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Abstract

Given a divisorial discrete valuation centered at infinity on C[x, y], we show that its
sign on C[x, y] (i.e. whether it is negative or non-positive on C[x, y] \ C) is completely
determined by the sign of its value on the last key form (key forms being the avatar of key
polynomials of valuations [Mac36] in ‘global coordinates’). We also describe the cone of
curves and the nef cone of certain compactifications of C2 associated to a given valuation
centered at infinity, and give a characterization of the divisorial valuations centered at
infinity whose skewness can be interpreted in terms of the slope of an extremal ray of these
cones, yielding a generalization of a result of [FJ07]. A by-product of these arguments
is a characterization of valuations which ‘determine’ normal compactifications of C2 with
one irreducible curve at infinity in terms of an associated ‘semigroup of values’.

1 Introduction

Notation 1.1. Throughout this section k is a field and R is a finitely generated k-algebra.

In algebraic (or analytic) geometry and commutative algebra, valuations are usually
treated in the local setting, and the values are always positive or non-negative. Even if it
is a priori not known if a given discrete valuation ν is positive or non-negative on R \ k, it
is evident how to verify this, at least if ν(k \ {0}) = 0: one has only to check the values of ν
on the k-algebra generators of R. For valuations centered at infinity however, in general it is
non-trivial to determine if it is negative or non-positive on R \ k:

Example 1.2. Let R := C[x, y] and for every ε ∈ R with 0 < ε < 1, let νε be the valuation
(with values in R) on C(x, y) defined as follows:

νε(f(x, y)) := −degx

(
f(x, y)|y=x5/2+x−1+ξx−5/2−ε

)
for all f ∈ C(x, y) \ {0}, (1)

where ξ is a new indeterminate and degx is the degree in x. Direct computation shows that

νε(x) = −1, ν(y) = −5/2, νε(y
2 − x5) = −3/2, νε(y

2 − x5 − 2x−1y) = ε.

Is νε negative on C[x, y]? Let g := y2− x5− 2x−1y. The fact that νε(g) > 0 does not seem to
be of much help for the answer (especially if ε is very small), since g 6∈ C[x, y] and νε(xg) < 0.
However, g is precisely the last key form (Definition 2.4) of νε (see Example 2.8), and therefore
Theorem 1.4 implies that νε is not non-positive on C[x, y], i.e. no matter how small ε is, there
exists fε ∈ C[x, y] such that νε(fε) > 0.
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In this article we settle the question of how to determine if a valuation centered at infinity
is negative or non-positive on R for the case that R = C[x, y]. At first we describe how this
question arises naturally in the study of algebraic completions of affine varieties.

1.1 Motivation and statements of main results

Recall that a divisorial discrete valuation (Definition 2.2) ν on R is centered at infinity iff
ν(f) < 0 for some f ∈ R, or equivalently iff there is an algebraic completion X̄ of X :=
SpecR (i.e. X̄ is a complete algebraic varieties containing X as a dense open subset) and an
irreducible component C of X̄ \ X such that ν is the order of vanishing along C. On the
other hand, one way to construct algebraic completions of the affine variety X is to start with
a degree-like function on R (the terminology is from [Mon10b] and [Mon10a]), i.e. a function
δ : R→ Z ∪ {−∞} which satisfy the following ‘degree-like’ properties:

P1. δ(f + g) ≤ max{δ(f), δ(g)}, and

P2. δ(fg) ≤ δ(f) + δ(g),

and construct the graded ring

Rδ :=
⊕
d≥0

{f ∈ R : δ(f) ≤ d} ∼=
∑
d≥0

{f ∈ R : δ(f) ≤ d}td (2)

where t is an indeterminate. It is straightforward to see that X̄δ := ProjRδ is a projective
completion of X provided the following conditions are satisfied:

Proj-1. Rδ is finitely generated as a k-algebra, and

Proj-2. δ(f) > 0 for all f ∈ R \ k.

A fundamental class of degree-like functions are divisorial semidegrees - these are precisely
the negative of divisorial discrete valuations centered at infinity and they serve as ‘building
blocks’ of an important class of degree-like functions (see [Mon10b], [Mon10a]). Therefore, a
natural question in this context is:

Question 1.3. 1 Given a divisorial semidegree δ on R, how to determine if δ(f) > 0 for all
f ∈ R \ k? Or equivalently, given a divisorial discrete valuation ν on R centered at infinity,
how to determine if ν(f) < 0 for all f ∈ R \ k?

In this article we give a complete answer to Question 1.3 for the case k = C and R = C[x, y]
(note that the answer for the case R = C[x] is obvious, since the only discrete valuations
centered at infinity on C[x] are those which map x−α 7→ −1 for some α ∈ C). More precisely,
we consider the sequence of key forms (Definition 2.4) corresponding to semidegrees, and show
that

Theorem 1.4. Let δ be a divisorial semidegree on C[x, y] and let g0, . . . , gn+1 be the key
forms of δ in (x, y)-coordinates. Then

1The analogous question regarding Property (Proj-1) for R = C[x, y] and δ a divisorial semidegree is
completely settled in [MN13] where the results of this article are also applied to the moment problem of planar
semialgebraic sets.
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1. δ is non-negative on C[x, y] \ C iff δ(gn+1) is non-negative.

2. δ is positive on C[x, y] \ C iff one of the following holds:

(a) δ(gn+1) is positive,
(b) δ(gn+1) = 0 and gk 6∈ C[x, y] for some k, 0 ≤ k ≤ n+ 1, or
(b′) δ(gn+1) = 0 and gn+1 6∈ C[x, y].

Moreover, conditions 2b and 2b′ are equivalent.

Remark 1.5. The key forms of a semidegree δ on C[x, y] are counterparts in (x, y)-coordinates
of the key polynomials of ν := −δ introduced in [Mac36] (and computed in local coordinates
near the center of ν). The basic ingredient of the proof of Theorem 1.4 is the algebraic
contratibility criterion of [Mon13a] which uses key forms. We note that key forms were
already used in [FJ07]2 (without calling them by any special name).

Remark 1.6. The requirement in Theorem 1.4 that δ be divisorial (i.e. −δ be a divisorial
valuation) is unnecessary: the only technical issue stems from valuations with an infinite
sequence of key polynomials - but one can determine the sign of such a valuation by applying
Theorem 1.4 to a divisorial valuation which ‘approximates’ it sufficiently closely.

Remark 1.7. The key forms of a semidegree can be computed explicitly from any of the
alternative presentations of the semidegree (see e.g. [Mon13a, Algorithm 3.24] for an algorithm
to compute key forms from the generic Puiseux series (Definition 2.13) associated to the
semidegree). Therefore Theorem 1.4 gives an effective way to determine if a given semidegree
is positive or non-negative on C[x, y].

Trees of valuations centered at infinity on C[x, y] were considered in [FJ07] along with
a parametrization of the tree called skewness α. The notion of skewness has an ‘obvious’
extension3 to the case of semidegrees, and using this definition one of the assertions of [FJ07,
Theorem A.7] can be reformulated as the statement that the following identity holds for a
certain subtree of semidegrees δ on C[x, y]:

α(δ) = inf

{
δ(f)

dδ deg(f)
: f is a non-constant polynomial in C[x, y]

}
, where (3)

dδ := max{δ(x), δ(y)}. (4)

It is observed in [Jon12, Page 121] that in general the relation in (3) is satisfied with ≤, and
“it is doubtful that equality holds in general.” Example 3.1 shows that the equality indeed
does not hold in general. It is not hard to see that α(δ) can be expressed in terms of δ(gn+1)
(see (17)), and using that expression we give a characterization of the semidegrees for which
(3) holds true:

Theorem 1.8. Let δ be a semidegree on C[x, y] and g0, . . . , gn+1 be the corresponding key
forms. Then (3) holds iff one of the following assertions is true:

2Under the assumptions of Lemma A.12 of [FJ07], the polynomials Uj constructed in Section A.5.3 of [FJ07]
are precisely the key forms of −ν.

3In [FJ07] the skewness α was defined only for valuations ν centered at infinity which satisfied
min{ν(x), ν(y)} = −1. Here for a semidegree δ, we define α(δ) to be the skewness of −δ/dδ (where dδ is
as in (4)) in the sense of [FJ07].
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1. δ(gn+1) ≥ 0, or

2. δ(gn+1) < 0 and gk ∈ C[x, y] for all k, 0 ≤ k ≤ n+ 1, or

2′. δ(gn+1) < 0 and gn+1 ∈ C[x, y].

Moreover, the ‘inf’ in right hand side of (3) can be replaced by ‘min’ iff gn+1 ∈ C[x, y] iff
gk ∈ C[x, y] for all k, 0 ≤ k ≤ n+ 1; in this case the minimum is achieved with f = gn+1.

Remark 1.9. It is possible to give a geometric characterization of the semidegrees δ for
which (3) holds. Indeed, [CPR05] introduced the notion of compactifications of C2 which
admit systems of numerical curvettes. In Section 1.2 and Remark 1.13 below we construct
two compactifications X̄ and X̃ of C2 associated to δ. [Mon13b, Theorem 3.2] (which uses
the results of this article), shows that (3) holds iff X̄ (or equivalently, X̃) admits a system of
numerical curvettes.

Our final result is the following corollary of the arguments in the proof of Theorem 1.4
which answers a question of Professor Peter Russell4.

Corollary 1.10. Let δ be a semidegree on C[x, y]. Define

Sδ := {(deg(f), δ(f)) : f ∈ C[x, y] \ {0}} ⊆ Z2, (5)

and Cδ be the cone over Sδ in R2. Then

1. The following are equivalent:

(a) Cδ is a closed subset of R2.

(b) gk is a polynomial for all k, 0 ≤ k ≤ n+ 1.

(c) gn+1 is a polynomial.

2. The following are equivalent:

(a) δ determines an analytic compactification of C2.

(b) the positive x-axis is not contained in the closure C̄δ of Cδ in R2.

3. The following are equivalent:

(a) δ determines an algebraic compactification of C2.

(b) Cδ is closed in R2 and the positive x-axis is not contained in Cδ.
(c) Sδ is a finitely generated semigroup and (k, 0) 6∈ Sδ for all positive integer k.

4Prof. Russell’s question was motivated by the correspondence established in [Mon13a] between normal
algebraic compactifications of C2 with one irreducible curve at infinity and algebraic curves in C2 with one
place at infinity. Since the semigroup of poles of planar curves with one place at infinity are very special (see e.g.
[Abh78], [SS94]), he asked if similarly the semigroups of values of semidegrees which determine normal algebraic
compactifications of C2 can be similarly distinguished from the semigroup of values of general semidegrees.
While Example 3.2 shows that they can not be distinguished only by the values of the semidegree itself,
Corollary 1.10 shows that it can be done if paired with degree of polynomials.
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Remark 1.11. The phrase “δ determines an algebraic (resp. analytic) compactification of C2”
means “there exists a (necessarily unique) normal algebraic (resp. analytic) compactification
X̄ of X := C2 such that C∞ := X̄ \ X is an irreducible curve and δ is proportional to the
order of pole along C∞.” In particular, δ determines an algebraic compactification of C2 iff δ
satisfies conditions Proj-1 and Proj-2.

Remark 1.12. Sδ is isomorphic to the global Enriques semigroup (in the terminology of
[CPRL02]) of the compactification of C2 from Proposition 2.10. Also, the assertions of Corol-
lary 1.10 remain true if in (5) deg is replaced by any other semidegree which determines an
algebraic completion of C2 (e.g. a weighted degree with positive weights).

1.2 Cones of curves on compactifications of C2

Let C2 ⊆ P2 = C2 ∪ L be the usual compactification of C2 (where L is the ‘line at infinity’)
and δ be a divisorial semidegree on C[x, y] centered at infinity. Assume δ 6= deg. By local
theory, there exists a birational map π : X̄ → P2, X̄ normal Q-factorial, such that the center
of δ on X̄ is the whole reduced (irreducible) exceptional curve C2 (Proposition 2.10). Let C1

be the strict transform of L on X̄. For a curve D ⊆ C2 defined by a polynomial f ∈ C[x, y],
its closure D̄ in X̄ is linearly equivalent to deg(f)C1 + δ(f)C2 as Weil divisors on X̄. It
follows that the group N1(X̄) of Weil divisors on X̄ modulo numerical equivalence is a free
group generated by C1 and C2. Theorem 1.4 is related to the question of whether C1 and C2

generate the cone NE(X̄) of curves on X̄. More precisely, an ingredient of Theorem 1.4 is the
following result:

Theorem 1.4′. Let g0, . . . , gn+1 be the key forms of δ in (x, y)-coordinates. Then

1. δ(gn+1) equals a negative rational number times the self intersection number of C1.

2. δ(gn+1) ≥ 0 iff C1 and C2 generate NE(X̄). Let li be the half-line of all non-negative
real multiples of Ci, 1 ≤ i ≤ 2. Then,

(a) l2 determines an edge of NE(X̄).

(b) l1 determines an edge of NE(X̄) iff δ(gn+1) ≥ 0.

(c) C1 is in the interior of NE(X̄) iff δ(gn+1) < 0.

Similarly, Theorem 1.8 is related to properties of the nef cone Nef(X̄) of X̄. More precisely,
let g0, . . . , gn+1 be the key forms of δ in (x, y)-coordinates. Define Q-Cartier divisors C∗1 :=

C1 + dδC2 and C∗2 := C1 + mδδ(gn+1)
dδ

C2 on X̄, where dδ is as in (4), and

mδ := gcd (δ(g0), . . . , δ(gn)) . (6)

Let l∗i be the half-line of all non-negative real multiples of C∗i , 1 ≤ i ≤ 2.

Theorem 1.8′. δ(gn+1) ≥ 0 iff C∗1 and C∗2 generate Nef(X̄). More precisely

1. l∗1 determines an edge of Nef(X̄).

2. l∗2 determines an edge of Nef(X̄) iff δ(gn+1) ≥ 0.

3. C∗2 6∈ Nef(X̄) iff δ(gn+1) < 0.
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Remark 1.13. Consider the minimal resolution of singularities π̃ : X̃ → X̄. Let Ẽ be the
union of the exceptional curves of π̃ with the strict transform of C1. Then assertion 1 of
Theorem 1.4′ implies that

δ(gn+1) > 0 iff (C1, C1) < 0

iff the intersection matrix of Ẽ is negative definite, (7)

δ(gn+1) ≥ 0 iff (C1, C1) ≤ 0

iff the intersection matrix of Ẽ is nonpositive definite. (8)

In particular, the property that δ(gn+1) > 0 (resp. δ(gn+1) ≥ 0) is equivalent to a purely nu-
merical criterion (7) (resp. (8)) which is completely determined by the weighted configuration
of projective lines on X̃ \ C2.

Remark 1.14. Let g0, . . . , gn+1 be the key forms of δ in (x, y)-coordinates, and let X̃ be
as in Remark 1.13. Let C̃1, . . . , C̃k be the irreducible components of X̃ \ C2 and for each j,
0 ≤ j ≤ k, let δj be the semidegree on C[x, y] associated to C̃j . It is not hard to see that the
last key form of δj is gij for some ij , 1 ≤ ij ≤ n+1. Moreover, in the case that δ(gn+1) ≥ 0, it

turns out that δj(gij ) ≥ 0 for each j, 1 ≤ j ≤ k. Theorem 1.4 then implies that NE(X̃) is (the

simplicial cone) generated by C̃1, . . . , C̃k. Combining this with Remark 1.13 it follows that if
δ(gn+1) ≥ 0 then the cones NE(X̃) and Nef(X̃) are (simplicial and) completely determined
by the weighted configuration of projective lines on X̃ \C2. However, if δ(gn+1) < 0, Example
3.3 below shows that in general the weighted configuration of projective lines on X̃ \C2 does
not determine NE(X̃) or Nef(X̃).
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2 Preliminaries

Notation 2.1. Throughout the rest of the article we write X := C2 with polynomial co-
ordinates (x, y) and let X̄(0) ∼= P2 be the compactification of X induced by the embedding
(x, y) 7→ [1 : x : y], so that the semidegree on C[x, y] corresponding to the line at infinity is
precisely on X̄0 is deg, where deg is the usual degree in (x, y)-coordinates.

2.1 Divisorial discrete valuations, semidegrees, key forms, and associated
compactifications

Definition 2.2 (Discrete valuations). A discrete valuation on C(x, y) is a map ν : C(x, y) \
{0} → Z such that for all f, g ∈ C(x, y) \ {0},

1. ν(f + g) ≥ min{ν(f), ν(g)},
2. ν(fg) = ν(f) + ν(g).
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A discrete valuation ν on C(x, y) is called divisorial iff there exists a normal algebraic surface
Yν equipped with a birational map σ : Yν → X̄0 and a curve Cν on Yν such that for all
non-zero f ∈ C[x, y], ν(f) is the order of vanishing of σ∗(f) along Cν . The center of ν on X̄0

is σ(Cν). ν is said to be centered at infinity (with respect to (x, y)-coordinates) iff the center
of ν on X̄0 is contained in X̄0 \X; equivalently, ν is centered at infinity iff there is a non-zero
polynomial f ∈ C[x, y] such that ν(f) < 0.

Definition 2.3 (Semidegrees). A (divisorial) semidegree on C(x, y) is a map δ : C(x, y) \
{0} → Z such that −δ is a (divisorial) discrete valuation centered at infinity.

Definition 2.4 (cf. definition of key polynomials in [FJ04, Definition 2.1], also see Remark
2.6 below). Let δ be a divisorial semidegree on C[x, y] such that δ(x) > 0. A sequence of
elements g0, g1, . . . , gn+1 ∈ C[x, x−1, y] is called the sequence of key forms for δ if the following
properties are satisfied:
P0. g0 = x, g1 = y.
P1. Let ωj := δ(gj), 0 ≤ j ≤ n+ 1. Then

ωj+1 < αjωj =

j−1∑
i=0

βj,iωi for 1 ≤ j ≤ n,

where
(a) αj = min{α ∈ Z>0 : αωj ∈ Zω0 + · · ·+ Zωj−1} for 1 ≤ j ≤ n,
(b) βj,i’s are integers such that 0 ≤ βj,i < αi for 1 ≤ i < j ≤ n (in particular, βj,0’s

are allowed to be negative).
P2. For 1 ≤ j ≤ n, there exists θj ∈ C∗ such that

gj+1 = g
αj
j − θjg

βj,0
0 · · · gβj,j−1

j−1 .

P3. Let y1, . . . , yn+1 be indeterminates and ω be the weighted degree onB := C[x, x−1, y1, . . . , yn+1]
corresponding to weights ω0 for x and ωj for yj , 0 ≤ j ≤ n + 1 (i.e. the value of ω on
a polynomial is the maximum ‘weight’ of its monomials). Then for every polynomial
g ∈ C[x, x−1, y],

δ(g) = min{ω(G) : G(x, y1, . . . , yn+1) ∈ B, G(x, g1, . . . , gn+1) = g}. (9)

Theorem 2.5 ([Mon13a, Theorem 3.18], cf. [FJ04, Theorem 2.29]). There is a unique and
finite sequence of key forms for δ.

Remark 2.6. Let δ be as in Definition 2.4. Set u := 1/x and v := y/xk for some k such that
δ(y) < kδ(x), and let g̃0 = u, g̃1 = v, g̃2, . . . , g̃n+1 ∈ C[u, v] be the key polynomials of ν := −δ
in (u, v)-coordinates. Then the key forms of δ can be computed from g̃j ’s as follows:

gj(x, y) :=

{
x for j = 0,

xk degv(g̃j)g̃j(1/x, y/x
k) for 1 ≤ j ≤ n+ 1.

(10)

Theorem 2.5 is an immediate consequence of the existence of key polynomials (see e.g. [FJ04,
Theorem 2.29]).

Example 2.7. Let (p, q) are integers such that p > 0 and δ be the weighted degree on C(x, y)
corresponding to weights p for x and q for y. Then the key forms of δ are x, y.
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Example 2.8. Let ε := q/2p for positive integers p, q such that q < 2p and δε be the
semidegree on C(x, y) defined as follows:

δε(f(x, y)) := 2p degx

(
f(x, y)|y=x5/2+x−1+ξx−5/2−ε

)
for all f ∈ C(x, y) \ {0}, (11)

where ξ is a new indeterminate and degx is the degree in x. Note that δε = −2pνε, where
νε is from Example 1.2 (we multiplied by 2p to simply make the semidegree integer valued).
Then the sequence of key forms of δε is x, y, y2 − x5, y2 − x5 − 2x−1y.

The following property of key forms can be proved in a straightforward way from their
defining properties.

Proposition 2.9. Let δ and g0, . . . , gn+1 be as in Definition 2.4, and dδ and mδ be as in
respectively (4) and (6). Then

mδδ(gn+1) ≤ d2
δ . (12)

Moreover, (12) is satisfied with an equality iff δ = deg.

Let X̄0 := P2 be the usual compactification of C2 given by (x, y) ↪→ [1 : x : y]. If δ is a
divisorial valuation δ on C[x, y], then by definition there is a compactification X̄1 of C2 such
that δ is the order of pole along an irreducible curve C ⊆ X̄1 \ C2. W.l.o.g. we may assume
that X̄1 is non-singular and there is a morphism π : X̄1 → X̄0 which is identity on C2. In
particular, C is an exceptional curve of π (i.e. π(C) is a point). Let X̄ be the surface obtained
from X̄1 by contracting all exceptional curves of π other than C (which is possible due to a
criterion of Grauert [Băd01, Theorem 14.20]). Then X̄ \ C2 is the union of two irreducible
curves, and the following result, which follows from results of [Mon11], describes the matrix
of intersection numbers of these curves in terms of the key forms of δ.

Proposition 2.10 ([Mon11, Propositions 4.2 and 4.7]). Given a divisorial semidegree δ on
C[x, y] such that δ 6= deg and δ(x) > 0, there exists a unique compactification X̄ of C2 such
that

1. X̄ is projective and normal.

2. X̄∞ := X̄ \X has two irreducible components C1, C2.

3. The semidegree on C[x, y] corresponding to C1 and C2 are respectively deg and δ.

Moreover, all singularities X̄ are rational (which implies in particular that all Weil divisors
are Q-Cartier). Let g0, . . . , gn+1 be the key forms of δ. Then the inverse of the matrix of
intersection numbers (Ci, Cj) of Ci and Cj, 1 ≤ i, j ≤ 2, is

M =

(
1 dδ
dδ mδδ(gn+1)

)
, (13)

where dδ and mδ are as in respectively (4) and (6).

We will use the following result which is an immediate corollary of [Mon13a, Proposition
4.2].

8



Proposition 2.11. Let δ, X̄ and C1, C2 be as in Proposition 2.10. Let g0, . . . , gn+1 be the
key forms of δ. Then the following are equivalent:

1. there is a (compact algebraic) curve C on X̄ such that C ∩ C1 = ∅.

2. gk is a polynomial for all k, 0 ≤ k ≤ n+ 1.

3. gn+1 is a polynomial.

The following is the main result of [Mon13a]:

Theorem 2.12. Let δ be a divisorial semidegree on C[x, y] such that δ(x) > 0 and g0, . . . , gn+1

be the key forms of δ. Then δ determines a normal algebraic compactification of C2 (in the
sense of Remark 1.11) iff δ(gn+1) > 0 and gn+1 is a polynomial.

2.2 Degree-wise Puiseux series

Note. The proofs of Theorems 1.4, 1.4′ and 1.8′ do not use the material of this subsection.
Proposition 2.20 and Corollary 2.22 are used in the proof of δ(gn+1) < 0 case of Theorem 1.8.

Definition 2.13 (Degree-wise Puiseux series). The field of degree-wise Puiseux series in x is

C〈〈x〉〉 :=

∞⋃
p=1

C((x−1/p)) =

∑
j≤k

ajx
j/p : k, p ∈ Z, p ≥ 1

 ,

where for each integer p ≥ 1, C((x−1/p)) denotes the field of Laurent series in x−1/p. Let
φ =

∑
q≤q0 aqx

q/p be a degree-wise Puiseux series where p is the polydromy order of φ, i.e.

p is the smallest positive integer such that φ ∈ C((x−1/p)). Then the conjugates of φ are
φj :=

∑
q≤q0 aqζ

qxq/p, 1 ≤ j ≤ p, where ζ is a primitive p-th root of unity. The usual
factorization of polynomials in terms of Puiseux series implies the following

Theorem 2.14. Let f ∈ C[x, y]. Then there are unique (up to conjugacy) degree-wise Puiseux
series φ1, . . . , φk, a unique non-negative integer m and c ∈ C∗ such that

f = cxm
k∏
i=1

∏
φij is a con-
jugate of φi

(y − φij(x))

The relation between degree-wise Puiseux series and semidegrees is given by the follow-
ing proposition, which is a reformulation of the corresponding result for Puiseux series and
valuations [FJ04, Proposition 4.1].

Proposition 2.15 ([Mon11, Theorem 1.2]). Let δ be a divisorial semidegree on C(x, y) such
that δ(x) > 0. Then there exists a degree-wise Puiseux polynomial (i.e. a degree-wise Puiseux
series with finitely many terms) φδ ∈ C〈〈x〉〉 and a rational number rδ < ordx(φδ) such that
for every polynomial f ∈ C[x, y],

δ(f) = δ(x) degx
(
f(x, y)|y=φδ(x)+ξxrδ

)
, (14)

where ξ is an indeterminate.
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Definition 2.16. If φδ and rδ are as in Proposition 2.15, we say that φ̃δ(x, ξ) := φδ(x)+ ξxrδ

is the generic degree-wise Puiseux series associated to δ.

Example 2.17. Let (p, q) are integers such that p > 0 and δ be the weighted degree on
C(x, y) corresponding to weights p for x and q for y. Then φ̃δ = ξxq/p (i.e. φδ = 0).

Example 2.18. Let δε be the semidegree from Example 2.8. Then φ̃δ = x5/2 +x−1 + ξx−5/2.

The following result, which is an immediate consequence of [Mon11, Proposition 4.2, As-
sertion 2], connects degree-wise Puiseux series of a semidegree with the geometry of associated
compactifications.

Proposition 2.19. Let δ, X̄, C1, C2 be as in Proposition 2.10 and let φ̃δ(x, ξ) := φδ(x)+ξxrδ

be the generic degree-wise Puiseux series associated to δ. Assume in addition that δ is not a
weighted degree, i.e. φδ(x) 6= 0. Pick f ∈ C[x, y] \ {0} and let Cf be the curve on X̄ which
is the closure of the curve defined by f on C2. Then Cf ∩ C1 = ∅ iff the degree-wise Puiseux
factorization of f is of the form

f =
k∏
i=1

∏
φij is a con-
jugate of φi

(y − φij(x)) , where each φi satisfies

φi(x)− φδ(x) = cix
rδ + l.o.t.

(15)

for some ci ∈ C (where l.o.t. denotes lower order terms in x).

The following result gives some relations between degree-wise Puiseux series and key forms
of semidegrees, and follows from standard properties of key polynomials (in particular, the
first 3 assertions follow from [Mon13a, Proposition 3.28] and the last assertion follows from
the first; a special case of the last assertion (namely the case that δ(y) ≤ δ(x)) was proved in
[Mon11, Identity (4.6)]).

Proposition 2.20. Let δ be a divisorial semidegree on C(x, y) such that δ(x) > 0. Let
φ̃δ(x, ξ) := φδ(x)+ξxrδ be the generic degree-wise Puiseux series associated to δ and g0, . . . , gn+1

be the key forms of δ. Then

1. There is a degree-wise Puiseux series φ with

φ(x)− φδ(x) = cxrδ + l.o.t.

for some c ∈ C (where l.o.t. denotes lower order terms in x) such that the degree-wise
Puiseux factorization of gn+1 is of the form

gn+1 =
∏

φ∗ is a con-
jugate of φ

(y − φ∗(x)) . (16)

2. Let the Puiseux pairs [Mon13a, Definition 3.11] of φδ be (q1, p1), . . . , (ql, pl) (if φδ ∈
C((1/x)), then simply set l = 0). Set p0 := 1. Then

deg(gn+1) =

{
1 if φδ = 0,

max{1, degx(φδ)}p0p1 · · · pl otherwise.

10



3. Write rδ as rδ = ql+1/(p0 · · · plpl+1), where pl+1 is the smallest integer ≥ 1 such that
p0 · · · plpl+1rδ is an integer. Let dδ and mδ be as in respectively (4) and (6). Then

mδ = pl+1,

dδ =

{
max{p1, q1} if φδ = 0,

max{1, degx(φδ)}p0p1 · · · pl+1 otherwise.

4. Let the skewness α(δ) of δ be defined as in footnote 3. Then

α(δ) = mδδ(gn+1)/d2
δ =

{
min{p1,q1}
max{p1,q1} = min{δ(x), δ(y)}/dδ if φδ = 0,
δ(gn+1)

dδ deg(gn+1) otherwise.
(17)

The following lemma is a consequence of Assertion 1 of Proposition 2.20 and the definition
of generic degree-wise Puiseux series of a semidegree. It follows via a straightforward, but
cumbersome induction on the number of Puiseux pairs of the degree-wise Puiseux roots of f ,
and we omit the proof.

Lemma 2.21. Let δ be a divisorial semidegree on C(x, y) such that δ(x) > 0. Let φ̃δ(x, ξ) :=
φδ(x) + ξxrδ be the generic degree-wise Puiseux series associated to δ and g0, . . . , gn+1 be the
key forms of δ. Then for all f ∈ C[x, y] \ C,

δ(f)

deg(f)
≥ δ(gn+1)

deg(gn+1)
. (18)

Now assume in addition that δ is not a weighted degree, i.e. φδ(x) 6= 0. Then (18) holds with
equality iff f has a degree-wise Puiseux factorization as in (15).

Combining Propositions 2.11 and 2.19 and Lemma 2.21 yields the following

Corollary 2.22. Consider the set-up of Proposition 2.11. assume in addition that δ is not a
weighted degree. Then the Assertions 1 to 3 of Proposition 2.11 are equivalent to the following
statement

4. There exists f ∈ C[x, y] \ C which satisfies (18) with equality.

3 Proofs

Proof of Theorem 1.4′. Let X̄ be the projective compactification of X := C2 from Section
1.2. In the notations of Proposition 2.10, the matrix of intersection numbers (Ci, Cj) of Ci
and Cj , 1 ≤ i, j ≤ 2, is:

I =
1

d2
δ −mδδ(gn+1)

(
−mδδ (gn+1) dδ

dδ −1

)
(19)

In particular, (C1, C1) = − mδ
d2δ−mδδ(gn+1)

δ(gn+1). Since δ 6= deg (by the assumptions of Theo-

rem 1.4′), assertion 1 of Theorem 1.4′ follows from Proposition 2.9. It follows similarly that
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(C2, C2) < 0, so that [Kol96, Lemma II.4.12]5 implies that l2 determines an edge of NE(X̄),
which implies assertion 2a. Now observe that

δ(gn+1) ≥ 0⇒ (C1, C1) ≤ 0 (assertion 1)

⇒ l1 determines an edge of NE(X̄) [Kol96, Lemma II.4.12]. (20)

On the other hand, δ(gn+1) < 0⇒ (C1, C1) > 0 (assertion 1), which implies that there exists
β ∈ Q such that with respect to the basis (C1, C2 + βC1) of N1(X̄), the intersection form is
of the form x2

1− x2
2. [Kol96, Lemma II.4.12] then implies that C1 is in the interior of NE(X̄).

The preceding sentence together with (20) implies assertions 2b and 2c. The first statement
of assertion 2 follows from assertions 2a, 2b and 2c.

Proof of Theorem 1.4. W.l.o.g. we may (and will) assume that δ 6= deg and use the notations
of Theorem 1.4′. Pick f ∈ C[x, y]\{0} and let D̄f be the closure in X̄ of the curve Df defined
by f in C2, so that D̄f ∼ deg(f)C1 + δ(f)C2. Consequently, δ(f) ≥ 0 for all f ∈ C[x, y] \ {0}
iff NE(X̄) is generated by C1 and C2. Assertion 1 then follows from assertion 2 of Theorem
1.4′.

We now prove assertion 2. Proposition 2.11 implies that assertions 2b and 2b′ are equiv-
alent. Therefore, by assertion 1, it suffices to show that either 2a or 2b′ implies that δ is
positive on C[x, y] \ C. Now if 2a holds, then (C1, C1) < 0 (Theorem 1.4′). A criterion of
Grauert (adapted to the case of normal surfaces in [Sak84, Theorem 1.2]) then implies that C1

is contractible, i.e. there is a map π : X̄ → X̄ ′ of normal analytic surfaces such that π(C1) is a
point and π|X̄\C1

is an isomorphism. In particular δ is the pole along the irreducible curve at

infinity on the compactification X̄ ′ of X := C2, and consequently δ is positive on C[x, y] \C,
as required. Now assume 2b′ holds. Then Theorem 1.4′ implies that (C1, C1) = 0. Assume
(to the contrary of our goal) that there exists f ∈ C[x, y] \ C such that δ(f) = 0. Then we
have (D̄f , C1) = (deg(f)C1, C1) = 0, so that D̄f ∩C1 = ∅. Proposition 2.11 then implies that
gn+1 is a polynomial, which contradicts 2b′. It follows that δ is positive on C[x, y] \C, which
completes the proof of assertion 2.

Proof of Theorem 1.8′. A straightforward computation using the entries of the intersection
matrix I from (19) shows that

(C∗i , Cj) = δij (21)

where δij is the Kronecker delta. Since (C∗1 +εC2, C2) < 0 for all ε > 0, and since l2 is an edge
of NE(X̄), identity (21) immediately implies assertion 1. To complete the proof of Theorem
1.8′, it suffices to prove the (⇐) direction of assertions 2 and 3. Now if δ(gn+1) ≥ 0, then
NE(X̄) is generated by C1 and C2 (assertion 2 of Theorem 1.4′), so that (21) implies that l∗2
is also an edge of Nef(X̄). This implies the (⇐) direction of assertion 2. On the other hand,
if δ(gn+1) < 0, then C1 is in the interior of NE(X̄) (assertion 2c of Theorem 1.4′). Since
(C∗2 , C1) = 0, it follows that C∗2 6∈ Nef(X̄), which implies the (⇐) direction of assertion 3, as
required to complete the proof of Theorem 1.8′.

5Even though [Kol96, Lemma II.4.12] is proved for only non-singular surfaces, its proof goes through for
arbitrary normal surfaces using the intersection theory due to [Mum61].
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Proof of Theorem 1.8. W.l.o.g. we may (and will) assume that δ 6= deg and use the notations
of Theorems 1.4′ and 1.8′. Let φδ be as in Proposition 2.20. At first consider the case that
φδ = 0. Then n = 0 and the key forms of δ are g0 = x and g1 = y (Example 2.7). On the
other hand, (17) implies that (3) holds, so that Theorem 1.8 is true in this case. Therefore
we may (and will) assume that φδ 6= 0, and divide the proof into separate cases depending on
δ(gn+1).

Case 1: δ(gn+1) ≥ 0. In this case C∗2 is on an edge of Nef(X̄) (assertion 2 of Theorem 1.8′).
Since any nef divisor is a limit of ample divisors and large multiples of ample divisors have
global sections, it follows that there exists f1, f2, . . . ∈ C[x, y] such that D̄fk ∼ rk(C1 + skC2)

for some rk, sk ∈ Q>0 such that limk→∞ sk = mδδ(gn+1)
dδ

(where D̄fk ’s are defined as in the
proof of Theorem 1.4). Identity (17) then implies that (3) holds with equality in this case.

Case 2: δ(gn+1) < 0. In this case C1 is in the interior of NE(X̄) (Theorem 1.4′, assertion
2c). [Kol96, Lemma II.4.12] (adapted to the case of normal surfaces as in footnote 5) implies
that NE(X̄) has an edge of the form {r(C1 − aC2) : r ≥ 0} for some a ∈ Q>0, and moreover,
there exists r > 0 such that rC1 − arC2 ∼ D̄g for some g ∈ C[x, y]. Then deg(g) = r and
δ(g) = −ar. Pick f ∈ C[x, y]\C. Since the ‘other edge’ of NE(X̄) is spanned by C2 (Theorem
1.4′, assertion 2a), it follows that D̄f ∼ sC2 + t(C1 − aC2) for some s ∈ Q≥0 and t ∈ Q>0,
and therefore,

δ(f)

deg(f)
=
s− ta
t
≥ −a =

δ(g)

deg(g)
.

It follows that

inf

{
δ(f)

dδ deg(f)
: f ∈ C[x, y] \ C

}
=

δ(g)

dδ deg(g)
. (22)

On the other hand, (17) implies that

α(δ) =
δ(gn+1)

dδ deg(gn+1)
.

Lemma 2.21 and Corollary 2.22 then imply that (3) holds with equality iff gn+1 is a polynomial.

The assertions of Theorem 1.8 now follow from the conclusions of the above 2 cases.

Proof of Corollary 1.10. We continue to assume that δ 6= deg and use the notations of the
proof of Theorem 1.8. Identify Nef(X̄) with its image in R2 via the map a1C1 + a2C2 7→
(a1, a2). Note that

(A) The ‘upper edge’ of Nef(X̄) is l∗1 = {r(1, dδ) : r ∈ R≥0} (Theorem 1.8′) and l∗1 ⊆ Cδ
(since (1, dδ) = (deg(f), δ(f)), where f is a generic linear polynomial in (x, y)).

(B) Cδ contains the ‘lower edge’ of Nef(X̄) iff gn+1 is a polynomial iff gk is a polynomial for
all k, 0 ≤ k ≤ n + 1 (follows from combining Theorem 1.8, Lemma 2.21 and Corollary
2.22).
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Since Nef(X̄) is a closed cone and since Cδ contains the ample cone of X̄, the above observa-
tions imply assertion 1. For assertion 2 note that δ determines an analytic compactification
of C2

iff C1 is contractible

iff (C1, C1) < 0 (by Grauert’s criterion [Sak84, Theorem 1.2])

iff δ(gn+1) > 0 (Theorem 1.4′, assertion 1).

Since the arguments of the proof of Theorem 1.8 show that δ(gn+1) ≤ 0 iff the closure of
Cδ contains the positive x-axis, this completes the proof of assertion 2. The equivalence of
assertions 3a and 3b follows from assertion 1 and Theorem 2.12. Since 3c clearly implies 3b,
it remains to show that 3b ⇒ Sδ is finitely generated. Since Cδ is a rational cone, 3b implies
that S̄δ := Cδ ∩ Z2 is finitely generated. Since S̄δ is integral over Sδ (i.e. for every s ∈ S̄δ,
there is a positive integer m such that ms ∈ Sδ), it follows that Sδ is also finitely generated,
as required to complete the proof of the corollary.

Example 3.1 (An example where (3) does not hold). Let δ be the semidegree on C(x, y)
defined as follows:

δ(f(x, y)) := degx
(
f(x, y)|y=x−1+ξx−2

)
for all f ∈ C(x, y) \ {0},

where ξ is an indeterminate. Then the key forms of δ are x, y, y − x−1. Moreover,

dδ = max{δ(x), δ(y)} = max{1,−1} = 1,

mδ = gcd(δ(x), δ(y), δ(y − x−1)) = gcd(1,−1,−2) = 1,

and therefore (17) implies that

α(δ) = δ(y − x−1)/ deg(y − x−1) = −2. (23)

Now consider the surface X̄ from Proposition 2.10. Then the matrix M (from Proposition
2.10) and the intersection matrix I of C1 and C2 are:

M =

(
1 1
1 −2

)
, I =M−1 =

1

3

(
2 1
1 −1

)
. (24)

In the notation of the proof of Theorem 1.4, D̄y ∼ deg(y)C1 + δ(y)C2 = C1 − C2. It follows
from (24) that (C,C) = −1/3 < 0, so that [Kol96, Lemma II.4.12] implies that C spans an
edge of the cone of curves on X̄, i.e. the polynomial g from Case 2 of the proof of Theorem
1.8 is y. It then follows from identities (22) and (23) that

inf

{
δ(f)

dδ deg(f)
: f ∈ C[x, y] \ C

}
=

δ(y)

dδ deg(y)
= −1 > α(δ).

Example 3.2 (The semigroup of values does not distinguish semidegrees that determine
algebraic compactifications of C2). Let δ be the semidegree on C(x, y) defined as follows:

δ(f(x, y)) := 2 degx

(
f(x, y)|y=x5/2+x−1+ξx−3/2

)
for all f ∈ C(x, y) \ {0},
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where ξ is an indeterminate. Then the key forms of δ are x, y, y2 − x5, y2 − x5 − 2x−1y, with
corresponding δ-values 2, 5, 3, 1 respectively. Since the δ-value of the last key polynomial is
positive, it follows from the arguments of the proof of Corollary 1.10 that δ determines an
analytic compactification of C2. But the last key form of δ is not a polynomial, so that the
compactification determined by δ is non-algebraic (Theorem 2.12). On the other hand, it
follows from our computation of the values of δ and Corollary 2.22 that the semigroup of
values of δ on polynomials is

Nδ := {δ(f) : f ∈ C[x, y]} = {2, 3, 4, · · · }.

Now let δ′ be the weighted degree on (x, y)-coordinates corresponding to weights 2 for x and 3
for y. Then δ′ determines an algebraic compactification of C2, namely the weighted projective
surface P2(1, 2, 3). But Nδ = Nδ′ .

Example 3.3 (NE(X̃) or Nef(X̃) is not determined by purely numerical conditions if δ(gn+1) < 0).
Let δ′ be the semidegree on C(x, y) defined as follows:

δ′(f(x, y)) := degx
(
f(x, y)|y=ξx−2

)
for all f ∈ C(x, y) \ {0},

where ξ is an indeterminate; in other words, δ′ is the weighted degree on C[x, y] corresponding
to weights 1 for x and −2 for y. Then the key forms of δ′ are x, y. Moreover,

dδ′ = max{δ′(x), δ′(y)} = max{1,−1} = 1,

mδ′ = gcd(δ′(x), δ′(y)) = gcd(1,−2) = 1.

Let X̄ ′ be the surface associated to δ′ via the construction in Proposition 2.10. Then the
matrix I ′ of curves C ′1 and C ′2 at infinity on X̄ ′ is identical to I from (24), and it is
straightforward to see that the weighted dual graphs of the curves at infinity (with respect to
C2 = Spec(C[x, y])) on the minimal resolutions X̃ and X̃ ′ of respectively X̄ and X̄ ′ are also
identical - see Figure 1 (here E0 (resp. E3) corresponds to the strict transforms of C1 (resp.
C2) in the case of X̃, and strict transforms of C ′1 (resp. C ′2) in the case of X̃ ′).

0

E0

−2

E1

−2

E2

−1

E3

Figure 1: Dual graph of curves at infinity on X̃ and X̃ ′

On the other hand, if D̄′y is the closure of the x-axis in X̄ ′, then D̄′y ∼ deg(y)C ′1+δ′(y)C ′2 =
C ′1−2C ′2. Since D̄y = C1−C2 determines an edge of NE(X̄), it follows that NE(X̄) 6∼= NE(X̄ ′)
(via the natural isomorphism N1(X̄) ∼= N1(X̄ ′) given by the mapping C1 7→ C ′1, C2 7→ C ′2).
Consequently, it follows that the cones of curves and nef cones of X̃ and X̃ ′ are also not
isomorphic.
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(4), 40(2):309–349, 2007. 1, 3

[Jon12] Mattias Jonsson. Dynamics on Berkovich spaces in low dimensions. http://

arxiv.org/abs/1201.1944, 2012. 3

[Kol96] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in
Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of
Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996. 12, 13, 14

[Mac36] Saunders MacLane. A construction for absolute values in polynomial rings. Trans.
Amer. Math. Soc., 40(3):363–395, 1936. 1, 3

[MN13] Pinaki Mondal and Tim Netzer. How fast do polynomials grow on semialgebraic
sets? http://arxiv.org/abs/1305.1215, 2013. 2

[Mon10a] Pinaki Mondal. Projective completions of affine varieties via degree-like functions.
http://arxiv.org/abs/1012.0835, 2010. 2

[Mon10b] Pinaki Mondal. Towards a Bezout-type theory of affine varieties. http://hdl.

handle.net/1807/24371, March 2010. PhD Thesis. 2

[Mon11] Pinaki Mondal. Analytic compactifications of C2 part I - curvettes at infinity.
http://arxiv.org/abs/1110.6905, 2011. 8, 9, 10

[Mon13a] Pinaki Mondal. An effective criterion for algebraic contractibility of rational
curves. http://arxiv.org/abs/1301.0126, 2013. 3, 4, 7, 8, 9, 10

[Mon13b] Pinaki Mondal. Mori dream surfaces associated with curves with one place at
infinity. http://arxiv.org/abs/1312.2168, 2013. Preprint. 4

[Mum61] David Mumford. The topology of normal singularities of an algebraic surface and
a criterion for simplicity. Inst. Hautes Études Sci. Publ. Math., (9):5–22, 1961. 12

[Sak84] Fumio Sakai. Weil divisors on normal surfaces. Duke Math. J., 51(4):877–887,
1984. 12, 14

16

http://arxiv.org/abs/1201.1944
http://arxiv.org/abs/1201.1944
http://arxiv.org/abs/1305.1215
http://arxiv.org/abs/1012.0835
http://hdl.handle.net/1807/24371
http://hdl.handle.net/1807/24371
http://arxiv.org/abs/1110.6905
http://arxiv.org/abs/1301.0126
http://arxiv.org/abs/1312.2168


[SS94] Avinash Sathaye and Jon Stenerson. Plane polynomial curves. In Algebraic ge-
ometry and its applications (West Lafayette, IN, 1990), pages 121–142. Springer,
New York, 1994. 4

17


	Introduction
	Motivation and statements of main results
	Cones of curves on compactifications of C2
	Acknowledgements

	Preliminaries
	Divisorial discrete valuations, semidegrees, key forms, and associated compactifications
	Degree-wise Puiseux series

	Proofs

