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Abstract. The complete real spectrum of a commutative ring A
with 1 is introduced. Points of the complete real spectrum Sperc A
are triples α = (p, v, P ), where p is a real prime of A, v is a real
valuation of the field k(p) := qf(A/p) and P is an ordering of
the residue field of v. Sperc A is shown to have the structure of
a spectral space in the sense of Hochster [5]. The specialization
relation on Sperc A is considered. Special attention is paid to the
case where the ring A in question is a real holomorphy ring.

RÉSUMÉ. Nous introduisons la notion de spectre réel complet d’un
anneau A commutatif avec unité. Les points de ce spectre réel
complet, noté Sperc A, sont les triplets α = (p, v, P ), où p est un
idéal premier de A, v une valuation réelle du corps k(p) := qf(A/p)
et P un ordre du corps résiduel de v. Nous montrons que Sperc A
a une structure d’espace spectral au sens de Hochster [5]. On
considère aussi la relation de spécialisation sur Sperc A. Nous nous
intéressons particulièrement au cas où l’anneau A est un anneau
d’holomorphie réel.

The prime spectrum Spec A of a ring A (commutative with 1) is a
basic object in algebraic geometry. In real algebraic geometry, where
one deals with inequalities as well as equations, the prime spectrum,
while still an important object, does not contain sufficient information
by itself. The prime spectrum of a formally real field K, for example,
consists of just a single point, whereas to understand the various ‘real’
aspects of such a field one needs to consider also the orderings, i.e., the
subsets P of K satisfying:

P + P ⊆ P, PP ⊆ P, P ∪−P = K, P ∩−P = {0}.
Similarly, to understand the ‘real’ aspects of a ring A, one needs to
study, not just the primes, but also the pairs (p, P ) where p is a prime
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ideal of A with formally real residue field k(p) := qf(A/p) and P is an
ordering on k(p). The real spectrum SperA consists of all such pairs.
For a formally real field K, Sper K is just the set of all orderings of K.
A natural topology is defined, as in the case of the prime spectrum,
making Sper K into a Boolean space and Sper A into a spectral space
in the sense of [5]; see [4] [9] for details.

The real spectrum of a ring A comes equipped with a certain monoid
of functions Arr. The pair (Sper A, Arr) is referred to as the space of
signs of A. We recall briefly the terminology. See [1], [10] and [12] for
more details. Each a ∈ A determines a sign function ã : Sper A →
{−1, 0, 1} defined as follows:

ã(p, P ) :=

⎧⎪⎨⎪⎩
1 if a + p > 0 at P,

0 if a ∈ p,

−1 if a + p < 0 at P.

Here, a+ p denotes the canonical image of a in A/p ⊆ k(p). The set of
sign functions ã, a ∈ A, forms a monoid under pointwise multiplication:

ã · b̃ = ãb. The space of signs of A is the pair (Sper A, Arr) where

Arr = {ã : a ∈ A}. If K is a field, Krr decomposes as K∗
rr ∪ {0̃}

where K∗
rr is a group isomorphic to the group K∗/

∑
K2∗. The space

of orderings of K is the pair (Sper K, K∗
rr).

At the same time, there are indications, e.g., in rigid geometry, and
in resolution of singularities via Zariski’s method, that the prime spec-
trum is not large enough, even in the classical context: It does not
say enough about the valuation theory of the residue fields. In [6] [7]
[13] [14] the valuation spectrum Spv A is introduced. Spv A consists of
pairs (p, v) where p is a prime ideal of A and v is a valuation on k(p).

Valuations also play an important role in the real case, and impor-
tant use is also made of the orderings on the residue field Bv/mv of
the valuation v, where Bv denotes the valuation ring of v, and mv its
maximal ideal. One encounters these objects, for example, in under-
standing specialization in Sper A, in connection to minimal generation
of constructible sets in Sper A and in the (reduced) theory of quadratic
forms over formally real fields. This suggests that in the real case one
should be considering triples (p, v, P ) where p is a real prime, v is a
real valuation on k(p) and P is an ordering on the residue field Bv/mv.
(Compare to [13] [14].) We refer to these triples as residual orderings of
A. In the present paper we examine the set consisting of these objects,
with its natural topology, which we call the complete real spectrum of
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A. We also define an associated complete space of signs. The motiva-
tion for this study comes from properties of the real holomorphy ring
of a field.

1. Real holomorphy rings

The real holomorphy ring of a formally real field K is

HK = {a ∈ K : ∃ an integer n ≥ 1 such that −n ≤ a ≤ n on Sper K}.
H = HK can be described in various other ways [2] [16], and carries
lots of information about the field K. The space of orderings, the real
valuations, the spaces of orderings of the residue fields, the space of
real places of K, can all be “read off” from the space of signs of H .

In more detail: Every prime ideal of H is real. If p is a prime ideal
of H then the local ring Hp is a real valuation ring of K. Conversely,
every real valuation ring of K is of this form, for some unique p. The
residue field of Hp is k(p) := qf(H/p). The space of orderings of this
residue field is identified with the space of support p orderings of H .
Consequently, every support p ordering of H generalizes, via the Baer-
Krull Theorem, to a support {0} ordering of H . Sper K is identified
with MinSper H . The space of real places of K (places into the field of
real numbers) is identified with MaxSper H .

For any prime q of H , the real holomorphy ring of k(q) is precisely
Hk(q) = H/q. Consequently, everything said above works equally well
with H replaced by H/q. In particular, if p, q are any prime ideals
of H with q ⊆ p, then support p orderings of H generalize to support
q orderings of H via the Baer-Krull theorem applied to the valuation
ring (H/q)(p/q) in the field k(q) with residue field equal to k(p).

This suggests that to have more of this structure available, one should
perhaps be studying spaces of signs of real holomorphy rings of fields
rather than spaces of orderings of fields.

One can also argue a step further, thinking of rings instead of fields.
All rings considered here are commutative with 1. The space of signs
of a ring A carries information about the spaces of orderings of each
of the residue fields k(p), p a real prime of A, but typically does not
carry enough information concerning the real holomorphy rings of these
residue fields.

The real holomorphy ring HA of an arbitrary commutative ring A
[3] [17] has been introduced and has proved to be a useful object, e.g.,
in studying the Moment Problem from functional analysis. Actually,
there are two versions in the ring case, the geometric version:

HA = {a ∈ A : ∃ an integer n ≥ 1 such that −n ≤ a ≤ n on Sper A},
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and the generally smaller arithmetic version:

H ′
A = {a ∈ A : ∃ an integer n ≥ 1 such that n ± a ∈

∑
A2}.

If A is a finitely generated R-algebra with Hom(A, R) compact then,
by Schmüdgen’s Theorem [15], both versions coincide. The same is
true if the elements of 1 +

∑
A2 are invertible in A (not such a drastic

assumption from the point of view of what we are trying to do here).
But even with special assumptions of this sort, HA is not big enough,
in general, to carry good information concerning the valuations on the
residue fields of A.

The image of Sper A in Sper HA under the restriction map Sper A →
Sper HA is often not dense in Sper HA. Consequently, H(HA) is often
strictly smaller than HA. Define Hn

A recursively by Hn
A = H(Hn−1

A ) and

set H∞
A = ∩n≥1H

n
A. H∞

A is the largest subring B of A satisfying HB =
B. H ′

A is better behaved in this regard, since H ′
(H′

A) = H(H′
A) = H ′

A (so,

in particular, H ′
A ⊆ H∞

A ), but H∞
A and H ′

A are generally not equal. In
[11] an example of an R-algebra A is given where H∞

A = A, H ′
A = R.

If A is an R-algebra of finite transcendence degree d (in particular, if
A is finitely generated), then H∞

A = Hd
A = H ′

A. The first equality is
proved in [3]. The second (the so-called Monnier Conjecture) is proved
in [17].

We say a ring A is a real holomorphy ring if the following equivalent
conditions hold:

1) HA = A.
2) A/p ⊆ Hk(p) holds for each real prime p of A.
3) A/p ⊆ Bv holds for each real prime p of A and each real valuation

v of k(p).
We say a real holomorphy ring A is complete if, in addition,
4) A/p = Hk(p) holds for each real prime p of A.

Remark 1.1. 1) The implications (1) ⇒ (2) ⇒ (3) are trivial. The
implication (3) ⇒ (1) uses the compactness of the real spectrum.

2) In [1] real holomorphy rings are referred to as totally Archimedean
rings.

3) If A/p = Hk(p) then, for any prime q lying over p, A/q = Hk(q).
Consequently, to check that a real holomorphy ring is complete, it
suffices to check that A/p = Hk(p) for each minimal real prime of A.

Example 1.2. 1) Real holomorphy rings: For any ring A, B = H∞
A

and C = H ′
A are real holomorphy rings. For any ring A such that each

element of 1 +
∑

A2 is a unit in A, HA is a holomorphy ring (since
HA = H ′

A in this case).
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2) Complete real holomorphy rings: The real holomorphy ring of a
formally real field and the ring of continuous functions Cont(X, R) for
any compact space X. The next theorem provides additional examples.

Theorem 1.3. Suppose A is real (i.e., the real nilradical of A is zero).

1) If A is zero dimensional then H = HA is a real holomorphy ring
which is complete.

2) If the space of minimal primes of A is compact and S−1A denotes
the complete ring of quotients of A, then H = HS−1A is a real
holomorphy ring which is complete.

Remark 1.4. 1) The hypotheses of (1) and (2) of Theorem 1.3 are
pretty restrictive. Still, there are many examples.

2) A finite space is compact. Consequently (2) applies when A has
only finitely many minimal primes, e.g., when A is Noetherian. In this
case,

S−1A = k(p1) × · · · × k(pn)

where the pi are the minimal primes of A, and

H = Hk(p1) × · · · × Hk(pn).

3) In general, for complete real holomorphy rings, it would seem that
the space of minimal real primes can be pretty complicated.

Proof. Since A is real, the minimal primes of A are all real. Let pλ,
λ ∈ Λ, be the set of minimal primes of A. By definition, S = A\∪λ∈Λpλ.
Suppose q is a prime ideal of A with q ⊆ ∪λ∈Λpλ. If q � pλ for all λ,
then there exists aλ ∈ q, aλ /∈ pλ, i.e. the open sets D(aλ) cover the
space of minimal primes, where D(a) := {p ∈ Spec A : a /∈ p}. By
compactness, we have finitely many elements ai of A with ai ∈ q and,
for each λ, ai /∈ pλ for some i. Then

∑
a2

i ∈ q,
∑

a2
i /∈ pλ. This

contradicts our assumption. Thus the hypothesis of (2) implies that
the only primes of S−1A are those coming from the pλ, so S−1A is zero
dimensional. Thus it only remains to prove (1).

Thus we assume now that A is zero dimensional. Note that S = the
group of units of A in this case, so S−1A = A. Since all the primes
of A are real, 1 +

∑
A2 ⊆ S. It follows that H is a real holomorphy

ring. Since A is zero dimensional, Spec A is a Boolean space and A is
the ring of global sections of a sheaf on Spec A with the A/p = k(p),
p ∈ Spec A, as the stalks. If A = A1 × A2 then clearly H = H1 × H2,
where Hi = HAi

. Consequently, H is also the ring of global sections of
a sheaf on Spec A with the H/(H ∩ p) as stalks. If q is a prime ideal of
H , a compactness argument shows that H ∩ p ⊆ q for some prime p of
A. (Otherwise we would have finitely many bi ∈ H with bi /∈ q but for
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each prime p of A, bi ∈ p for some i. Then
∏

bi /∈ q, but
∏

bi lies in all
primes of A so is zero.) Note that k(H ∩ p) = k(p). (Use the identity
a/b = a

1+a2+b2
/ b

1+a2+b2
.)

We are reduced to showing that H/(H ∩ p) = Hk(p). One inclusion
is clear. For the other, suppose a, b ∈ A, b /∈ p, and a+p

b+p
∈ k(p) is

bounded. By Lemma 2.1 below we can assume nb2 − a2 ∈ ∑
A2 for

some integer n ≥ 1. p lies in the clopen set C := D(b) in Spec A. Let
D = Z(b) := {q ∈ Spec A : b ∈ q}, the complement of C in Spec A.
The decomposition Spec A = C ∪ D allows us to produce an element
e ∈ H which agrees with a/b at p, namely e = a/b on C, e = 0 on D.
�

What are the special properties of the space of signs of a complete
real holomorphy ring A which distinguishes it from the space of signs of
an arbitrary ring? Part of the answer is that, for these rings, specializa-
tion is very well-behaved. The following result is clear from properties
of the real holomorphy ring of a field noted at the beginning of the
section.

Theorem 1.5. Suppose A is a complete real holomorphy ring and p,
q are real primes of A with p ⊆ q. Then:

1) (A/p)(q/p) is a real valuation ring of k(p).
2) The orderings with support p which specialize to an ordering with

support q are those compatible with the valuation ring (A/p)(q/p).
The specialization of any such ordering is determined by the
Baer-Krull Theorem.

3) Every ordering with support q generalizes to an ordering with
support p. Its set of generalizations is determined by the Baer-
Krull Theorem.

4) The real primes contained in a given real prime form a chain
with respect to inclusion.

5) If the real radical of A is zero (so the minimal primes of A are
real) then all primes of A are real.

It is important to note, again since we are assuming that A is
complete, that every real valuation v of k(p) arises via this process:
mv ∩ A/p is of the form q/p for some (real) prime q. Consequently
Bv = (A/p)(q/p), and the residue field of Bv is k(q).

The space of maximal specializations of orderings with support p
is homeomorphic to Mk(p) := the space of real places of k(p). If
p ⊆ q, then Mk(q) is naturally identified with a subspace in Mk(p).⋃

p Mk(p) (modulo these identifications) is identified with MaxSper A =

Hom(A, R).
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By the Stone-Weierstrass approximation property, it is possible to
separate disjoint closed sets in the maximal real spectrum using el-
ements of A: Given disjoint closed C, D in MaxSper A, there exists
ã ∈ Arr such that ã = 1 on C, ã = −1 on D.

In the case A = HK , the real holomorphy ring of a field K, there
is a unique minimal real prime. In the general case, a complete real
holomorphy ring may have a large number of minimal real primes. Is
it possible to say anything about the space of minimal real primes?

It would be nice to have a list of abstract properties of the space of
signs of a complete real holomorphy ring.

2. The complete real spectrum of a ring

Is it possible to think of the space of signs of A as being part of
some big “super object” associated to A which takes into account all
real valuations on the k(p) and all the orderings on the corresponding
residue fields of k(p) into account?

It seems that, in a certain sense at least, this is in fact the case. We
define a big object SpercA which we call the complete real spectrum
of A. There are various connections between this and the valuation
spectra considered in [6] [7] [13] [14]. Roughly speaking, the complete
real spectrum is related to the valuation spectrum in the same way
that the real spectrum is related to the prime spectrum. A is any
commutative ring with 1. We define a topology on SpercA and prove
that SpercA, with this topology, is a spectral space. SpercA gives rise to
a complete space of signs (SpercA, Ac

rr), but this is not a space of signs
in the usual sense. This should not be viewed as a drawback. Rather,
SpercA should be viewed as a new sort of structure, interesting in its
own right.

In Sect. 8.6 of [10] another sort of attempt is made to overcome
shortcomings of the real spectrum of A by introducing the space of
real places of A, which we denote here by MA. By definition, MA

consists of pairs (p, λ) where p is a real prime of A and λ is a place
from the residue field k(p) into the field of real numbers. This takes care
of the real places in a satisfactory way but does not keep track of all
real valuations on the k(p) and all the orderings on the corresponding
residue fields of k(p). Still, the MA construction in [10] is closely related
to the complete real spectrum construction described below.

The elements of SpercA, which we refer to as residual orderings of
A, are triples (p, v, P ) where p is a real prime of A, v is a real valuation
(more precisely, an equivalence class of real valuations) on the residue
field k(p) and P is an ordering on the residue field Bv/mv of v. Here,
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Bv ⊆ k(p) denotes the valuation ring of v and mv its maximal ideal.
Equivalently, elements of SpercA are pairs (p, Q) where p is a real prime
of A and Q is an element of Sper Hk(p). The pair (p, v) will be referred
to as the support of (p, v, P ).

There are natural maps

(p, v, P ) �→ p, (p, v, P ) �→ (p, v)

from SpercA into Spec A (the prime spectrum of A) and from SpercA
into Spv A (the valuation spectrum of A [6] [7]), and a natural map

(p, P ) �→ (p, 0, P )

(where 0 denotes the trivial valuation on k(p)) from Sper A into SpercA.
There is also the specialization map

(p, Q) �→ (p, Q′)

from SpercA onto the space of real places M = MA defined in [10].
Here, Q′ denotes the unique maximal specialization of Q in Sper Hk(p);
also see [2]. The composite map Sper A → MA is just the P-structure
map Λ considered in [10].

Note: The complete real spectrum of a formally real field K is nat-
urally identified with the real spectrum of its real holomorphy ring
HK . More generally, if A is real and zero dimensional, then SpercA is
naturally identified with Sper HA.

Subbasic open sets in SpercA are defined using pairs of elements of
A. For (a, b) ∈ A × A, we define:

U(a, b) = {(p, v, P ) ∈ SpercA : v(a) = v(b) �= ∞,
a + p

b + p
+mv > 0 at P}.

Here, v(a) is standard shorthand notation for v(a + p).
For the alternate description of elements of SpercA as pairs (p, Q),

Q an ordering of Hk(p), it is convenient to consider the set

SA := {(a, b) ∈ A×A : ∃ an integer n ≥ 1 such that nb2−a2 ∈
∑

A2}.
For any (a, b) ∈ A×A, (ab, a2 + b2) ∈ SA and U(a, b) = U(ab, a2 + b2).
For (a, b) ∈ SA,

U(a, b) = {(p, Q) ∈ SpercA : b /∈ p,
a + p

b + p
> 0 at Q}.

Note that (a, b) ∈ SA, b /∈ p ⇒ a+p
b+p

∈ Hk(p). For our purposes it is
important to know that every element of Hk(p) is represented this way.

Lemma 2.1. For each s ∈ Hk(p), there exists (a, b) ∈ SA with b /∈ p

and a+p
b+p

= s.
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Note: An essentially equivalent statement is: The natural surjection
Ap → k(p) maps HAp onto Hk(p). This holds for any local ring with
formally real residue field.

Proof. Choose a positive integer n so that n − s2 =
∑

s2
i , si ∈

k(p). Choose a common denominator b + p for s and the si. Clearing
denominators yields

nb2 − a2 =
∑

a2
i + r, r ∈ p, s =

a + p

b + p
, si =

ai + p

b + p
.

Multiplying each side by b2, subtracting rb2 from each side, and adding
r2

4n
to each side yields

n(b2 − r

2n
)2 − a2b2 =

∑
a2

i b
2 +

r2

4n
.

Take a1 = ab, b1 = b2 − r
2n

. Then (a1, b1) ∈ SA and a1+p
b1+p

= s. �
We also use the following elementary facts:

Lemma 2.2. Suppose (a, b), (c, d) ∈ SA. Then (ac, bd) ∈ SA and (ad+
bc, bd) ∈ SA.

Proof. Suppose nb2 − a2 = s, md2 − c2 = t, s, t ∈ ∑
A2. Then

mnb2d2 − a2c2 = (a2 + s)(c2 + t) − a2c2 = a2t + c2s + st ∈
∑

A2.

Also

(1 + n)(1 + m)b2d2 = b2d2 + nb2d2 + mb2d2 + mnb2d2

= b2d2 + (a2 + s)d2 + (c2 + t)b2 + (a2 + s)(c2 + t)

= (ad + bc)2 + (ac − bd)2 + b2t + d2s + a2t + c2s + st,

so (1 + n)(1 + m)b2d2 − (ad + bc)2 ∈ ∑
A2 as required. �

Theorem 2.3. SpercA is a spectral space.

Proof. The method of proof is standard [9] [7]. One must show that
SpercA, endowed with the (finer) patch topology, is a Boolean space.
One is reduced to showing that the map

Ψ : SpercA → {0, 1}SA, x �→ fx, where fx(a, b) :=

{
1 if x ∈ U(a, b),

0 otherwise.

is injective, and that the image of Ψ is closed, where {0, 1}SA is endowed
with the product topology.

Injectivity of Ψ: Let x = (p, Q). Observe that for a ∈ A,

fx(a, a) =

{
0 if a ∈ p,

1 if a /∈ p.
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Thus p = {a ∈ A : fx(a, a) = 0}. Now suppose (a, b) ∈ SA, b /∈ p, so
a+p
b+p

∈ Hk(p). Then

a + p

b + p
∈ Q ⇔ fx(−a, b) = 0.

It follows, using Lemma 2.1, that

Q = {a + p

b + p
: (a, b) ∈ SA, fx(b, b) = 1, fx(−a, b) = 0}.

Im(Ψ) is closed: Let f : SA → {0, 1} be in the closure of Im(Ψ).
Thus, for each finite set of points in SA, there exists g ∈ Im(Ψ) agree-
ing with f on this finite set. Let

p = {a ∈ A : f(a, a) = 0}.
On checks that 0 ∈ p, a, b ∈ p ⇒ a + b ∈ p, a ∈ p, b ∈ A ⇒ ab ∈ p,
1 /∈ p, and ab ∈ p ⇒ a ∈ p or b ∈ p. The argument in each case is
the same. E.g., to show closure under addition, pick a, b ∈ p. Pick
g ∈ Im(Ψ) which agrees with f at (a, a), (b, b), and (a + b, a + b).
Thus g(a, a) = f(a, a) = 0, g(b, b) = f(b, b) = 0, so f(a + b, a + b) =
g(a + b, a + b) = 0. This proves that p is a prime ideal. Now let

Q = {a + p

b + p
: f(b, b) = 1, f(−a, b) = 0}.

We show that Q is an ordering of Hk(p). The argument is similar to the
above. We show closure of Q under multiplication: Pick (ai, bi) ∈
SA, bi /∈ p, and suppose ai+p

bi+p
∈ Q, i = 1, 2. Pick g ∈ Im(Ψ),

say g = Ψ(p′, Q′), agreeing with f at (bi, bi) and (−ai, bi), i = 1, 2
and at (a1a2, b1b2). Then bi /∈ p′, g(−ai, bi) = f(−ai, bi) = 0 so
ai+p
bi+p

∈ Q′, i = 1, 2. Since Q′ is closed under multiplication, this implies

f(−a1a2, b1b2) = g(−a1a2, b1b2) = 0. The other properties of an order-
ing are checked in a similar way. Finally, one checks that f = Ψ(p, Q).
�

It is natural to mimic the space of signs construction outlined in the
introduction: Consider the sign functions

(̃a, b) : SpercA → {−1, 0, 1},
(a, b) ∈ SA, defined by

(̃a, b)(p, Q) :=

⎧⎪⎨⎪⎩
1 if a+p

b+p
> 0 at Q,

−1 if a+p
b+p

< 0 at Q,

0 if a+p
b+p

= 0 at Q.
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We leave (̃a, b) undefined at α = (p, Q) if b ∈ p. Note that (̃a, b)·(̃c, d) =
˜(ac, bd) at all points where both sides are defined. The sign functions

(̃a, b), (a, b) ∈ SA, form a semigroup. We denote this semigroup by Ac
rr,

i.e.

Ac
rr = {(̃a, b) : (a, b) ∈ SA}.

We refer to the pair (SpercA, Ac
rr) as the complete space of signs of

A. It is not a space of signs in the usual sense, but has interesting
structure which needs to be investigated further.

Note: The complete space of signs of a formally real field K is pre-
cisely the regular space of signs of HK .

For future use, we also define (̃a, b) for (a, b) ∈ A × A, (a, b) /∈ SA.
For (a, b) arbitrary in A × A, we define:

(̃a, b)(p, v, P ) :=

⎧⎪⎨⎪⎩
1 if v(a) = v(b) �= ∞ and a+p

b+p
+ mv > 0 at P

−1 if v(a) = v(b) �= ∞ and a+p
b+p

+ mv < 0 at P

0 if v(a) > v(b) �= ∞.

Note: For (a, b) ∈ SA, this coincides with the previous definition.

3. Specialization and separation

As is typical for a spectral space, SpercA is usually not Hausdorff
(although it is Hausdorff in its patch topology). It has a natural spe-
cialization relation: For α, β ∈ SpercA, α specializes β (equivalently,
that β generalizes α), denoted β � α (equivalently α � β), if α lies in
the topological closure of the singleton set {β}. In view of the definition
of the topology on SpercA, this is equivalent to saying:

∀(a, b) ∈ A × A, (̃a, b)(α) > 0 ⇒ (̃a, b)(β) > 0.

We distinguish two basic types. (Compare to [6] [7]):
Type I. Suppose α = (p, v, P ) and q is a prime ideal of A containing

p such that

(1) ∀a, b ∈ A a ∈ q, b /∈ q ⇒ v(a) > v(b).

Consider the local ring (A/p)(q/p) in k(p) with residue field k(q). Denote
by v′ the valuation on k(q) defined by

Bv′ = {a + q

b + q
: b /∈ q, v(a) ≥ v(b)},
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i.e, Bv′ is the image of (A/p)(q/p)∩Bv under the natural map a+p
b+p

�→ a+q
b+q

from (A/p)(q/p) to k(q). Bv′/mv′ is naturally embedded in Bv/mv via

a + q

b + q
+ mv′ �→ a + p

b + p
+ mv.

Denote by P ′ the ordering on Bv′/mv′ obtained by restricting P to
Bv′/mv′ . Then β = (q, v′, P ′) is a specialization of α, called a type I
specialization of α. Each prime ideal qλ of A containing p and satisfying
(1) determines an upper cut {v(a) : a ∈ qλ} in v(A/p). The set of such
upper cuts is totally ordered by inclusion. Consequently, the set of such
prime ideals is also totally ordered by inclusion with largest element
q = ∪λqλ.

Type II. Suppose α = (p, v, P ), w is a valuation on the field k(p)
with Bw ⊆ Bv and such that P is compatible with the valuation ring
Bw/mv in Bv/mv and Q is the pushdown of P to Bw/mw. Then γ =
(p, w, Q) is a specialization of α, called a type II specialization of α.
Type II specializations of α form a chain with maximal element. The
maximal type II specialization of α is obtained by taking w so that
Bw/mv is the convex hull of Z with respect to the ordering P in the
field Bv/mv.

We analyze specialization in more detail. Suppose α1 � α2, αi =
(pi, vi, Pi), i = 1, 2. Note that:

1) p1 ⊆ p2. (If a ∈ p1, a /∈ p2, then (̃a, a) is positive at α2, zero at
α1.)

2) v2(a) ≥ v2(b) �= ∞ ⇒ v1(a) ≥ v1(b). (If v2(a) > v2(b) �= ∞
and v1(a) < v1(b) then ˜(b + a, b − a) is positive at α2, negative at α1.
If v2(a) = v2(b) �= ∞ and v1(a) < v1(b) then, replacing a by −a if

necessary, (̃a, b) is positive at α2, zero at α1.)
Conditions (1) and (2) combined are just saying that (p1, v1) �

(p2, v2) as elements of Spv A. From (2) it follows that:
3) If a ∈ p2, b /∈ p2, then v1(a) ≥ v1(b).

Theorem 3.1. Suppose α1 � α2. Then

1) There is a unique intermediate β such that α1 � β is maximal
type II. β � α2 is type I.

2) There is a unique intermediate γ such that α1 � γ is maximal
type I. Either γ � α2 is of type II or the valuation of γ is trivial.

3) There is a unique intermediate δ with α1 � δ minimal of type II
such that there exists ζ, δ � ζ � α2, with δ � ζ of type I and
ζ � α2 of type II. If δ �= α1, then the valuation of ζ is trivial.

Proof. Let αi = (pi, vi, Pi), i = 1, 2.
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(1) Choose v0 so that Bv0 is the smallest valuation ring of Bv1

such that Bv0/mv1 is compatible with P1. Choose v so that Bv =
Bv0 · λ−1(Bv2) where λ : (A/p1)(p2/p1) → k(p2) denotes the natural ho-
momorphism. Bv ⊆ Bv1 . β = (p1, v, P ) where P denotes the pushdown
of P1 to Bv/mv. β � α2. It remains to show that β � α2 is type I. If
this is not the case, then we would have

a + p1

b + p1
=

c + p1

d + p1
· x

with b, d /∈ p2, v(a) ≥ v(b), v2(a) < v2(b), v2(c) ≥ v2(d), v0(x) ≥ 0.
Thus v(a) = v(b) and v(c) ≥ v(d). Also, v0(bc) ≤ v0(ad). We can
assume a

b
, c

d
and x are positive at P . Thus there exists a positive

integer n such that nbc−ad
bc

= n − ad
bc

and nbc+ad
bc

= n + ad
bc

are strictly

positive at P . Consequently, nbc−ad
nbc+ad

is strictly positive at P and strictly
negative at P2, a contradiction.

(2) Take q = ∪λqλ where {qλ} is the set (chain) of intermediate
primes p1 ⊆ qλ ⊆ p2 satisfying v1(a) > v1(b) for all a ∈ qλ, b /∈ qλ. q
is prime and v1(a) > v1(b) holds for all a ∈ q, b /∈ q. γ = (q, w, Q)
is the type I specialization of α1 determined by q. If q = p2 then
the specialization γ � α2 is type II. Suppose q �= p2. We know that
w(a) ≥ w(b) holds for any a ∈ p2, b /∈ p2. Thus w(a0) = w(b0) holds
for some a0 ∈ p2, b0 /∈ p2. Then, for any c ∈ A, a0c ∈ p2, so w(a0c) ≥
w(b0) = w(a0), so w(c) ≥ 0. If w(b0) > 0 then w(b2

0) > w(b0) = w(a0).
since b2

0 /∈ p2, a0 ∈ p2, this is a contradiction. Thus w(b0) = 0. Thus,
for any c ∈ A, if c /∈ p2, then w(c) ≤ w(a0) = w(b0) = 0. This proves
that w(c) = 0 for all c ∈ A, c /∈ p2. It follows that (A/q)(p2/q) ⊆ Bw

so the prime ideal q ⊆ q′ ⊆ p2 defined by q′/q = mw ∩ (A/q) defines a
type I specialization of γ. Thus q′ = q. Thus w is the trivial valuation
in this case.

(3) If v1(a) > v1(b) holds for all a ∈ p1, b /∈ p1, then δ = α1.
Otherwise, arguing as above, (A/p1)(p2/p1) ⊆ Bv1 . In this case take
δ = (p1, v

′, P ′) where Bv′ = (A/p1)(p2/p1) · Bv0 and P ′ is the pushdown
of P1 to Bv′/mv′ . We claim v′(a) > v′(b) holds for all a ∈ p2, b /∈ p2.
Otherwise v′(a) = v′(b) for some such a, b. Then

b

a
=

c

d
· x

for some d /∈ p2, v0(x) ≥ 0. Thus v0(
bd
ac

) ≥ 0. We can assume bd
ac

is

positive at P1. There exists a positive integer n such that n − bd
ac

is

positive at P1. Then nac−bd
nac+bd

is positive at P1, and negative at P2, a
contradiction. This proves the claim. It follows that there is a type
I specialization ζ of δ such that α2 is a type II specialization of ζ .
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At the same time, the valuation of ζ is trivial, so ζ has no type II
generalization. It follows that δ is minimal with the desired property.
�

As a consequence of the above argument we also see:

Corollary 3.2. If α1 specializes to α2 = (p2, v2, P2) and also to α′
2 =

(p2, v2, P
′
2), then P2 = P ′

2, i.e., α2 = α′
2.

Given α1, α2 in Sper A, with α1 � α2, α2 � α1, it is well-known
that there exists a ∈ A which separates α1 and α2 in the sense that
ã is strictly positive at one of α1, α2 and strictly negative at the other
[9]. This fails in SpercA, but only when α1 and α2 are related in a
particular way:

Theorem 3.3. Suppose αi ∈ SpercA, i = 1, 2, α1 � α2, α2 � α1. The
following are equivalent:

1) There is no (a, b) ∈ A×A such that (̃a, b)(α1) > 0 and (̃a, b)(α2) <
0.

2) Either p1 ⊆ p2 or p2 ⊆ p1. If p1 ⊆ p2 then there exists a type
I specialization α = (p2, v, P ) of α1 which is at the same time a
type II specialization of α2. If p2 ⊆ p1 the same holds, but with
the roles of α1, α2 interchanged.

Proof.
(1) ⇒ (2). Let αi = (pi, vi, Pi), i = 1, 2. Suppose a ∈ p1, a /∈ p2,

b ∈ p2, b /∈ p1. Then (a + b, a − b) is strictly positive at α1 and strictly
negative at α2 contradicting our assumption. Thus either p1 ⊆ p2 or

p2 ⊆ p1, say p1 ⊆ p2. Since α1 � α2 there exists (a, b) with (̃a, b)(α2) �=
0, (̃a, b)(α1) = 0. Since α2 � α1 there exists (c, d) with (̃c, d)(α1) �= 0,

(̃c, d)(α2) = 0. Thus v2(a) = v2(b) �= ∞, ab /∈ p1 (since ab /∈ p2) and
v1(a) �= v1(b). Also v1(c) = v1(d) �= ∞ and either cd ∈ p2 or cd /∈ p2

and v2(c) �= v2(d). Suppose cd /∈ p2. Interchanging a and b and c and
d if necessary, we can assume v1(a) < v1(b) and v2(c) < v2(d). Then
(ad − bc, ad + bc) separates α1, α2. Thus cd ∈ p2. In particular, p1 is
properly contained in p2. This exact same argument can be used to
prove the following:

Claim 1: If c, d are not in p2 and v1(c) = v1(d) then v2(c) = v2(d).
Claim 2: If c, d ∈ A, d /∈ p2, and v1(c) ≥ v1(d) then v2(c) ≥ v2(d).

This is clear by Claim 1 if v1(c) = v1(d). Suppose v1(c) > v1(d). Then
v1(c ± d) = v1(d). By Claim 1 this implies v2(c ± d) = v2(d) which, in
turn, implies v2(c) ≥ v2(d).
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Claim 3: If c ∈ p2, d /∈ p2, then v1(c) > v1(d). Otherwise v1(c) ≤
v1(d) and consequently v1(ac) < v1(bd). Then the pair (ac+bd, ac−bd)
separates α1 and α2.

Claim 3 allows us to construct the type I specialization α = (p2, v, Q)
of α1. Suppose now that c, d ∈ A, d /∈ p2 satisfy v(c) ≥ v(d). Using
Claim 2 together with the definition of v this yields v2(c) ≥ v2(d). This
proves Bv ⊆ Bv2 . Using the fact that α1 and α2 cannot be separated,
we see that P2 is compatible with Bv/mv2 and pushes down to the
ordering Q in Bv/mv. Thus α is a type II specialization of α2.

(2) ⇒ (1). Suppose (̃a, b)(α1) > 0, (̃a, b)(α2) < 0. Then a, b /∈ p2,
v2(a) = v2(b), and v1(a) = v1(b),

a+p2

b+p2
+mv2 < 0 at P2, and a+p1

b+p1
+mv1 >

0 at P1. Thus v(a) = v(b) and a+p
b+p

> 0 at Q. Since P2 pushes down to

Q, this contradicts a+p2

b+p2
> 0 at P2. �

Motivated by this and the case of the real holomorphy ring of a
formally real field, we examine a certain subspace of SpercA. We define

S̃per
c
A := the set of elements of SpercA which are maximal with respect

to type I specialization. We also denote by s : SpercA → S̃per
c
A the

natural map associating to each α in SpercA, its unique maximal type
I specialization.

Example: Suppose A = K, a formally real field. Then S̃per
c
K =

SpercK which is naturally identified with Sper H , where H = HK .

Corollary 3.4. If α1, α2 ∈ S̃per
c
A satisfy α1 � α2, α2 � α1, then

there exists (a, b) in A × A separating α1 and α2.

Corollary 3.5. S̃per
c
A is completely normal. For each α ∈ S̃per

c
A,

the specializations of α in S̃per
c
A form a chain.

Note: The map (p, P ) �→ (p, 0, P ) identifies Sper A with the elements
of SpercA which are minimal with respect to type II generalization.
Observe that each such (p, 0, P ) is also maximal with respect to type I
specialization.

Theorem 3.6. The following are equivalent:

1) A is a real holomorphy ring.

2) The natural embedding (p, P ) �→ (p, 0, P ) of SperA into S̃per
c
A

is surjective, i.e., a homeomorphism.

Proof.
(1) ⇒ (2). Let α = (p, v, P ) be an arbitrary element of SpercA.

Since A/p ⊆ Bv one checks easily that the maximal type I extension of
α has the form α′ = (q, v′, P ′) where q is defined by q/p := mv ∩ A/p.
But then (A/p)(q/p) ∩ Bv = (A/p)(q/p), i.e., Bv′ = k(q), i.e., v′ = 0.
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(2) ⇒ (1). Let p be a real prime and let v be a real valuation ring
of k(p). Let α = (p, v, P ) where P is some fixed ordering on Bv/mv.
By (2), α has a type I specialization of the form (q, v′, P ′) with v′ = 0.
We have the natural ring homomorphism from (A/p)(q/p) ∩ Bv onto
Bv′ = k(q) with kernel (q/p)(q/p). A standard diagram chase shows
that (A/p)(q/p) ∩ Bv = (A/p)(q/p). This proves A/p ⊆ Bv. �

Remark 3.7. Consider the pair (S̃per
c
A, Ãc

rr) where Ãc
rr denotes the

set of restrictions of elements of Ac
rr to S̃per

c
A. Is S̃per

c
A a spectral

space? Is (S̃per
c
A, Ãc

rr) a space of signs? When HA = A, (S̃per
c
A, Ãc

rr)
is identified with (Sper A, Arr), so, in this case at least, the answer to
both questions is ‘yes’.

One can also consider the subspace of SpercA consisting of elements
which are maximal with respect to type II specialization. This is pre-
cisely the space of real places MA considered in [10].
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