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1. Introduction

In this paper we give counterexamples to local monomialization along a valuation in
positive characteristic.

A fundamental problem in algebraic geometry is to find a general notion of simple
morphism, and to then establish that it is possible to simplify a dominant morphism ϕ :
X → Y of varieties by performing suitable monoidal transforms (blow ups of nonsingular
subvarieties) above X and Y to obtain such a simple morphism.

A local formulation of this problem can be given by asking for an appropriate simple
form of the extension of local rings OY,q → OX,p if p ∈ X and ϕ(p) = q. The notion
of simplification after performing sequences of monoidal transforms above OY,q and OX,p
can then be expressed by fixing a valuation dominating OX,p. Then the valuation will
dominate unique local rings on any sequences of monoidal transforms of X and Y .

A possible notion of a local simple morphism is that of monomial inclusion of regu-
lar local rings. We call such a map a monomial extension. Simplification by performing
monoidal transforms is called local monomialization. In characteristic zero, local mono-
mialization is a good definition of simplification as a local monomialization can always be
achieved along any valuation ([11] and [12]). In characteristic p > 0, it is shown in [15]
that local monomialization is true for generically finite maps of surfaces, if the extension
of valuation rings is defectless (a condition which is always true in characteristic zero).
It is further shown in [14] that this result holds for arbitrary defectless extensions of two
dimensional regular local rings.

It is natural to ask if local monomialization can always be achieved in positive charac-
teristic. In this paper we give an example (Theorem 1.4) showing that this is not the case.
The example even shows the failure of “weak local monomialization” in positive charac-
teristic. Weak local monomialization holds if a monomial form can be reached by allowing
arbitrary birational extensions instead of insisting on sequences of monoidal transforms.

In the remainder of this paper, we will restrict to the case of generically finite morphisms.

1.1. Local Monomialization. Suppose that K∗/K is a finite separable field extension,
S is an excellent local ring of K∗ (S has quotient field QF(S) = K∗) and R is an excellent
local ring of K such that dimS = dimR, S dominates R (R ⊂ S and the maximal ideals
mS of S and mR of R satisfy mS ∩R = mR) and ν∗ is a valuation of K∗ which dominates
S (the valuation ring Vν∗ of ν∗ dominates S). Let ν be the restriction of ν∗ to K.

The notation that we use in this paper is explained in more detail in Section 2.

Definition 1.1. R → S is monomial if R and S are regular local rings of the same
dimension n and there exist regular systems of parameters x1, . . . , xn in R and y1, . . . , yn
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in S, units δ1, . . . , δn in S and an n×n matrix A = (aij) of natural numbers with nonzero
determinant such that

(1) xi = δi

n∏
j=1

y
aij
j for 1 ≤ i ≤ n.

If R and S have equicharacteristic zero and algebraically closed residue fields, then
within the extension R̂→ Ŝ there are regular parameters giving a form (1) with all δi = 1.

More generally, we ask if a given extension R → S has a local monomialization along
the valuation ν∗.

Definition 1.2. A local monomialization of R → S along the valuation ν∗ is a commu-
tative diagram

R1 → S1 ⊂ Vν∗
↑ ↑
R → S

such that the vertical arrows are products of monoidal transforms (local rings of blowups
of regular primes) and R1 → S1 is monomial.

It is proven in Theorem 1.1 [11] that a local monomialization always exists when K∗/K
are algebraic function fields over a (not necessarily algebraically closed) field k of charac-
teristic 0, and R → S are algebraic local rings of K and K∗ respectively. (An algebraic
local ring is essentially of finite type over k.)

We can also define the weaker notion of a weak local monomialization by only requiring
that the conclusions of Definition 1.2 hold with the vertical arrows being required to be
birational (and not necessarily factorizable by products of monoidal transforms).

This leads to the following question for extensions R → S as defined earlier in this
paper.

Question 1.3. Does there always exist a local monomialization (or at least a weak local
monomialization) of extensions R → S of excellent local rings dominated by a valuation
ν∗ ?

As commented above, the question has a positive answer within algebraic function fields
over an arbitrary field of characteristic zero by Theorem 1.1 [11].

For the question to have a positive answer in positive characteristic or mixed charac-
teristic it is of course necessary that some form of resolution of singularities be true. This
is certainly true in equicharacteristic zero, and is known to be true very generally in di-
mension ≤ 2 ([2], [25], [8]) and in positive characteristic and dimension 3 ([4], [13], [9] and
[10]). A few recent papers going beyond dimension three are [17], [20], [7], [6], [21], [28],
[29], [22] and [30].

The case of two dimensional algebraic function fields over an algebraically closed field
of positive characteristic is considered in [15], where it is shown that monomialization is
true if R → S is a defectless extension of two dimensional algebraic local rings over an
algebraically closed field k of characteristic p > 0 (Theorem 7.3 and Theorem 7.35 [15]).
This result is shown for defectless extensions of two dimensional regular local rings in [14].
We will discuss the important concept of defect later on in this introduction.

In this paper we show that weak monomialization (and hence monomialization) does
not exist in general for extensions of algebraic local rings of dimension ≥ 2 over a field k
of char p > 0, giving a negative answer to Question 1.3. We prove the following theorem
in Section 3:
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Theorem 1.4. (Counterexample to local and weak local monomialization) Let k be a field
of characteristic p > 0 with at least 3 elements and let n ≥ 2. Then there exists a finite
separable extension K∗/K of n dimensional function fields over k, a valuation ν∗ of K∗

with restriction ν to K and algebraic regular local rings A and B of K and K∗ respectively,
such that B dominates A, ν∗ dominates B and there do not exist regular algebraic local
rings A′ of K and B′ of K∗ such that ν∗ dominates B′, B′ dominates A′, A′ dominates
A, B′ dominates B and A′ → B′ is monomial.

We have that the defect δ(ν∗/ν) = 2 in the example of Theorem 1.4 (with ν = ν∗|K).
In [11] and [15], a very strong form of local monomialization is established within

characteristic zero algebraic function fields which we call strong local monomialization
(Theorem 5.1 [11] and Theorem 48 [15]). This form is stable under appropriate sequences
of monoidal transforms and encodes the classical invariants of the extension of valuation
rings. In [15], we show that strong local monomialization is true for defectless extensions
of two dimensional algebraic function fields (Theorem 7.3 and Theorem 7.35 [15]). This
result is extended in [14] to defectless extensions of 2 dimensional regular local rings. We
give an example in [15] (Theorem 7.38 [15]) showing that strong local monomialization is
not generally true for defect extensions of two dimensional algebraic function fields (over
a field of positive characteristic). However, local monomialization is true for this example,
as is shown in Theorem 7.38, [15].

We now define the defect of an extension of valuations. The role of this concept in local
uniformization was observed by Kuhlmann [23] and [24]. A good introduction to the role
of defect in valuation theory is given in [23]. Its basic properties are developed in Section
11, Chapter VI [32], [23] and Section 7.1 of [15]. Suppose that K∗/K is a finite Galois
extension of fields of characteristic p > 0. The splitting field Ks(ν∗/ν) of ν is the smallest
field L between K and K∗ with the property that ν∗ is the only extension to K∗ of ν∗|L.
The defect δ(ν∗/ν) is defined by the identity

[K∗ : Ks(ν∗/ν)] = f(ν∗/ν)e(ν∗/ν)pδ(ν
∗/ν)

(Corollary to Theorem 25 , Section 12, Chapter VI [32]). In the case when K∗/K is only
finite separable, we define the defect by

δ(ν∗/ν) = δ(ν ′/ν)− δ(ν ′/ν∗)
where ν ′ is an extension of ν∗ to a Galois closure K ′ of K∗ over K. The ramification index
is

e(ν∗/ν) = |Γν∗/Γν |
and reduced degree is

f(ν∗/ν) = [Vν∗/mν∗ : Vν/mν ].

The defect is equal to zero if the residue field Vν/mν has characteristic zero (Theorem
24, Section 12, Chapter VI [32]) or if Vν is a DVR (Corollary to Theorem 21, Section 9,
Chapter V [31]).

Birational properties of two dimensional regular local rings along a valuation are gen-
erally the same in positive and mixed characteristic as in characteristic zero (this is illus-
trated in [1], [26], [27] and [16]), but properties related to ramification are very different,
as illustrated by [5], [15] and Theorem 1.4 of this paper. However, for positive charac-
teristic defectless extensions, the behavior in positive characteristic is similar to that of
characteristic zero ([15], [14], [18], [19]).

We thank the referee for their careful reading of this manuscript, and suggesting some
improvements in the introduction.

3



2. Notation and Preliminaries

2.1. Local algebra. All rings will be commutative with identity. A ring S is essentially
of finite type over R if S is a local ring of a finitely generated R-algebra. We will denote
the maximal ideal of a local ring R by mR, and the quotient field of a domain R by QF(R).
(We do not require that a local ring be Noetherian). Suppose that R ⊂ S is an inclusion
of local rings. We will say that S dominates R if mS ∩ R = mR. If the local ring R is a
domain with QF(R) = K then we will say that R is a local ring of K. If K is an algebraic
function field over a field k (which we do not assume to be algebraically closed) and a
local ring R of K is essentially of finite type over k, then we say that R is an algebraic
local ring of k.

Suppose that K → K∗ is a finite field extension, R is a local ring of K and S is a local
ring of K∗. We will say that S lies over R if S is a localization of the integral closure T of
R in K∗. If R is a local ring, R̂ will denote the completion of R by its maximal ideal mR.

Suppose that R is a regular local ring. A monoidal transform R → R1 of R is a local
ring of the form R[Px ]m where P is a regular prime ideal in R (R/P is a regular local ring),

0 6= x ∈ P and m is a prime ideal of R[Px ] such that m∩R = mR. R1 is called a quadratic
transform if P = mR.

2.2. Valuation Theory. Suppose that ν is a valuation on a field K. We will denote by
Vν the valuation ring of ν:

Vν = {f ∈ K | ν(f) ≥ 0}.
We will denote the value group of ν by Γν . Good treatments of valuation theory are
Chapter VI of [32] and [3], which contain references to the original papers. If ν is a
valuation ring of an algebraic function field over a field k, we insist that ν vanishes on
k \ {0}, and say that ν is a k valuation.

If ν is a valuation of a field K and R is a local ring of K we will say that ν dominates R
if the valuation ring Vν dominates R. Suppose that ν dominates R. A monoidal transform
R→ R1 is called a monoidal transform along ν if ν dominates R1.

Suppose that K∗/K is a finite separable extension, ν∗ is a valuation of K∗ and ν is the
restriction of ν to K. The defect δ(ν∗/ν) is defined in the introduction to this paper.

2.3. Birational geometry of two dimensional regular local rings. We recall some
basic theorems which we will make frequent use of.

Theorem 2.1. (Theorem 3 [1]) Suppose that K is a field, and R is a regular local ring
of dimension two of K. Suppose that S is another 2 dimensional regular local ring of K
which dominates R. Then there exists a unique sequence of quadratic transforms

R→ R1 → · · · → Rn = S

which factor R→ S.

Lemma 2.2. (Lemma 12 [1]) Suppose that R is a two dimensional regular local ring of a
field K and ν is a valuation of K which dominates R. Let

R→ R1 → R2 → · · ·

be the infinite sequence of quadratic transforms along ν. Then

Vν∗ = ∪∞i=1Ri.
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We also make use of the fact that “embedded resolution of singularities ” is true within
a regular local ring of dimension 2 (Theorem 2 [1]), and the fact that resolution of singu-
larities is true for two dimensional excellent local rings ([25], [8]).

3. Counterexamples to Local Monomialization in Positive Characteristic

In this section we prove the counterexample Theorem 1.4 to local and weak local mono-
mialization stated in the introduction.

We first prove the theorem with the assumption that n = 2.
Let k be a field of characteristic p > 0 containing at least three elements. Let K∗ be

the two dimensional rational function field K∗ = k(x, y). Let

u = xp(1 + y), v = yp + x,

and let K be the two dimensional rational function field K = k(u, v). K∗ is separable over
K since the Jacobian of u and v is not zero. We have that K∗ = K(y) and y satisfies the
relation

yp
2+1 + yp

2 − yvp + (u− vp) = 0,

so K∗ is a finite extension of K. Let A = A0 = k[u, v](u,v) and B = k[x, y](x,y). We have
that B dominates A.

Lemma 3.1. Suppose that A and B are two dimensional regular local rings containing
a common coefficient field k of characteristic p with at least three elements such that B
dominates A. Let u, v be regular parameters in A and x, y be regular parameters in B.
Suppose that in B̂ = k[[x, y]] we have expressions

(2) u = xp(c0 + f0y + xΛ0), v = τ0(y)yp + e0x+ xΩ0

where c0, f0, e0 ∈ k are nonzero, τ0(y) ∈ k[[y]] is a unit series, Λ0,Ω0 ∈ B̂ and ordB̂(Ω0) ≥
1. Let τ0 ∈ k be the constant term of τ0(y). Suppose that α ∈ k is such that α 6= 0 and
α 6= − τ0

e0
.

Consider the sequence of quadratic transforms

B = B0 → B1 → · · · → Bp

where Bi has regular parameters xi, yi for 1 ≤ i ≤ p defined by

x = xiy
i
i, y = yi if 1 ≤ i < p

and

x = xpp(yp + α), y = xp.

Then Bi does not dominate any quadratic transform of A for 0 ≤ i < p. The sequence of
quadratic transforms of A which are dominated by Bp are

A = A0 → A1 → · · · → Ap,

Ai has regular parameters ui, vi, defined by

u = uiv
i
i, v = vi if 1 ≤ i < p,

and

u = upp(vp +
αpc0

(τ0 + αe0)p
), v = up.

In B̂p = k[[xp, yp]] we have expressions

(3) up = xpp(cp + fpyp + xpΛp), vp = τp(yp)y
p
p + epxp + xpΩp
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where cp, fp, ep ∈ k are nonzero, τp(yp) ∈ k[[yp]] is a unit series, Λp,Ωp ∈ B̂p and
ordBp(Ωp) ≥ 1, of the form of (2). Further, A→ Bi is not monomial for 0 ≤ i < p.

Proof. First suppose that 1 ≤ i < p. Then we have an expression

u = xpi y
pi
i (c0 + f0yi + xiy

i
iΛ0),

v = τ0(yi)y
p
i + e0xiy

i
i + xiy

i
iΩ0 = yii(τ0(yi)y

p−i
i + e0xi + xiΩ0)

in B̂i = k[[xi, yi]]. Thus no quadratic transform of A factors through A→ Bi.
Now we consider factorization through Bp. We have an expression

u = xp
2

p (yp + α)p(c0 + f0xp + xpp(yp + α)Λ0),

= xp
2

p (yp + α)p(c0 + f0xp + x2pΛ̃0)

v = τ0(xp)x
p
p + e0x

p
p(yp + α) + xpp(yp + α)Ω0 = xpp((τ0 + αe0) + e0yp + xpΩ̂)

in B̂p = k[[xp, yp]], where Λ̃, Ω̂ ∈ Bp. We have an expression

u

vp
=

(
yp + α

(τ0 + αe0) + e0yp + xpΩ̂

)p
(c0 + f0xp + x2pΛ̃0).

There is an expression

yp + α

(τ0 + αe0) + e0yp + xpΩ̂
= θ + σ(yp)yp + xpΩ̃

in B̂p = k[[xp, yp]], where

θ =
α

τ0 + αe0
,

σ(yp) ∈ k[[yp]] is a unit series, and Ω̃ ∈ B̂p. We thus have an expression

u
vp = (θp + σ(yp)

pypp + xppΩ̃p)(c0 + f0xp + x2pΛ̃0)
= θpc0 + c0σ(yp)

pypp + θpf0xp + xpΩ1

with Ω1 ∈ B̂p and ordB̂p
Ω1 ≥ 1.

Thus the sequence of quadratic transforms of A which are dominated by Bp are

A→ A1 → A2 → · · · → Ap

where Ai has regular parameters ui, vi for 1 ≤ i ≤ p, defined by

u = uiv
i
i, v = vi

if 1 ≤ i < p, and

u = upp(vp + β), v = up

with

β = θpc0 =
αpc0

(τ0 + αe0)p
.

We have expressions
up = xpp(c1 + f1yp + xpΛ1)
vp = τ1(yp)y

p
p + e1xp + xpΩ1

where

c1 = τ0 + αe0, f1 = e0,Λ1 = Ω̂,

and

τ1(yp) = c0σ(yp)
p, e1 = θpf0.
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We now prove that the extensions A→ B and A→ Bi for 0 ≤ i < p are not monomial.
We will first establish this for the extension A → B. By (2), we have that mAB is not
invertible and has order 1 in B. We will suppose that u′, v′ are regular parameters in
A which give a monomial form in B, and derive a contradiction. It is sufficient to show
that a monomial form cannot exist in B̂ = k[[x, y]]. At least one of the u′, v′ must have a

nonzero v term in its expansion in Â = k[[u, v]]; without loss of generality, we may assume
that it is v′. By the Weierstrass Preparation Theorem (Corollary 1, page 145 [32]), we
have an expression

v′ = γ(v − ψ(u))

where γ ∈ Â is a unit and ψ(u) ∈ k[[u]]. Thus v′ has an expression in B of the same form
as v, so we may assume that v′ = v.

For F ∈ B̂, define the leading form of F to be

L(F ) =
∑
i+j=r

aijx
iyj

if ordB̂(F ) = r and F =
∑

i+j≥r aijx
iyj . We have that v is irreducible (and regular) in

B̂ with L(v) = e0x. u′ must have a nonzero u coefficient in its expansion in Â, so by the
Weierstrass Preparation Theorem,

u′ = ε(u− ϕ(v))

where ε ∈ Â is a unit and ϕ(v) ∈ k[[v]]. v 6 | u in B̂ so v 6 | u′ in B̂. Since u′, v are assumed
to give a monomial form in B, we have that

(4) u′ = λviwj

where λ is a unit in B̂, and w ∈ B̂ is such that v, w is a regular system of parameters in
B̂. Since mAB is not invertible in B, we have that i = 0 in (4). Thus L(u′) = λL(w)j for

some nonzero constant λ ∈ k. Since L(v) = e0x, we then have that x 6 | L(u′) in B̂. Thus
ϕ(v) 6= 0. Write

ϕ(v) =

∞∑
i=r

aiv
i

where ai ∈ k for all i and ar 6= 0. For all s ∈ Z+,

vs = es0x
s + terms of order greater than s

so

L(ϕ(v)) = are
r
0x
r.

Since L(u) = c0x
p and x 6 | L(u′), we have that r = p and ar = − c0

er0
. We have that

u− ϕ(v) = c0x
p + f0x

py + xp+1Λ0 − c0
ep0
vp − ap+1e

p+1
0 vp+1 + terms of order > p+ 1 in B̂

= f0x
py + xp+1Λ0 − ap+1e

p+1
0 xp+1 + terms of order > p+ 1 in B̂.

Thus x | L(u′), a contradiction.
We now show that A → Bi is not monomial for 1 ≤ i < p, by assuming that u′, v′ are

regular parameters in A which have a monomial form in B, and deriving a contradiction.
As in the previous case, we may assume that v′ = v. We have a factorization v = yiiw
where w is irreducible and regular, and

L(w) =

{
e0xi if i < p− 1
τ0yi + e0xi if i = p− 1.
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where τ0 = τ0(0). Since u′, v give a monomial form in B, we must have an expression

u′ = λyai w
b

where λ is a unit in B. By Weierstrass Preparation,

(5) u′ = ε(u− ϕ(v))

where ε is a unit in Â and ϕ(v) ∈ k[[v]]. We have that w 6 | u in B̂ so w 6 | u′. Thus b = 0
and ϕ(v) 6= 0. Further,

(6) L(u′) = λ0y
a
i

where λ0 is the constant term of λ.
First assume that i < p− 1. Now

(7) L(u) = c0x
p
i y
pi
i .

Further,

(8) L(v) = e0xiy
i
i.

Write

ϕ(v) =

∞∑
i=r

aiv
j where ar 6= 0.

The only way (6), (7) and (8) could be possible is if r = p. Then

ar =
c0
ep0

and

u− ϕ(v) = f0x
p
i y
pi+1
i + terms of order > pi+ p+ 1 in B̂.

Thus xi | L(u′ − ϕ(v)), a contradiction to (6).
Now assume that i = p− 1. Set

x = xp−1, y = yp−1.

We have that

(9) u− ϕ(v) = σya

where σ is a unit series in x, y, whence

L(u− ϕ(v)) = σ0y
a

where σ0 = σ(0, 0). We have that

L(u) = c0x
pyp(p−1)

and

L(v) = yp−1(τ0y + e0x).

Writing

ϕ(v) =

∞∑
i=r

aiv
i

with ar 6= 0, we have that r = p and

ap =
c0
ep0
.
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Thus
(10)

u− ϕ(v) = c0x
pyp(p−1) + f0x

pyp(p−1)+1 − c0
ep0

(τ0y
p2 + ep0x

pyp(p−1)) + terms of order > p2 + 1

= − c0
ep0
τ0y

p2 + f0x
pyp

2−p+1 + terms of order > p2 + 1.

Since
L(u− ϕ(v)) = −c0

ep0
τ0y

p2 ,

we see from (9) that a = p2 and that yp
2

divides u− ϕ(v) in B̂p−1; but this is impossible
since f0 6= 0 in (10).

�

We now prove Theorem 1.4. We first establish the theorem when n = 2. By Lemma
3.1 we can inductively construct infinite sequences of quadratic transforms

(11)
B = B0 → B1 → · · · → Bp → Bp+1 → · · · → B2p → · · ·

↑ ↑ ↑
A = A0 → A1 → · · · → Ap → Ap+1 → · · · → A2p → · · ·

such that each Bpi+j with 1 ≤ j < p has regular parameters xpi+j , ypi+j such that

xpi = xpi+jy
j
pi+j , ypi = ypi+j

and Bp(i+1) has regular parameters xp(i+1), yp(i+1) such that

xpi = xpp(i+1)(yp(i+1) + αp(i+1)), ypi = xp(i+1)

for some 0 6= αp(i+1) ∈ k.
Further, each Api+j with 1 ≤ j < p, has regular parameters upi+j , vpi+j such that

upi = upi+jv
j
pi+j , vpi = vpi+j

and Ap(i+1) has regular parameters up(i+1), vp(i+1) such that

upi = upp(i+1)(vp(i+1) + βp(i+1)), vpi = up(i+1)

for some 0 6= βp(i+1) ∈ k. And for all i, we have expressions in B̂pi = k[[xpi, ypi]]

(12) upi = xppi(ci + fiypi + xpiΛi), vpi = τi(ypi)y
p
pi + eixpi + xpiΩi

where 0 6= ci, fi, ei ∈ k, τi(ypi) ∈ k[[ypi]] is a unit series, Λi,Ωi ∈ B̂pi and ordB̂pi
(Ωi) ≥ 1.

Since K and K∗ are two dimensional algebraic function fields, V ∗ = ∪i≥0Bi is a val-
uation ring of K∗ and V = ∪i≥0Ai is a valuation ring of K (by Lemma 2.2)) such that
the valuation ring V ∗ ∩K = V . Let ν∗ be the valuation of K∗ which satisfies ν∗(x) = 1
(where x, y are our regular parameters in B) and whose valuation ring is V ∗. If f ∈ V ∗,
then for i >> 0, we have an expression f = γxmi where γ is a unit in Bi and m ∈ N. From
the relation

ν∗(ypi) = ν∗(xp(i+1)) =
1

p
ν∗(xpi)

we obtain that

Γν∗ = ∪ν∗(xi)Z =
1

p∞
Z.

Similarly, the restriction of ν∗ to K is the valuation ν such that ν(u) = p and

Γν =
1

p∞
Z = Γν∗ .
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The top row of (11) is the complete list of all two dimensional regular algebraic local
rings of K∗ dominating B and dominated by V ∗ (by Theorem 2.1), and the bottom row of
(11) is the complete list of all two dimensional regular algebraic local rings of K dominating
A and dominated by V . If Ai → Bl is monomial, and Ai → Aj is a sequence of quadratic
transforms which are dominated by Bl, then Aj → Bl is also monomial; we thus reduce
to consideration of monomialization within the diagrams

Bpi → · · · → Bp(i+1)−1
↑
Api ,

and the conclusions of Theorem 1.4 for the valuation ν∗ on the extension A→ B (in the
case that n = 2) then follow from Lemma 3.1.

We now establish Theorem 1.4 in the case that n > 2. Let r = n − 2 and t1, . . . , tr be
indeterminates. Let K = k(t1, . . . , tr, u, v) and K∗ = k(t1, . . . , tr, x, y) with u = xp(1 + y)
and v = yp + x. K∗/K is a finite separable extension of n dimensional algebraic function
fields over k. Let

A = k[t1, . . . , tr, u, v](u,v) and B = k[t1, . . . , tr, x, y](x,y).

A and B are algebraic local rings of K/k and K∗/k respectively. Let k′ = k(t1, . . . , tr).
Then K and K∗ are two dimensional algebraic function fields over k′. Further, A ∼=
k′[u, v](u,v) and B ∼= k′[x, y](x,y) are algebraic local rings of K/k′ and K∗/k′ respectively.

Let ν∗ be the valuation of K∗/K constructed in the n = 2 case of the theorem which
has the property that there do not exist regular algebraic local rings A′ of K/k′ and B′

of K∗/k′ such that ν∗ dominates B′, B′ dominates A′ dominates A, B′ dominates B and
A′ → B′ is monomial. ν ′ is also a k valuation of K ′, and any algebraic local ring of
K∗/k (respectively K/k) which dominates B (respectively A) must contain k′ so is also
an algebraic local ring of K∗/k′ (respectively K/k′). Thus we have constructed an example
satisfying the conclusions of Theorem 1.4 for any n ≥ 2.

In [15], we show that strong local monomialization is true for defectless extensions of two
dimensional algebraic function fields (Theorem 7.3 and Theorem 7.35 [15]). This result
is extended in [14] to defectless extensions of 2 dimensional regular local rings. Thus the
example constructed in Theorem 1.4 must be a defect extension. We in fact have, by (3)
of Theorem 7.33 [15], that the defect δ(ν∗/ν) = 2. (The proof of Theorem 7.33 assumes
that k is algebraically closed, but the conclusions of the theorem are valid for arbitrary k
with the additional assumption that V ∗/mV ∗ = k, which holds in our example).
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