that the
following equalities hold:

(4) vξ(y − d) = v(e− d) = vξ(e− y).

Consider the linear functions

f1(y) =
y − d

e− d
and f2(y) =

e− y

e− d

and set U = U(f1) ∩ U(f2). We have that vξ(f1) = vξ(f2) = 0 and f1, f2 ∈ P ,
so ξ ∈ U . Take any η ∈ U and a cut (D∗, E∗) corresponding to any ordering
determined by η. There are d∗ ∈ D∗ and e∗ ∈ E∗ such that f1 and f2 are Q+-
bounded on (d∗, e∗). Therefore, f1(c) > 0 and f2(c) > 0 for every c ∈ (d∗, e∗).
Since both functions f1 and f2 are positive at the same time only on the interval
(d, e), we have that d ≤ d∗ < e∗ ≤ e. By Corollary 5, η ∈ U(g).

Now suppose that (4) does not hold. We shall consider the case of v(e− d) <
vξ(y−d). The case of v(e−d) < vξ(e− y) is symmetrical. By the density of F in
R and the equality Vξ = vR, there is a positive b ∈ F such that v(b) = vξ(y− d).

Set f(y) = y−d
b and U = U(f). Then vξ(f) = 0 and f ∈ P , thus ξ ∈ U . Take

η ∈ U and let (D∗, E∗) be a cut corresponding to any ordering determined by η.
Then there are d∗ ∈ D∗ and e∗ ∈ E∗ such that f is Q+-bounded on (d∗, e∗). This
yields that d ≤ d∗. Since v(e − d) < vξ(y − d) = v(b), we have that v( e−db ) < 0
which shows that e cannot lie in (d∗, e∗) and therefore, e∗ ≤ e. Hence again by
Corollary 5, η ∈ U(g).

Case 2. Assume that (D,E) is a ball cut induced by B = BT (a). Let (D
′, E′)

be the other cut induced by this ball. We can assume that (D,E) = B− and
(D′, E′) = B+. First we consider the case of B ̸= R. By Lemma 4 there exist
d ∈ D, e ∈ E, d′ ∈ D′ and e′ ∈ E′ such that g is Q+-bounded on (d, e) ∪ (d′, e′).
Since B = E ∩D′ is a ball, D does not have a last element and E′ does not have
a first element. Therefore, by the density of F in R we can assume that d and e′

belong to F .

First, assume that (d, e) ∩ (d′, e′) ̸= ∅, i.e., g is Q+-bounded on (d, e′). Using
the density of F in R, we choose positive b1, b2 ∈ F such that v(b1) = v(a − d)
and v(b2) = v(e′ − a). We consider the linear functions

f1(y) =
y − d

b1
and f2(y) =

e′ − y

b2
.
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We set U = U(f1) ∩ U(f2) and take d1 = d+a
2 . Since d /∈ BT (a), we have that

v(d1 − a) = v(d−a2 ) = v(d − a) < T , thus d1 /∈ BT (a). Therefore, d1 ∈ D.

Moreover, f1(d1) = a−d
2b1

> 0 and v(f1(d1)) = 0, so ξ0(f1(d1)) ∈ R+. Simi-

larly, ξ0(f1(a)) ∈ R+ and since f1 is a linear function we have that f1(d1) ≤
f1(c) ≤ f1(a) for every c ∈ [d+a2 , a]. Therefore, f1 is Q+-bounded on (d+a2 , a).
By Lemma 4, this implies that ξ ∈ U(f1). In a similiar way one shows that f2 is

Q+-bounded on (a, a+e
′

2 ) and therefore, ξ ∈ U(f2). We have proved that ξ ∈ U .
Take any η ∈ U . Let (D∗, E∗) be a cut corresponding to any ordering de-

termined by η. Then there are d∗ ∈ D∗ and e∗ ∈ E∗ such that f1 and f2 are
Q+-bounded on (d∗, e∗). Therefore, f1(c) > 0 and f2(c) > 0 for every c ∈ (d∗, e∗).
This implies that d ≤ d∗ < e∗ ≤ e′ and by Corollary 5, η ∈ U(g).

Now assume that [d, e] ∩ [d′, e′] = ∅. Then B has more than one element. In
this case we can choose the elements d < e < d′ < e′ to be in F . Consider the
two linear functions

f1(y) =
y − d

e− d
and f2(y) =

e′ − y

e′ − d′
,

and the function

(5) f3 =
y − e

y − d′
= 1 +

d′ − e

y − d′
.

We set U = U(f1) ∩ U(f2) ∩ U(f3). Since e, d′ ∈ B, we have that B = BT (a) =
BT (e) = BT (d

′). Therefore, the same arguments as in the previous case yield

that f1 is Q+-bounded on (d+e2 , e) and f2 is Q+-bounded on (d′, d
′+e′

2 ), whence
ξ ∈ U(f1) ∩ U(f2). Since B = BT (d

′) and e ∈ B, by Remark 7 we have that

v(e−d′) > vξ(y−d′). Therefore we obtain that vξ(f3) = min{v(1), vξ( d
′−e
y−d′ )} = 0.

Moreover f3 ∈ P , thus ξ ∈ U(f3) and finally ξ ∈ U .
Take η ∈ U and let (D∗, E∗) be a cut corresponding to any ordering determined

by η. Then there are d∗ ∈ D∗ and e∗ ∈ E∗ such that f1, f2 and f3 areQ+-bounded
on (d∗, e∗). Therefore, f1(c) > 0, f2(c) > 0 and f3(c) > 0 for every c ∈ (d∗, e∗).
Since all three functions f1, f2 and f3 are positive at the same time only on the
set (d, e) ∪ (d′, e′), we find that either d ≤ d∗ < e∗ ≤ e or d′ ≤ d∗ < e∗ ≤ e′. By
Corollary 5, η ∈ U(g).

Now we consider the case of B = R, so D = ∅ = E′. By Lemma 4 there
exist e ∈ E and d′ ∈ D′ such that g is Q+-bounded on (−∞, e) ∪ (d′,∞). If
(−∞, e) ∩ (d′,∞) ̸= ∅, then we can take U = U(1) since U = U(g) = U(1), and
we are done. So let us assume now that (−∞, e) ∩ (d′,∞) = ∅.

Consider the function

f =
y − e

y − d′
= 1 +

d′ − e

y − d′
.

and set U = U(f). Since ξ(f) = 1, we have that ξ ∈ U .
Take η ∈ U and let (D∗, E∗) be a cut corresponding to any ordering determined

by η. Then there are d∗ ∈ D∗ and e∗ ∈ E∗ such that f is Q+-bounded on
(d∗, e∗). Therefore, f(c) > 0 for every c ∈ (d∗, e∗). Since f is positive only on
the set (−∞, e) ∪ (d′,∞), we find that either d∗ < e∗ ≤ e or d′ ≤ d∗ < e∗. By
Corollary 5, η ∈ U(g). 2
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Remark 9. The family {U(f) | f linear polynomial} does not form a subbasis
for the Harrison topology on M(R(y)). Indeed, take any non-singleton ball B in
R and any two elements e < d′ in B. Consider the function f3 as in (5). We have
already shown that the place ξ induced by the ball-cuts generated by B belongs
to U(f3). Suppose there was a finite intersection U = U(g1) ∩ . . . ∩ U(gk) with
linear polynomials g1, . . . , gk such that ξ ∈ U ⊆ U(f3). By Corollary 6, ξ ∈ U(gi)
implies that gi is Q+-bounded on B and hence on {d′}, for 1 ≤ i ≤ k. Now take
η to be the principal place induced by the ball-cuts generated by the principal
ball {d′}. Again by Corollary 6, η ∈ U(gi) for 1 ≤ i ≤ k, whence η ∈ U(f3). But
η(f3) = ∞, a contradiction. ⋄

As a corollary to Theorem 8, it can be shown that the family F weakly sepa-
rates points in M(R(y)), i.e., if ξ, η ∈ M(R(y)) with ξ ̸= η, then there is f ∈ F
such that ξ(f) ̸= η(f). But we will prove an even stronger result. For every
γ ∈ vR, we choose an element cγ ∈ R such that vcγ = γ. For every γ ∈ vR, write
Oγ = {a ∈ R | va ≥ 0} and Mγ = {a ∈ R | va > 0}. Then take Soγ to be a set of
representatives for the cosets in the quotient R/Oγ of additive groups, and Sγ to
be a set of representatives for the cosets in the quotient R/Mγ . We will consider
the following subfamilies of F :

F0 := {y − a

cγ
| a ∈ Soγ , γ ∈ vR}

F1 := {y − a

rcγ
| a ∈ Sγ , γ ∈ vR} .

Proposition 10. The family F0 weakly separates points in M(R(y)). It is min-
imal with this property.

Proof: Take ξ1, ξ2 ∈ M(R(y)) with ξ1 ̸= ξ2, and take Ci = (Di, Ei) to be a
cut corresponding to any ordering determined by ξi for = 1, 2. We can assume
that D1 ⊂ D2 . Since ξ1 ̸= ξ2, we know that E1 ∩D2 is not a ball. Hence there
are a1, a2 ∈ E1 ∩D2 and a3 /∈ E1 ∩D2 such that

γ := v(a2 − a1) ≤ v(a3 − a1) .

Take a ∈ Soγ to be a representative of a1 +Oγ and consider the function

f(y) =
y − a

cγ
∈ R(y) .

Note that v(a−ai) ≥ γ for all i. This implies that vf(ai) ≥ 0, whence ξ0(f(ai)) ∈
R for all i. One of the cuts Ci lies between a1 and a3 ; since f is a linear function,
this yields that for the corresponding i, ξi(f) lies between the values ξ0(f(a1))
and ξ0(f(a3)) and is therefore itself a real number. If only one of the two values
ξ1(f) and ξ2(f) is finite, then we are done. So let us assume that both are finite.

We have that

v(f(a1)− f(a2)) = v

(
a1 − a

cγ
− a2 − a

cγ

)
= v

(
a1 − a2
cγ

)
= 0 ,

so that
ξ0(f(a1)) ̸= ξ0(f(a2)) .
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Using this together with the fact that C1 lies on the left and C2 lies on the right
of a1 and a2, we obtain that

ξ1(f) ≤ min{ξ0(f(a1)), ξ0(f(a2))} < max{ξ0(f(a1)), ξ0(f(a2))} ≤ ξ2(f) ,

which proves our first assertion.

It remains to prove that the family F0 is minimal with the property of weakly
separating points. To show this, it is enough to find, for every f ∈ F0, two places
ξ and η ∈M(R(y)) such that ξ(f) ̸= η(f) and ξ(g) = η(g) whenever f ̸= g ∈ F0.

Given

f(y) =
y − a

cγ
∈ F0 ,

we take two balls BT (a) and BT (b), where b ∈ R, T = {δ ∈ vR : δ > γ} and
v(a− b) = γ. Then

ξ0

(
b− a

cγ

)
∈ R \ {0} .

Take ξ to be the place corresponding to the cuts BT (a)
+ and BT (a)

− and η the
place corresponding to the cuts BT (b)

+ and BT (b)
−. Then we have:

(6) γ < vξ(y − a) < δ and γ < vη(y − b) < δ

for every δ > γ, which implies that ξ(y−acγ ) = 0 and η(y−bcγ ) = 0. Therefore,

η(f) = η(
y − a

cγ
) = η(

y − b

cγ
+
b− a

cγ
) = ξ0(

b− a

cγ
)

̸= 0 = ξ(f) .

Now take

g(y) =
y − a′

cγ′
∈ F0 , f ̸= g.

We will consider four cases to show that ξ(g) = η(g).

CASE 1. Assume first that γ = γ′. Then a ̸= a′ and by our choice of a, we
obtain that v(a − a′) < γ. It follows that vξ(y − a′) = min{vξ(y − a), v(a −
a′)} = v(a − a′) < γ′ and thus ξ(g) = ∞. In a similar way we obtain that
vη(y − a′) = min{vη(y − b), v(b− a), v(a− a′)} = v(a− a′) < γ′, so ξ(g) = ∞.

CASE 2. Assume that γ ̸= γ′ and v(a− a′) > γ. Then we have that vξ(y− a′) =
min{vξ(y − a), v(a − a′)} = vξ(y − a) and vη(y − a′) = min{vη(y − b), v(b − a),
v(a− a′)} = γ. By the inequalities (6), we obtain that ξ(g) = ∞ = η(g) if γ′ > γ
and ξ(g) = 0 = η(g) if γ′ < γ.

CASE 3. Assume that γ ̸= γ′ and v(a−a′) = γ. Then vξ(y−a′) = v(a−a′) = γ.
Moreover, v(b − a′) ≥ min{v(b − a), v(a − a′)} = γ. If v(b − a′) > γ, then
vη(y − a′) = min{vη(y − b), v(b − a′)} = vη(y − b). If v(b − a′) = γ, then
vη(y− a′) = min{vη(y− b), v(b− a′)} = γ. In both subcases, again using (6) and
distinguishing the cases of γ′ > γ and γ′ < γ like in CASE 2, one shows that
ξ(g) = η(g).

CASE 4. Assume that γ ̸= γ′ and v(a − a′) < γ. Then vξ(y − a′) = v(a − a′)
and vη(y − a′) = v(a − a′). If v(a − a′) ̸= γ′ then ξ(g) = ∞ = η(g) if γ′ > γ
and ξ(g) = 0 = η(g) if γ′ < γ. So assume now that v(a − a′) = γ′. Then also
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v(b− a′) = γ′. Since γ′ = v(a− a′) < γ = v(b− a), we have that ξ0(
b−a
cγ′

) = 0. By

the inequalities (6), we get that ξ(y−acγ′
) = 0 = η(y−bcγ′

). Thus,

η(g) = η(
y − a′

cγ′
) = η(

y − b

cγ′
+
b− a′

cγ′
) = ξ0(

b− a′

cγ′
) = ξ0(

b− a

cγ′
+
a− a′

cγ′
)

= ξ0(
a− a′

cγ′
) = ξ(

y − a

cγ′
+
a− a′

cγ′
) = ξ(

y − a′

cγ′
) = ξ(g) .

This completes the proof of our proposition. 2

Proposition 11. The family F1 separates points in M(R(y)) in the topological
sense, that is, if ξ1, ξ2 ∈ M(R(y)) with ξ1 ̸= ξ2, then there is f ∈ F such that
ξ1 /∈ U(f) ∋ ξ2 or ξ2 /∈ U(f) ∋ ξ1 .

Proof: In the proof of Proposition 10, we constructed the function f(y) = y−a
cγ

such that only one of the two values ξ1(f) and ξ2(f) is finite or ξ1(f) < ξ2(f) if
both are finite.

Take any rational number q and denote by ã ∈ Sγ the representative of a+ qcγ
modulo Mγ . We set

f̃(y) :=
y − ã

cγ
.

Since v(ã− (a+ qcγ) > γ, for every place ξ ∈M(R(y)) we have that

(7) ξ

(
y − ã

cγ

)
= ξ

(
y − (a+ qcγ)

cγ

)
= ξ

(
y − a

cγ

)
+ ξ

(
−qcγ
cγ

)
= ξ(f) − q .

If ξ1(f) and ξ2(f) are both finite, then we choose q such that ξ1(f) < q < ξ2(f)
and obtain that

ξ1(f̃) < 0 < ξ2(f̃) .

If ξ(f) is infinite, then by (7), also ξ(f̃) is infinite. Hence in the case of ξ1(f)

finite and ξ2(f) infinite, we choose q < ξ1(f) to obtain that ξ1(f̃) > 0 and ξ2(f̃)
is infinite. For the remaining case, we interchange the role of ξ1 and ξ2 . 2

3. The metrizable case

We assume that M(R(y)) is metrizable and hence there is a countable real
closed field F that lies dense in R.

Since F (y) is a countable field and since a subbasis for the space M(F (y)) is
defined by the elements of the field F (y), the spaceM(F (y)) is second-countable,
and by Urysohn’s Metrization Theorem is metrizable. On the other hand, one can

seeM(F (y)) as a closed subset of the space RF (y)
, where R = R∪{∞} is the circle

(see [1]). Therefore, the topology onM(F (y)) is induced by the restriction of the

canonical metric of the product RF (y)
. According to [3, Chapter IX, Theorem

7.2], this metric can be defined in the following way. First choose any bijection
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σ : F (y) → N ∪ {0}. Then the metric ρ : M(F (y))×M(F (y)) → [0,∞) is given
by

ρ(ξ, η) = sup
f∈F (y)

{2−σ(f)d0(ξ(f), η(f))},

where d0 is the usual, bounded metric on the circle.
Let F be the family of functions defined in Section 2. We will show that in

the above definition of the metric, one can restrict the functions f to the family
F . The mapping d :M(F (y))×M(F (y)) → [0,∞), given by:

d(ξ, η) = sup
f∈F

{2−σ(f)d0(ξ(f), η(f))},

is symmetric, and the triangle inequality holds since it holds for d0 . By Propo-
sition 10, we have d(ξ, η) = 0 if and only if ξ = η, so d is a metric on M(F (y)).

Lemma 12. For every f ∈ F and every ξ ∈ U(f) there is δ ∈ (0, 1) such that if
d(ξ, η) < δ, then η ∈ U(f), i.e., the metric ball Bd(ξ, δ) is contained in U(f).

Proof: Take f ∈ F and ξ ∈ U(f). We have that ξ(f) ∈ (0,∞). Set

δ = 2−σ(f)min{d0(ξ(f), 0), d0(ξ(f),∞)}.
If d(ξ, η) < δ, then also 2−σ(f)d0(ξ(f), η(f)) < δ. Thus,

d0(ξ(f), η(f)) < min{d0(ξ(f), 0), d0(ξ(f),∞)}
and therefore, η(f) ∈ (0,∞), so η ∈ U(f). 2

Proposition 13. The Harrison topology of the space M(F (y)) is equal to the
topology introduced by the metric d defined above.

Proof: Lemma 12 shows that every subbasic set U(f), for f ∈ F , is open in
the topology induced by the metric d. Hence this topology is finer than or equal to
the Harrison topology. For the reverse, note that since F ⊂ F (y), the definitions
of the metrics d and ρ give us that Bρ(ξ, ϵ) ⊂ Bd(ξ, ϵ). Take η ∈ Bd(ξ, ϵ). We have
that for some δ < ϵ, Bd(η, δ) ⊂ Bd(ξ, ϵ), whence Bρ(η, δ) ⊂ Bd(η, δ) ⊂ Bd(ξ, ϵ).
Therefore, Bd(ξ, ϵ) is open in the topology induced by ρ, that is, the Harrison
topology is finer than or equal to the topology induced by d. 2

By [8, Theorem 3.2], the restriction mapping

res :M(R(y)) →M(F (y)), res(ξ) = ξ |F (y)

is a homeomorphism. By this homeomorphism, the metric d induces the metric
on M(R(y)). We have proved:

Theorem 14. Let R be a real closed field and F be a countable, real closed, dense
subfield of R. Set

F = {a+ by,
y − a

y − b
| a, b ∈ F}.

Take any bijection σ : F → N. Then the mapping d : M(R(y)) ×M(R(y)) →
[0,∞) given by

d(ξ, η) = sup
f∈F

{2−σ(f)d0(ξ(f), η(f))}

is a metric on M(R(y)).
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4. The dimension of M(R(y))

As before, we take R to be a real closed field. We will determine the dimen-
sion of the space M(R(y)). We consider the covering dimension dim, the small
inductive dimension ind, and the strong inductive dimension Ind. The following
result is part of [11, Theorem 5]:

Theorem 15. If Y is the continuous image of a compact ordered space, then
dimY = indY = IndY .

Since the space M(R(y)) is the continuous image under the mapping (1) of
the compact space X (R(y)), which is ordered through the homeomorphism with
totally ordered space C(R) of cuts in R given in Proposition 1, we obtain the
following result:

Corollary 16. We have that dimM(R(y)) = indM(R(y)) = IndM(R(y)).

The space M(R(y)) is connected (see [5]). That gives us a lower bound for the
dimension of that space - it is at least 1. To obtain an upper bound, we use the
following theorem (cf. [10, Theorem III.7]):

Theorem 17. Let f be a continuous mapping of a space X onto a space Y such
that for each point η of Y , the boundary of f−1(η) contains at most m+1 points
(m ≥ 1). Then dimY ≤ dimX +m.

We apply the theorem to λ : X (R(y)) → M(R(y)). For every η ∈ M(R(y)),
λ−1(η) contains at most 2 points and is closed, so its boundary contains at most
2 points. On the other hand, dimX (R(y)) = IndX (R(y)) = 0 since X (R(y))
is totally disconnected. The last theorem now shows that dimM(R(y)) ≤ 1.
Putting everything together, we obtain the equation

1 = dimM(R(y)) = indM(R(y)) = IndM(R(y))

which proves Theorem 3.

5. Homeomorphisms between subspaces of M(R(y))

If L is any field, then every automorphism σ of L induces the following bijection
of M(L) onto itself:

M(L) ∋ ξ 7→ ξ ◦ σ ∈M(L) .

This bijection is in fact a homeomorphism because

ξ ∈ U(b) ⇐⇒ ξ ◦ σ ∈ U(σ−1b) .

Let us have a closer look at the case of M(R(y)), with R a real closed field. It
is well known that the automorphisms σ of R(y) which leave R elementwise fixed
are precisely those given by

(8) y 7→ ay + b

cy + d
with ad− bc ̸= 0 .

We can study the effect of the homeomorphism of M(R(y)) induced by such an
automorphism by analyzing the corresponding effect on C(R). If c ̸= 0, then

ay + b

cy + d
=

a

c
+
b− ad

c

cy + d
.
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Hence, the assignment (8) can always be achieved by a composition of addition
of, and multiplication by, elements from R together with one inversion of a linear
polynomial in y. The corresponding actions on C(R) can be described as follows.
Fix an ordering on R(y), take z ∈ R(y) such that R(y) = R(z), and let C =
(D,E) be the cut induced by z in R.

1) The automorphism induced by z 7→ z + c for some c ∈ R. The cut induced
by z + c in R is the shifted cut C + c = (D + c, E + c). If C = (D,E) is a ball
cut generated by the ball BT (a), then C + c is a ball cut generated by the ball
BT (a+ c).

2) The automorphism induced by z 7→ cz for some c ∈ R \ {0}. The cut induced
by cz in R is the cut cC = (cD, cE) if c > 0, and cC = (cE, cD) if c < 0. If C
is a ball cut generated by the ball BT (a), then cC is a ball cut generated by the
ball BT+v(c)(ca) where T + v(c) is the final segment {t+ v(c) | t ∈ T}.

3) The automorphism induced by z 7→ z−1. Denote the cut induced by z−1 in R
by C ′. If z > 0, then C ′ = ({d | d ≤ 0 or d−1 ∈ E}, {e > 0 | e−1 ∈ D}). If z < 0,
then C ′ = ({d < 0 | d−1 ∈ E}, {e | e ≥ 0 or e−1 ∈ D}). In particular, this shows
that if C is a ball cut generated by the ball {0}, then C ′ is a ball cut generated
by the ball R, and vice versa.

Now assume that C is a ball cut generated by a ball BT (a) different from
{0} and R. Let us first discuss the case where 0 ∈ BT (a), so we can take
a = 0. Then by Remark 7, v(z) induces the cut (S, T ) in vR, and it follows that
v(z−1) = −v(z) induces the cut (−T,−S). Consequently, again by Remark 7, C ′

is a ball cut generated by the ball B−S(0).
Finally, we deal with the case of 0 /∈ BT (a). Then again from Remark 7 it

follows that vz ∈ vR and v(z− a) /∈ vR. This yields that v(z− a) > vz = va and

v

(
1

z
− 1

a

)
= v

(
a− z

az

)
= v(z − a)− 2v(a) /∈ vR.

The value v(z−a)−2v(a) induces the cut in vR that has upper cut set T −2v(a).
Consequently, by Remark 7, C ′ is a ball cut generated by the ball BT−2v(a)(a

−1).

Note that the inverses of each of these actions are again of the same form. The
first two actions are either order preserving or order reversing on R, and the last
is order reversing on {r ∈ R | r < 0} and on {r ∈ R | r > 0}. Therefore, they
induce homeomorphisms on C(R). We summarize:

Proposition 18. All three actions induce homeomorphisms on C(R) that are
compatible with equivalence.

As we see already from the above discussion, the balls in R are crucial for the
analysis of the homeomorphisms between subspaces of M(R(y)). So let us make

the link precise. For any set S ⊆ R, we define Ŝ to be the closure of the set
{a−, a+ | a ∈ S} in C(R). If S is an interval in R, then Ŝ is a closed interval in

C(R). If S = B is a ball in R, then Ŝ = [B−, B+]. If S is a ball complement

Bc := R \B for some ball B, then Ŝ = [R−, B−] ∪ [B+, R+].

Further, we send Ŝ to

S := λ ◦ χ(Ŝ) ⊆ M(R(y)) ,



SPACES OF R-PLACES 13

which is the set of all R-places induced by cuts in Ŝ. Let us call a subset of
M(R(y)) a ball (in M(R(y))) if it is the image B or Bc of a ball or ball com-
plement in R. We can view the latter as the balls around the place at infinity.

Now the homeomorphisms between subspaces of M(R(y)) can be analysed by
determining which balls in R can be sent onto each other by homeomorphisms
of M(R(y)). Take a, b ∈ R, γ ∈ vR and a final segment T of vR. Then by a
combination of the actions 1) and 2) above, BT (a) can be sent onto BT+γ(b) and
BT (a)

c can be sent onto BT+γ(b)
c, so the corresponding balls in M(R(y)) can

be sent onto each other by a homeomorphism. Further, action 3) transforms an
interval [BT (0)

−, BT (0)
+] in C(R) into the set [R−, B−S(0)

−] ∪ [B−S(0)
+, R+],

where S = vR \ T . The image of this set in M(R(y)) is the ball B−S(0)c around
infinity. In particular, for every γ ∈ vR, we have the following sequence of
homeomorphisms, which we will interpret later:

(9) Bγ+(b) → Bγ+(0) → Bγ+−2γ(0) = B(−γ)+(0) → Bγ−(0)
c → Bγ−(a)

c .

For any r ∈ R, the set

(10) {Bγ−(r) | γ ∈ vR}

forms a cofinal and coinitial chain of subspaces ofM(R(y)) which are all mutually
homeomorphic, and whose intersection only contains the r-principal place. The
order type of this chain is equal to that of vR. The same is true for the chains
{Bγ+(r) | γ ∈ vR} and {BT+γ(r) | γ ∈ vR}.

So far, we have discussed homeomorphisms of M(R(y)) that transform it onto
itself. The question arises whether there are also homeomorphisms onto proper
subspaces – like zooming in on a fractal substructure. How “homogeneous” is
the space M(R(y))? For example, can such chains as in (10) be taken so that
all spaces in it are homeomorphic to M(R(y))? Moreover, the following question
appears to be of importance when the spaces of R-places of finite extensions of
R(y) are studied:

Open Problem: If B is a non-singleton ball in R, is there a homeomorphism
from C(R) onto B̂ that is compatible with equivalence? More generally, give a
criterion for two non-singleton balls B and B′ in R to admit a homeomorphism

from B̂ onto B̂′ that is compatible with equivalence.

Such homeomorphisms would induce interesting homeomorphisms of M(R(y))

onto proper subspaces B. Indeed, if S is any subset of R and ψ̂ : C(R) →
Ŝ a homeomorphism compatible with equivalence, then we obtain an induced
homeomorphism ψ such that the following diagram commutes:

C(R)

λ◦χ

��

ψ̂ // Ŝ

λ◦χ

��
M(R(y)) ψ // S
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For the conclusion of this section, we wish to give a construction of a real closed
field R for which there exist homeomorphisms fromM(R(y)) onto infinitely many
distinct subspaces.

Consider the power series field R = R((tQ)) with coefficients in R and ex-
ponents in Q. This is a real closed field ([4, Theorem 4.3.7]). Since any two
countable dense linear orderings without endpoints are order isomorphic, there
exists an order isomorphism φT from Q onto any non-empty final segment T of
Q which does not have a smallest element. Any such isomorphism induces an
isomorphism

ψT : R = R((tQ)) ∋
∑
q∈Q

cqt
q 7→

∑
q∈Q

cqt
φT (q) ∈ BT (0)

from the ordered additive group of R onto its convex subgroup B = BT (0). This

isomorphism induces a homeomorphism ψ̂T : C(R) → B̂T (0) which is compatible
with equivalence. Indeed, if T ′ is a final segment of Q, then φT (T

′) is a final
segment of Q contained in T , hence the image of the ball BT ′(a) under ψT is the
ball BφT (T ′)(ψT (a)).

If r is any element in R, then we can compose the homeomorphism ψ̂T with the

homeomorphism that sends B̂T (0) to B̂T (r), in order to obtain a homeomorphism

(11) ψT,r :M(R(y)) → BT (r) .

As the non-empty final segments T of Q without smallest element form a dense
linear ordering under inclusion, and since their intersection is empty, we obtain:

Theorem 19. Take the field R = R((tQ)) and r ∈ R. Then there exists a
set of subspaces of M(R(y)), all homeomorphic to M(R(y)), on which inclusion
induces the dense linear order of vR, and such that the r-principal place is the
only R-place of R contained in all of them.

Based on this theorem we will show now that the space M(R(y)) for R =
R((tQ)) is even self-homeomorphic, in the sense of [2], which means that every
open subset contains a homeomorphic copy of M(R(y)). To this end, we prove:

Lemma 20. Take an arbitrary real closed field R. Then every open subset of
M(R(y)) contains Bγ+(r) for some γ ∈ vR and r ∈ R.

Proof: Take an open subset U of M(R(y)). Its preimage (λ ◦ χ)−1(U) in
C(R) is open and thus contains an nonempty open interval (C1, C2). Writing
C1 = (D1, E1) and C2 = (D2, E2), we find that E1 ∩ D2 ̸= ∅ must contain
more than one element since otherwise we would have C1 = a− and C2 = a+

and the interval would be empty. Therefore, we can choose distinct elements
a, b ∈ E1 ∩D2 . We set γ = v(a− b) and r = a+b

2 . Then Bγ+(r) ⊂ E1 ∩D2 and

thus, Bγ+(r) ⊂ U . 2

Using (11) with T = γ+, we obtain:

Corollary 21. For R = R((tQ)), the space M(R(y)) is self-homeomorphic.
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6. The “densely fractal pearl necklace”

Take any non-archimedean real closed field R. In this section we describe the
fractal structure of M(R(y)). We start with the linearly ordered set C(R). For
every element a ∈ R, there are the two principal cuts a− and a+ in C(R). But
these are glued by λ ◦ χ, so we obtain a canonical embedding of R in M(R(y))
whose image is exactly the set of principal places. Also the cuts R− and R+ are
glued by λ◦χ, which closes the linear ordering of the principal places at the ends,
making it into a (non-archimedean) circle. If we started with R = R, these are
already all possible gluings, and we have obtained the usual circle. If R ̸= R, we
have to go on.

In the circular structure we have obtained, the principal places are joined by
the images of the non-ball cuts, on which λ ◦χ is injective, that is, which are not
glued with other cuts. If R is a real closed subfield of R, the first step has put all
elements of R in the circle, while this second step has added all elements of R,
and we are done, again having obtained the usual circle.

From now on we assume that R is any non-archimedean real closed field. By
the first two steps, we have obtained what at first glance appears to be the circular
string of our necklace.

Sitting densely between the non-gluing and principal cuts are the ball-cuts.
Each gluing of two cuts B− and B+ splits the necklace open and forms from a
part of it a smaller “circle” — a ball in our necklace. But as B = BT (a) for a final
segment with T ̸= ∅, vR of vR, there are final segments T ′, T ′′ ̸= ∅, vR such that
T ′ ⊄

= T ⊄
= T ′′. It follows that BT ′′(a) ⊄

= BT (a) ⊄
= BT ′(a), and the same happens

around every other b ∈ R. This shows that each ball is made up of smaller balls
and is itself part of a larger ball.

It should be noted that gluings do not “cross” each other; this is because if
two balls have a non-empty intersection, then one of the balls is contained in the
other.

Our understanding of a necklace usually is that there is a thread that holds
together pearls. So let us look for subspaces of M(R(y)) which ressemble this

pattern. For each γ ∈ vR and a ∈ R, we will call Bγ−(a) a subnecklace of
M(R(y)). We observe that

Bγ−(a) =
∪

b∈Bγ− (a)

Bγ+(b) ,

so we will call Bγ+(b) a pearl of Bγ−(a). Then we can take the thread to be S
for any set S ⊂ Bγ−(a) of representatives of the subsets Bγ+(b).

Let us have a closer look at the subnecklace Bγ−(a). It contains the place that

is induced by the equivalent ball cuts Bγ−(a)
− and Bγ−(a)

+. This place is not

contained in any of the pearls Bγ+(b). It can be seen as the point through which
the subnecklace is connected to the rest of M(R(y)). This, however, can itself be

viewed as a pearl of the subnecklace Bγ−(a). This is because by (9), Bγ−(a)
c is

homeomorphic to every pearl Bγ+(b).

We see that if we apply a homeomorphism sending Bγ−(a) to Bδ−(a
′), we

zoom from one subnecklace to another. That is why we talk of a “fractal pearl
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necklace”. However, there is a difference to the well known fractal structures.
Since R is real closed, its value group vR is divisible and hence dense. Therefore,
the final segments of vR, ordered by inclusion, also form a dense linearly ordered
set. Every final segment corresponds to a “level” of subnecklaces, a level of the
fractal structure. So for each level, there is no immediate predecessor or successor;
when we pass from one subnecklace to a bigger or smaller one we automatically
jump through infinitely many intermediate levels. This is why we call M(R(y))
“densely fractal”.

We also observe that by our definition,M(R(y)) is actually not itself a necklace,

as it not of the form Bγ−(a). It is rather the union of an infinite ascending chain
(10) of subnecklaces. The situation is the same around every principal place,
represented by an element r ∈ R. Switching from one element r to another can
be considered as turning the necklace, or more precisely, turning subnecklaces
and pearls at infinitely many levels. This is a fractal rotational symmetry along
the string(s) of principal and non-glued places.

It is not necessarily true that each level is perfectly similar to every other
level. For instance, the balls in R can have different cofinalities. The more
homogeneous the field R is, the more homeomorphisms we will obtain between
balls in M(R(y)). If the field R is sufficiently homogeneous, as is the case for
the field R((tQ)) which we discussed in the previous section, then around every
principal place there will even be a coinitial and cofinal chain of subspaces at all
levels that are all homeomorphic to M(R(y)) (cf. Theorem 19).
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