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ABSTRACT. In this paper, on a non-standard extension (∗X ,∗d) of a metric space (X ,d), we construct
a chain of new non-standard topologies in terms of convex subrings of ∗R, its minimal element is the S-
topology and its maximal is the Q-topology. Next, we construct X̂ , the F -asymptotic hull of X , and we
prove that such space is metrizable and complete when F is generated by an asymptotic scale. Finally,
we provide a pseudo-valuation taking integral values, equivalent to the classical Robinson’s valuation,
on ρR, the Robinson’s field of ρ-asymptotic numbers.

1. INTRODUCTION

There are various complications about topologies of a non-standard extension ∗X of a topological
space X with a topology τ: the space ∗X does not have a canonical topology, and there are two im-
portant topologies on it introduced by Robinson[22]. The first, called the Q-topology and the second
important topology, called the S-topology. The Q-topology is finer than the S-topology. We recall the
main properties of these well-known topologies. The space ∗X is not Hausdorff with respect to the
S-topology. The restriction of the S-topology to X coincides with τ . The space ∗X is Hausdorff with
respect to the Q-topology, and the restriction of the Q-topology to X normally does not coincide with
τ . The shadow map from near-standard point of ∗X is defined using the S-topology, and hence is not
quite compatible with the Q-topology, see [9].

In this paper, on a non-standard extension ∗X of a metric space X , we construct a family of new
non-standard topologies, each topology depends on F a convex subring of ∗R and called the QS-
topology generated by F . The S-topology and the Q-topology can be recovered by a suitable choice
of convex subrings of ∗R. In fact, if the convex subring F is the ring of finite numbers of ∗R, then the
QS-topology induced by F is the S-topology, and if F is the field ∗R, then the induced QS-topology
is the Q-topology. Furthermore the set of all QS-topologies on ∗X is a totally ordered set having a
minimal element given by the S-topology and a maximal element given by the Q-topology.

These topologies have some common properties of the S-topology and the Q-topology on ∗X . For
instance, the space ∗X is not Hausdorff with respect to all QS-topologies except for the Q-topology
and the restriction of a QS-topology to X normally does not coincide with (X ,d). In fact, if F is
Archimedean, that is, F = bR, then the restriction of the QS-topology to X coincides with its metric
topology, and if F is non-Archimedean, then the restriction of the QS-topology to X induces the dis-
crete topology.
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Let (X ,d) be a metric space and F be a proper convex subring of ∗R, we then construct a monad
system, called the F -monad system, using the following equivalent relation: for p,q ∈ ∗X

p u q if ∗d(p,q) ∈ iF+,

where iF+ = {|x| : x ∈ iF}, and iF is the unique maximal ideal of F . We remark that the standard
or the classical monad system is obtained for F = bR.

Many topological properties related to the QS-topology (QS-open, QS-closed, QS-continuous,..)
can be expressed in terms of the F -monad system. Although there are several basic differences
between the standard monad system and the F -monad system where F is a non-Archimedean and a
proper subring of ∗R, that is, bR$ F $ ∗R:

• Contrary to the classical monad system, where the continuity of a standard mapping f is
equivalent to the S-continuity of ∗ f on X , that is, ∗ f sends monads of standard points to mon-
ads, we show that if ∗ f is QS-continuous on X , then f is continuous on X , but the converse is
false. We prove that if f is a locally Lipschitz continuous mapping, then ∗ f is QS-continuous.

• It is well known that the classical monad system is independent of the metric on X and de-
pends only on the topology of X , whereas the F -monad system depends on the metric. We
give two equivalent metrics having two different F -monads. But, we show if two distances
are Lipschitz equivalent then they provide the same F -monad system.

Next, we construct (X̂ , d̂), the F -asymptotic hull of (X ,d), as a generalized metric space, that is,
d̂ verifies the familiar axioms for metrics but taking its values in F̂ . In particular when F = bR, d̂ is
a metric and the F - asymptotic hull of (X ,d) is the usual non-standard hull of (X ,d). However, for
any proper and non-Archimedean subring of ∗R, we show that (X̂ , d̂) is a Hausdorff topological space
inducing the discrete topology on X and X̂ is metrizable if the ring F is generated by an asymptotic
scale. For these type of rings we endow X̂ , the F -asymptotic hull of X , with an explicit ultrametric δ

and we prove that (X̂ ,δ ) is complete.

Finally, we should note that ρR, the field of Robinson’s real ρ-asymptotic numbers, is exactly the
F -asymptotic hull of (R, |.|) where F is the ring of ρ-moderate non-standard numbers, see example
2.8. In addition, we prove that, on ρR, the corresponding ultrametric δ is induced by a pseudo-
valuation taking integral values, equivalent to the Robinson’s valuation, see Theorem 4.10.

2. BASIC NOTIONS

This section of preliminary notions provides a background necessary for the comprehension of the
paper.

2.1. Pseudo-valuations. Let R be a commutative ring with unit.

Definition 2.1. By a pseudo-valuation on R, we shall mean a function p : R→ R∪{+∞} satisfying :
(1) p(1) = 0, p(0) = +∞,
(2) p(xy)≥ p(x)+ p(y) (x,y ∈ R),
(3) p(x− y)≥min(p(x), p(y)) (x,y ∈ R).

By a valuation we shall mean a pseudo-valuation satisfying the stronger condition:

p(xy) = p(x)+ p(y). (2.1)
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Note, that if p is any pseudo-valuation on a field, the ideal p−1(+∞) is necessarily zero.

If p is a pseudo-valuation on a ring R, and α a real number, 0 < α < 1, then the function

m(x) = α
p(x)

is an ultrametric multiplicative pseudo-valuation on R [20], that is, a nonnegative real-valued function
satisfying:

(1’) m(1) = 1, m(0) = 0,
(2’) m(xy)≤ m(x)m(y),
(3’) m(x− y)≤max(m(x),m(y)).

On a field K, a pseudo-valuation generalizes a valuation, and, like a valuation, it defines a topol-
ogy on K which is compatible with the field structure of K. Two pseudo-valuations m1,m2 are called
equivalent if they define the same topology on K. This notion is analogous to the equivalence of val-
uations.

Cohn[3] proved the following theorem giving a necessary and sufficient conditions for the topology
on a field to be definable by a pseudo-valuation.

Theorem 2.2 ([3], Theorem 7.1). If K is a topological field, then the topology of K can be defined by
a (non-Archimedean) pseudo-valuation if and only if K has a non-empty open bounded subset which
is closed under addition and contains only nilpotent elements.

Recall that an element x of a topological field is said to be nilpotent if xn→ 0.

If m is an ultrametric multiplicative pseudo-valuation on K, then the set {x∈K : m(x)< 1} is open,
closed under addition and contains only nilpotent elements.

2.2. Convex subrings of ∗R. Let ∗R be a non-standard extension of the field of real numbers R and
iR, bR and ∞R stand for the sets of infinitesimals, bounded (or finite) numbers and infinitely large
numbers in ∗R, respectively. For a comprehensive introduction to nonstandard analysis, the reader is
referred to [25], [12], [13] or [16].

Using convex subrings of ∗C, a variety of fields F̂ are constructed by Todorov[28]. These fields
are called F -asymptotic hulls and their elements F -asymptotic numbers. This construction can be
viewed as a generalization of A. Robinson’s theory of asymptotic numbers, see Lightstone-Robinson
[17].

First we recall the definition and some properties of convex subrings of ∗R.

Definition 2.3. Let F be a subring in ∗R. We say that F is a convex in ∗R if

(∀x ∈ ∗R)(∀ξ ∈F )(|x| ≤ |ξ | ⇒ x ∈F ).

It is easy to see that F contains bR, the ring of bounded elements of ∗R and F is an archimedean
ring if and only if F = bR. Clearly F is a valuation ring hence F is a local ring, its unique maximal
ideal iF is the set of all non-invertible elements of F .

Throughout this paper, we will consider only convex subrings of ∗R because there is a one-to-one
correspondence between convex subrings of ∗C and those of ∗R : let F ′ be a convex subring of ∗C,
then F = F ′ ∩ ∗R is a convex subring of ∗R. Conversely let F be a convex subring of ∗R, then
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F ′ = {a ∈ C : |a| ∈F} is a convex subring of ∗C. Hence F ′ 7→F (= F ′∩ ∗R) is one-to-one order
preserving correspondence between convex subrings of ∗C and those of ∗R.

We recall the main properties of iF in the following proposition

Proposition 2.4. Let F be a convex subring of ∗R and let iF be the set of the non-invertible elements
of F . Then

(1) iF = {x ∈ ∗R : x = 0 or 1/x 6∈F}. Consequently, ∗R is the filed of fractions for ∗R.
(2) iF consists of infinitesimals only i.e., iF ⊂ iR.
(3) iF is a convex ideal in F i.e., if x ∈F and ξ ∈ iF , (|x| ≤ |ξ | ⇒ x ∈ iF ).
(4) F is a field if and only if F = ∗R.

Using the important fact that every convex subring of ∗R contains bR, we prove the following

Proposition 2.5. Let F be a convex subring in ∗R. Then every ideal in F is convex.

Proof. Let I be an ideal in F , x ∈F and ξ ∈ I, such that |x| ≤ |ξ |. If ξ = 0, then x = 0. Now

assume that ξ 6= 0 it follows that
∣∣∣∣ x
ξ

∣∣∣∣≤ 1, which implies
x
ξ
∈F . Thus x ∈ I. �

We give some examples of convex subrings of ∗R.

2.2.1. Examples.

Example 2.6. (Finite Numbers). The ring of bounded non-standard real numbers bR is a convex
subring of ∗R. Its maximal ideal is iR, the set of infinitesimals.

Example 2.7. (Non-Standard Real Numbers). The field of the real numbers ∗R is (trivially) a convex
subring of ∗R. Its maximal ideal is {0}.

Example 2.8. (Robinson Rings). Let ρ be a positive infinitesimal in ∗R. The ring of the ρ-moderate
non-standard numbers is defined by

Mρ = {x ∈ ∗R : |x| ≤ ρ
−n for some n ∈ N}.

Mρ is a convex subring of ∗R. For its maximal ideal we have

Nρ = {x ∈ ∗R : |x| ≤ ρ
n for all n ∈ N}.

We call numbers in Nρ ρ-negligible numbers (or iota numbers). The numbers in ∗R\Mρ are called
mega numbers.

Example 2.9. (Logarithmic-Exponential Rings) Let ρ be a positive infinitesimal in ∗R and let Eρ be
the smallest convex subring of ∗R containing all iterated exponentials of ρ

−1, that is,

Eρ = {x ∈ ∗R : |x| ≤ expn(ρ
−1) for some n ∈ N},

where exp0(x) = x and expn(x) = exp(expn−1(x)) for x ∈ ∗R and n > 0. The maximal ideal of Eρ is

iEρ = {x ∈ ∗R : |x| ≤ 1
expn(ρ

−1)
for all n ∈ N}

The last two examples can be generalized by introducing the notion of asymptotic scales.

Definition 2.10. A sequence (λn)n∈N of infinitesimal positive numbers (except possibly n= 0) is called
an asymptotic scale if it satisfies the following conditions:

(1) for all n ∈ N,
λn+1

λn
∈ iR,
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(2) for every n ∈ N, there is m ∈ N such that λ
2
m ≥ λn.

The reader is referred to Astrada and Kanwal[8] for the classical definition of asymptotic sequence
of functions, and to Jones [10] and to Van den Berg [29] for the nonstandard treatment of asymptotics.
In addition, Aschenbrenner and Van den Dries[1] introduced the asymptotic concepts in the frame-
work of a real closed field.

Finally, we mention that a similar definition of asymptotic scales was introduced by Delcroix and
Scarpalézos [6] to endow the space of asymptotic algebras of generalized functions with a topology,
called the sharp topology first introduced by Scarpalézos [24] .

Let (λn) be an asymptotic scale. The sequence (λn)n∈N extends to (λn)n∈Z by putting

λ−n =
1
λn

for n ∈ N\{0}.

By countable comprehensiveness, the sequence (λn)n∈Z extends to an internal sequence (λn)n∈∗Z.
Furthermore, using Robinson’s sequential lemma, see [25] p. 196, we deduce that there exists an
infinite integer H, such that

λn+1

λn
∈ iR when n ∈ [[0..H]].

An asymptotic scale (λn) gives rise to a convex ring F of ∗R, called the convex ring generated by
(λn), defined by

F = {x ∈ ∗R : |x| ≤ 1/λn for some n ∈ N}.
Its maximal ideal is given by

iF = {x ∈ ∗R : |x| ≤ λn for all n ∈ N}.
Using spilling principles for proper convex subrings of ∗R, see Appendix A, it is easy to prove the

following characterizations

Proposition 2.11. Let F be the convex ring generated by an asymptotic scale {λn} and x ∈ ∗R, then

(1) x ∈F if and only if |x|< 1
λN

, for all N ∈ N∞,

(2) x ∈ iF if and only if |x| ≤ λN , for some N ∈ N∞.

Definition 2.12. The F -asymptotic hull is the factor ring F̂ = F/iF .

Let ŝt : F −→ F̂ stand for the corresponding quotient mapping, called the quasi-standard mapping.

Notation: If x ∈F , we shall often write x̂ instead of ŝt(x) for the quasi-standard part of x.

We can define an order relation in F̂ , inhered from the order in ∗R, by

x̂≤ ŷ if there are representatives x,y with x≤ y.

Using the convexity of F , the following proposition is straightforward

Proposition 2.13. (F̂ ,≤) is a completely ordered field.
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Proof. We have only to show antisymmetry and transitivity.
If x̂≤ ŷ and ŷ≤ x̂, then there are r,s∈ iF such that x≤ y+r and y≤ x+s. Hence |x−y| ≤max(|r|, |s|).
So, x− y ∈ iF and x̂ = ŷ.
For transitivity, if x̂≤ ŷ and ŷ≤ ẑ. Then x≤ y+ r ≤ z+ r+ s, so x̂≤ ẑ. �

We note that Todorov[28] proved a strong form of Proposition 2.13 claiming that F̂ is a real closed
field.

Remark 2.14. Let A be a lattice-ordered commutative ring and let I be an ideal in A. Convexity of
the ideal I is the necessary and sufficient condition that the canonical homomorphism of A into A/I
be a lattice homomorphism, see [11], Theorem 5.3.

3. TOPOLOGIES IN ∗X

Let F be a convex subring in ∗R. We denote by aF+ the set of F -appreciable positive elements
of F , i.e.,

aF+ = {|x| : x ∈F \ iF},
and iF+ the set of non-negative elements of iF , i.e.,

iF+ = {|x| : x ∈ iF}.
Let (∗X , ∗d) be a non-standard extension of a metric space (X ,d). A point p ∈ ∗X is called F -

bounded if there exists a standard point q ∈ X such that ∗d(p,q) ∈ F . Let F (∗X) stand for the set of
F - bounded points in ∗X , i.e.,

F (∗X) = {p ∈ ∗X : there exists q ∈ X , ∗d(p,q) ∈ F}.
Let p,q be two points in ∗X , using the convexity F , the condition that ∗d(p,q) ∈F defines an

equivalent relation on ∗X . This equivalent relation divides ∗X into a number of disjoint subsets which
will be called the F -galaxies of ∗X , the set F (∗X) constitutes its principal galaxy.

Definition 3.1. For any point p ∈ ∗X, we define the F -halo of p by

µF (p) = {q ∈ ∗X : ∗d(p,q) ∈ iF}=
⋂

r∈aF+

{q ∈ ∗X : ∗d(p,q)< r}.

We write p u q if ∗d(p,q) ∈ iF i.e., q ∈ µF (p).

Proposition 3.2.
(1) For F = bR, the F -halo of p is the standard halo of p.
(2) The F -halo of p is reduced to p if and only if F = ∗R.
(3) If (λn) is an asymptotic scale and F is the convex subring generated by (λn), then for any

point p ∈ ∗X

µF (p) =
⋂

n∈N
{q ∈ ∗X : ∗d(p,q)≤ λn}=

⋃
n∈N∞

{q ∈ ∗X : ∗d(p,q)≤ λn}.

It is not difficult to see that if p u p′ and q u q′ then ∗d(p,q) u ∗d(p′,q′). Hence, ŝt(∗d(p,q)) =
ŝt(∗d(p′,q′)) in F̂ , provided one, and hence the other of these quasi-standard parts exist i.e., provided
∗d(p,q) ∈F , that is to say, p,q belong to the same galaxy.

Let p∈ ∗X and let r be an F -appreciable positive element i.e., r ∈ aF+. An F -appreciable-radius
neighbourhood of p is the the hyper-ball
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B(p,r) = {q ∈ ∗X : ∗d(p,q)< r}.

The class of F -appreciable-radius neighbourhoods fails to be a basis for a topology on ∗X , we can
easily construct two F -appreciable-radius balls such that their intersection has a width in iF and
so does not contain any F -appreciable-radius neighbourhoods. This suggests that the overlaps be-
tween appreciable-radius neighbourhoods are ”too small”. One way to remedy this is to modify
neighbourhoods by removing members that are close to the boundary and forcing any overlaps to be
F -appreciable. To formalism this, for p ∈ ∗X and r ∈ aF+, put

QS(p,r) = {q ∈ ∗X : µF (q)⊂ B(p,r)}= {q ∈ ∗X : ŝt(∗d(p,q))< r̂}.
That is, q ∈ QS(p,r), if and only if, r− ∗d(p,q) ∈ aF+.

We call QS(p,r) the QS-ball with center p and radius r.

Theorem 3.3. The collection {QS(p,r), p ∈ ∗X ,r ∈ aF+} is a basis for a topology on ∗X called the
QS-topology generated by F .

The ”QS-” prefix is for quasi-standard since the indicated base is constructed using the quasi-
standard mapping ŝt.

The proof is similar to Robinson [22] p. 106, where the author proved that S-balls may serve as a
base for the S-topology.

Proof. We have only to show that every point in the intersection of two QS-balls is the center of an
QS-ball which is included in that intersection.

Consider the intersection of two QS-balls, QS(p,r) and QS(p′,r′), and suppose that it is not
empty. Then for any point q in the intersection we have, ∗d(p, p′) ≤ ∗d(p,q)+ ∗d(q, p′) and hence
ŝt(∗d(p, p′))≤ ŝt(∗d(p,q))+ ŝt(∗d(q, p′)) so that

ŝt(∗d(p, p′))< r̂+ r̂′.

Let s = ∗d(p,q), s′ = ∗d(p′,q). By assumption we have ŝ < r̂, ŝ′ < r̂′. Put α = min(r− s,r′− s′) so
that α ∈ aF+. One can easily verify that

QS(q,α)⊂ QS(p,r), QS(q,α)⊂ QS(p′,r′).

�

Remark 3.4. The radii of QS-balls can be chosen as positive real numbers if the ring F is Archimedean
i.e., F = bR and in iR\ iF+ if F is non-Archimedean i.e., bR( F .

We describe the QS-topology for some examples of the convex subrings of ∗R.

Example 3.5.
(1) The QS-topology generated by bR is the S-topology.
(2) The QS-topology generated ∗R is the Q-topology.
(3) Let (λn)n∈N be an asymptotic scale, (see Definition 2.2.1). Then the collection

{y ∈ ∗X : ŝt(∗d(x,y))< λ̂n},
where x ∈ ∗X and n ∈ N, is a basis for the QS-topology on ∗X generated by (λn)n∈N.
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It is clear that every open in the S-topology is open also in the QS-topology and every open in the
QS-topology is open the Q-topology. Thus, the QS-topology is finer than the S-topology and coarser
than the Q-topology.

More generally, we have

Proposition 3.6. Let F and G be two convex rings such that F ⊂G . Then the QS-topology generated
by F is coarser than the QS-topology generated by G .

Proof. Since F ⊂ G , we have iF ⊃ iG . Hence, aF+ ⊂ aG+. Consequently, every QS-ball for the
QS-topology generated by F is a QS-ball for the QS-topology generated by G . �

The latter condition on F and G in not restrictive : if F and G be two convex subrings of ∗R, then
iF and iG are ideals in the valuation ring bR. Hence either iF ⊂ iG or iG ⊂ iF . Using iiF = F and
iiG = G , we deduce that either G ⊂F or F ⊂ G .

Theorem 3.7. All QS-topologies, generated by convex rings on ∗X, are totally ordered; its minimal
element is the S-topology and its maximal element is the Q-topology.

Furthermore, we have

Proposition 3.8. The QS-topology on ∗X generated by F is Hausdorff if and only if F = ∗R.

Proof. If F = ∗R then the QS-topology is the Q-topology which is Hausdorff by transfer. Con-
versely, if F 6= ∗R, then for any x ∈ ∗X , the F -halo of x is not reduced to the point x. Hence, there is
y ∈ ∗X such that y 6= x and y u x. So, QS(x,r) = QS(y,r) for any r ∈ aF+. Thus, the QS-topology is
not Hausdorff. �

We show that the restriction of the QS-topology to X coincides with (X ,d) if the F is Archimedean
whereas the restriction of the QS-topology generated by F to X is the discrete topology if the ring F
is non-Archimedean.

Proposition 3.9. Let F be a convex subring in ∗R.
(1) If F is Archimedean, that is F = bR, then the restriction of the QS-topology to X coincide

with its topology.
(2) If F is non-Archimedean, the the restriction of the QS-topology to X is the discrete topology.

So, if the distance d is not inducing the discrete topology on X , then the S-topology is the only
QS-topology whose its restriction to X coincides with the topology of (X ,d).

Proof.
If F = bR, then the QS-topology is the S-topology and its well known that its restriction to X is

the topology of X . If F in non-Archimedean, then iF ( iR and radii of QS-balls can be chosen in
iR+ \ iF . For x ∈ X and r ∈ iR+ \ iF , we have

QS(x,r)∩X ⊂ B(x,r)∩X = {x}.
Consequently, the restriction of the QS-topology to X is the discrete topology. �

We shall indicate the notions of the QS-topology by prefixing ”QS-” to the appropriate term, e.g.,
QS-open set, QS-interior QS-closure.

Let F be a proper convex subring of ∗R.
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Theorem 3.10. Let A be any internal set in ∗X endowed with the QS-topology generated by F . Then
the following properties are equivalent:

(1) the point p belongs to the QS-interior of A,
(2) µF (p)⊂ A,
(3) d(p,Ac) 6∈ iF .

Where Ac stands for the complement of A to X and d(p,Ac) denotes the distance between p and the
internal set Ac.

Proof. (1⇒ 2) If p belongs to the QS-interior of A then QS(p,r) ⊂ A for some r ∈ aF+. So we
deduce that µF (p)⊂ A since µF (p)⊂ QS(p,r).

(2⇒ 3) Let A be the internal set ∗R defined by

A = {r ∈ ∗R : B(p, |r|)⊂ A}.

By hypothesis the internal set A contains arbitrarily large numbers in iF , then by the overflow of
iF , A contains arbitrarily small numbers in F \ iF i.e., there is r ∈ aF+ such that B(p,r) ⊂ A, we
conclude that d(p,Ac)≥ r, hence d(p,Ac) 6∈ iF .

(3⇒ 1) The condition d(p,Ac) 6∈ iF implies that there exists r ∈ aF+ such that d(p,Ac) ≥ r.
Hence QS(p,r/2)⊂ B(p,r/2)⊂ A and the point p belongs to the QS-interior of A. �

Similarly, we prove

Theorem 3.11. Let A be any internal set in ∗X endowed with the QS-topology generated by F . Then
the following properties are equivalent

(1) the point p belongs to the QS-closure of A,
(2) µF (p)∩A 6= /0,
(3) d(p,A) ∈ iF .

It is well known that the monads of a topological space encode its topology and many topological
properties as being open, closed can be characterized using monads. We show that F -monads can
also be used to describe these properties.

Proposition 3.12. Let A⊂ X, then

(1) A is open if and only if ∀x ∈ A µF (x)⊂ ∗A.
(2) A is closed if and only if ∀x ∈ X ((µF (x)∩ ∗A) 6= /0⇒ x ∈ A).
(3) For x ∈ X, x ∈ A if and only if µF(x)∩ ∗A 6= /0.

Since the proof is similar to [13] p.112 or [12] Theorem 10.1.1, we give only the proof of (1).

Proof. 1) Assume that A is open. Let x ∈ A, then there exists a positive number r such that
B(x,r)⊂ A. Thus µF (x)⊂ ∗B(x,r)⊂ ∗A. Conversely, assume that µF (x)⊂ ∗A, then the sentence

(∃r ∈ ∗R>0)(∀x ∈ ∗X)(∗d(x, p)< r⇒ x ∈ ∗A)

is seen to be true by interpreting r as any positive element in iF+. But then by transfer there is some
real r > 0 for which B(x,r)⊂ A and hence A is open.

�

Theorem 3.13. Every F -galaxy in ∗X is QS-open and QS-closed.
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Proof. Let G be a galaxy in ∗X . Then G = ∪p∈GQS(p,1). Hence, G is open. The complement of
G is union of all the other galaxies, which is also open. Thus, G is closed. �.

Let (pn) be a sequence in ∗X . We shall say that the point p in ∗X is a QS-limit for (pn), if the
sequence (pn)n∈N converges to p for the QS-topology i.e, for every ε ∈ aF+, there exists a finite
number ν such that pn ∈ QS(p,ε) for all finite n > ν . which is clearly equivalent to: for every
ε ∈ aF+, there exists a finite number ν such that ∗d(p, pn)< ε for all finite n > ν .

Theorem 3.14. Let (pn) be an internal sequence and let p be a point in ∗X. If there exists an infinite
number H such that pN ∈ µF (p) for all infinite N ≤H then p is a QS-limit of the sequence (pn). The
converse is true if F is generated by an asymptotic scale.

Proof. Let ε ∈ aF+. Consider the internal set defined by

Aε = {n ∈ ∗N : ∗d(pn, p)< ε}.
If every infinite number N ≤ H belongs to Aε , then, by the underflow principle, there is some

kε ∈ N such that every finite n≥ kε belongs to Aε . i.e., for every n≥ kε , we have ∗d(pn, p)< ε .
Conversely, let k ∈ N and consider the internal set

Bk = {n ∈ ∗N : ∗d(pn, p)< λk}.
If the sequence (pn) converges to p, then there is a finite number νk such that n ∈Ak for all n ∈ N

with n > νk, we conclude, by the overflow principle, that there is an infinite number Hk ∈ ∗N such that
n∈Ak for all n∈ ∗N with νk ≤ n≤Hk. By sequential comprehensiveness, there some infinite number
H that is smaller than every Hk (cf. [12] Theorem 15.4.3). Thus for all infinite numbers N ≤ H, we
have ∗d(pN , p)< λk, for all k ∈ N i.e., pN ∈ µF (p) for all infinite numbers N smaller than H. �.

Now, let (X ,d), (Y,d′) be two metric spaces and f be a mapping defined on set of points of ∗X and
to take values in ∗Y .

Definition 3.15. We say that the function f is QS-bounded on a set D, if there exist a point p ∈ ∗Y
and a number m ∈ aF+ such that f (D)⊂ B(p,m).

Theorem 3.16. Let f be an internal function defined on the internal set D. Then the function f is
QS-bounded on D if and only if f (D) belongs to the same galaxy in ∗Y .

Proof. The condition in clearly necessary. The condition is also sufficient, assume that f in not
QS-bounded on D. Let A be set defined by

A = {r ∈ ∗R : (∀q ∈ ∗Y )(∃p ∈ D) ∗d′( f (p),q)> |r|}.
A is an internal set containing F \ iF . It follows, by the overflow of F , that A contains a number

ν ∈ ∗R\F . Let p0 be a point in D, there is some p ∈ D, such that ∗d′( f (p), f (p0))> ν . Thus, f (p)
and f (p0) belong to different galaxies. �

Let F be a proper convex subring of ∗R. The spaces ∗X and ∗Y are equipped with the respective
quasi-standard topologies generated by F .

Let D ⊂ ∗X , f : D −→ ∗Y be a function defined on D and let p be a point which belongs to the
QS-closure of D.

Definition 3.17. We say that the point s ∈ ∗Y is a QS-limit of f as q approaches p in D if for every
ε ∈ aF+ there is η ∈ aF+ such that ∗d′( f (q),s)< ε for all q in D\{p} for which ∗d(p,q)< η .
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Theorem 3.18. Suppose that D is an internal set, p is a point of the QS-closure of D, and f is an
internal function defined on D. Then the point s is a QS-limit of f as x approaches p if and only if

f (µF (p)∩ (D\{p}))⊂ µF (s).

Proof. Suppose s is a QS-limit of f as x approaches p in D. By the definition of the F -monad of
p, every q ∈ µF (p) satisfies d(p,q) < η for all η ∈ aF+. Hence, if q is at the same time in D\{p}
then ∗d′( f (q),s)< ε for arbitrary ε ∈ aF+ i.e., f (q) ∈ µF (s).
Suppose that the condition is satisfied, and let ε ∈ aF+. Consider the set

A = {r ∈ ∗R : ∗d′( f (q),s)< ε for every q ∈ D\{p}∩B(p, |r|)}.
A is an internal set containing iF . By the overflow of iF , the set A contains r ∈F \ iF . Setting

η = |r|, we see that the condition of the theorem is also sufficient.

3.1. QS-continuity. Let f be defined on D and p ∈ D. We say that f is QS-continuous at p if the
function f is continuous at p from D to ∗Y and both of these spaces are equipped with the respec-
tive QS-topologies generated by F . That is, for every ε ∈ aF+ there exists η ∈ aF+ such that
∗d′( f (q), f (q))< ε for all q in D such that ∗d(p,q)< η .

Using Theorem 3.18, we deduce the following characterization of the continuity in terms of F -
monads.

Theorem 3.19. Let f be an internal mapping from an internal set D into ∗Y . Then the function f is
QS-continuous at a point p in D if and only if f (µF (p)∩D)⊂ µF ( f (p)), that is,

f (x)u f (p) for all x ∈ D such that x u p.

Given a standard mapping f : (X ,d) −→ (Y,d′) and p ∈ X . By transfer, one shows that f is con-
tinuous at p if and only if the extension mapping ∗ f is Q-continuous at p. On the other hand, by the
non-standard characterization of the continuity, the mapping f is continuous at p if and only if ∗ f is
S-continuous at p. A natural question arises, if the continuity of a standard mapping f is equivalent
to the QS-continuity of f ?
We prove that if ∗ f is QS-continuous then f is continuous but the converse is false in general.

Proposition 3.20. Let f : (X ,d)−→ (Y,d′) be a mapping and p∈ X. If ∗ f is QS-continuous at p then
f is continuous at p.

Proof. Let ε be a positive real number. The QS-continuity of ∗ f at p implies that the following
assertion

∃(η ∈ ∗R>0)(∀x ∈ ∗X)(∗d(x, p)< η)⇒ (∗d′( f (x), f (p))< ε)

is true by interpreting η as any positive element in iF . Therefore, by transfer there exists a positive
standard number η , such that

(∀x ∈ X)(d(x, p)< η)⇒ (d′( f (x), f (p))< ε).

So we conclude that f is continuous at p.
�

The following shows that the converse of Proposition 3.20 is false in general.

Example 3.21. Let f be the standard function defined on R by:

f (t) =

{
−1/ log |t| if t 6= 0,
0 if t = 0 .
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The function f is continuous at 0. But ∗ f is not QS-continuous at 0 with respect to the QS-topology
generated by the scale (ρn), where ρ is a positive infinitesimal number. Since the number x = e−1/ρ

is an iota but f (x) = ρ is not an iota.

If the function is internal not necessarily standard, in general, there is no relationship between
Q-continuity, QS-continuity and S-continuity:

Example 3.22. F be the convex subring generated by an asymptotic scale (λn) and let f (t) = ωt,
where ω ∈ ∗R\{0}. Clearly, the internal function f is Q-continuous at 0.

(1) If ω is bounded, i.e., ω ∈ bR, then f is S-continuous and QS-continuous at 0.

(2) If ω is moderate but infinite e.g. ω =
1
λn

for some n ∈N, then f is QS-continuous at 0 but not

S-continuous at 0.
(3) If ω is not moderate, i.e. ω =

1
λN

for some n ∈ N∞, then f is neither S-continuous at 0 nor

QS-continuous at 0.

The Example 3.21 shows that being continuous is not a sufficient condition for the function to
send F -monads to F -monads. This shows that F -monads depend on the metric and not only on the
topology. We provide an example of two equivalent metrics but having different F -monads.

Example 3.23.
Let F be the convex ring generated by the scale (ρn) and f be the function defined in Example 3.21.
Consider on R the following metric δ (x,y) = |x−y|+ | f (x)− f (y)| which is equivalent to the absolute
value |.|. One can easily verify that µ

δ

F (0)( µ
|.|
F (0), (see Example 3.21).

The following is straightforward

Proposition 3.24. If f : X → Y is a locally Lipschitz continuous mapping then ∗ f is QS-continuous
on ns(∗X) that is for every pair of points p,q in ns(∗X), p u q implies f (p)u f (q).

Consequently any continuously differentiable function is QS-continuous and since all norms on a
finite-dimensional vector space are equivalent, it follows

Corollary 3.25. On a finite-dimensional vector space X, the F -monad system depends only on the
topology of X.

The following gives a sufficient condition on the metrics to induce the same F -monad system.

Corollary 3.26. Two Lipschitz equivalent metrics d and δ on X provide the same F -monad system,
i.e., for all x ∈ ∗X, µ

d
F (x) = µ

δ

F (x).

Recall that two metrics d and δ on X are Lipschitz equivalent if there exist α , β two positive
numbers such that

αd(x,y)≤ δ (x,y)≤ βd(x,y) for all x,y ∈ X .

4. F -ASYMPTOTIC HULLS OF METRIC SPACES

The concept of nonstandard hull of a metric space was introduced by Luxemburg [18] and has
proved to be powerful tool in nonstandard analysis of Banach spaces. Later Luxemburg [19] extended
this construction to the non-Archimedean case, by defining ρ Ê a normed linear space over ρR, the
Robinson field of asymptotic numbers, see [17],[27],[21].
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In this section, we generalize these constructions by considering the F -nonstandard hull of a met-
ric space where F is a proper convex subring of ∗R. We note that the mentioned constructions follow
as a particular case for F = bR and F = Mρ , see Example 2.8.

Let (X ,d) be a metric space and let F (∗X) denote the principal galaxy in ∗X with respect to F
i.e., F (∗X) is the set of F -bounded points in ∗X .

Let
X̂ := F (∗X)/u .

The space X̂ is a ”generalized metric space” that is X̂ is equipped with d̂ : X̂× X̂ −→ F̂ defined as
follows

d̂(x̂, ŷ) := ŝt(∗d(x,y)) for x̂, ŷ ∈ X̂ ,

and d̂ verifies the usual properties of a metric.
The space X̂ is equipped with the quotient topology of the restriction of QS-topology of ∗X to

F (∗X). The collection of balls

B̂(x̂,R) := {ŷ ∈ X̂ : d̂(x̂, ŷ))< R},

where x̂ ∈ X̂ and R ∈ F̂+ is a basis for the the quotient topology on X̂ .

The following is immediate

Proposition 4.1. The space X̂ is Hausdorff and the quotient mapping ŝt : F (∗X)−→ X̂ is continuous,
open.

Theorem 4.2. Let f : ∗X −→ ∗Y be an internal map and the restriction of f to F (∗X) is QS-
continuous and f sends F (∗X) to F (∗Y ). Then f gives rise to a continuous mapping f̂ : X̂ −→ Ŷ
defined by

f̂ (x̂) = f̂ (x) for all x̂ ∈ X̂ .

Proof. The mapping ŝt◦ f |F (∗X) : F (∗X)
f |F (∗X)−−−−→F (∗Y ) ŝt−−→ Ŷ is continuous. By Theorem 3.19,

the condition on QS-continuity implies that for all x,y∈F (∗X), we have f (x)u f (y) whenever x u y.
Therefore the mapping ŝt ◦ f |F (∗X) descends to a continuous quotient mapping f̂ : X̂ −→ Ŷ and the
following diagram commutes

F (∗X)
f |F (∗X)−−−−→ F (∗Y )

ŝt
y yŝt

X̂
f̂−−−−→ Ŷ

�.
The latter Theorem can be reformulated as

Theorem 4.3. Let f : ∗X −→ ∗Y be an internal map such that
(1) f sends F (∗X) to F (∗Y ),
(2) for all x,x′ ∈F (∗X), if x u x′, then f (x)u f (x′).

Then f gives rise to a continuous mapping f̂ : X̂ −→ Ŷ defined by

f̂ (x̂) = f̂ (x).
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In other words, the conditions to ensure that the mapping f descends to the quotient mapping are
sufficient to induce the continuity of f̂ . A variant of such result was proved by Vernaeve [30] and
Delcroix [7] in the context of Colombeau’s generalized functions, see Colombeau [4, 5]. In fact it
is not surprising to get the continuity of f̂ , since the QS-continuity of the function f is expressed in
terms of F -monads.

Let F be a proper and non-Archimedean ring and p ∈ X , then the standard monad of p, µ(p)
is QS-open. Since there exists r ∈ iR+ \ iF such that QS(p,r) ⊂ B(p,r) ⊂ µ(p). Hence ns(∗X) is
QS-open, where ns(∗X) denotes the set of near-standard elements of ∗X , that is, ns(∗X) = ∪p∈X µ(p).

In general, the set of near-standard points in not S-open, however, if we assume that X is locally
compact then ns(∗X) = cpt(∗X) where

cpt(∗X) =
⋃

KbX

∗K.

Therefore ns(∗X) is S-open.
Furthermore, if X is a proper metric space or a Heine-Borel metric space, that is, a metric space in

which every closed ball is compact then ns(∗X) = cpt(∗X) = bd(∗X), where bd(∗X) denotes the set of
bounded points of ∗X .

Corollary 4.4. Let F be a non-Archimedean ring and f : ∗X −→ ∗Y be an internal map such that
(1) f sends ns(∗X) to F (∗Y ),
(2) for all x,x′ ∈ ns(∗X), if x u x′ then f (x)u f (x′).

Then f gives rise to a continuous mapping f̂ : n̂s(∗X)−→ Ŷ defined by

f̂ (x̂) = f̂ (x), for all x̂ ∈ n̂s(∗X).

When X is an open set of Rd , n̂s(∗X) is used to construct a generalized pointvalues of an asymptotic
function, see [28] and n̂s(∗X) is called the set of generalized compactly supported points. A similar
construction in Colombeau’s theory can be found in [15].

We recall that if an internal function f : ∗X −→ ∗Y is S-continuous on ns(∗X) then f sends ns(∗X)
to ns(∗Y ).

Corollary 4.5. Let F be a non-Archimedean ring and f : ∗X −→ ∗Y be an internal S-continuous
mapping such that for all x,x′ ∈ ns(∗X), if x u x′ then f (x)u f (x′).

Then f gives rise to a continuous mapping f̂ : n̂s(∗X)−→ n̂s(∗Y ) defined by

f̂ (x̂) = f̂ (x), for all x̂ ∈ n̂s(∗X).

Recall that X̂ is equipped with the generalized metric d̂, hence it induces a uniformity on X̂ and the
collection

{(x̂, ŷ) ∈ X̂2 : d̂(x̂, ŷ))< R}, (R ∈ F̂+)

is a fundamental system of entourages for a uniformity on X̂ which induces the quotient topology on
X̂ . Kalsich [14] proved that the converse is also true, that is, any uniformity is induced by a generalized
metric. Now, it is natural to ask when the topology of X̂ is metrizable.

Theorem 4.6 (Bourbaki [2], Theorem 1 p.152). A uniformity is metrizable if and only if it is Hausdorff
and the filter of entourages of the uniformity has a countable base
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It is shown that a uniform structure that admits a countable fundamental system of entourages (and
hence in particular a uniformity defined by a countable family of pseudometrics) can be defined by a
single pseudometric which turns to be a metric if in addition the space is Hausdorff.

Since X̂ is Hausdorff, we deduce that X̂ is metrizable if and only if the uniformity has a countable
base.

Let (λn) be an asymptotic scale, then the collection

Un := {(x̂, ŷ) ∈ X̂2 : d̂(x̂, ŷ))< λ̂n},

is a (countable) fundamental system of entourages for the uniformity on X̂ induced by the general-
ized metric d̂.

Theorem 4.7. Let (λn) be an asymptotic scale. Then the quotient topology on X̂ generated by (λn) is
metrizable. Furthermore, the following function

δ (x̂, ŷ) = exp
(
−sup

{
n ∈ Z :

∗d(x,y)
λn

∈ bR
})

is an ultra-metric generating the uniformity on X̂ defined by d̂.

Before giving the proof, let us provide some properties of the sequence

µn(x,y) :=
∗d(x,y)

λn
.

The sequence (µn(x,y))n∈Z is increasing and for n,m ∈ Z, we have µn(x,y) = µm(x,y)
λm

λn
. Define

q(x,y) = sup
{

n ∈ Z : µn(x,y) ∈ bR
}
∈ Z∪{+∞}.

If q(x,y) ∈ Z, one can easily check that

µn(x,y) ∈


iR if n < q(x,y),
bR if n = q(x,y) ,
∞R if n > q(x,y).

(4.2)

If q(x,y) =+∞, i.e, for all n∈Z, µn(x,y)∈ bR which is equivalent to for each n∈N, ∗d(x,y)≤ λn,
that is, ∗d(x,y)u 0.

Proof. First, one can verify that if x1 u x2 and y1 u y2, then

sup
{

n ∈ Z :
∗d(x1,y1)

λn
∈ bR

}
= sup

{
n ∈ Z :

∗d(x2,y2)

λn
∈ bR

}
. (4.3)

Hence δ is well defined. Now, we have to check that δ is an ultra-metric on X̂ .

Clearly δ (x̂, ŷ) = 0 if and only if ∗d(x,y) ≤ λn for all n ∈ N, that is, x̂ = ŷ. It is obvious that δ is
symmetric. It remains to prove the stronger triangle inequality

δ (x̂, ẑ)≤max(δ (x̂, ŷ),δ (ŷ, ẑ)) , for all x̂, ŷ, ẑ ∈ X̂ .



16 ADEL KHALFALLAH

Assume without loss of generality that 0< δ (x̂, ŷ)≤ δ (ŷ, ẑ). Hence there are two integers N,M ∈Z,
such that M ≤ N and δ (x̂, ŷ) = e−N , δ (ŷ, ẑ) = e−M. The following inequality

∗d(x,z)
λM

≤
∗d(x,y)

λM
+
∗d(y,z)

λM

combined with (4.2) imply that
∗d(x,z)

λM
∈ bR as

∗d(y,z)
λM

∈ bR and
∗d(x,y)

λM
∈ iR.

Finally, we have to show that the uniformity induced by the metric δ coincides with the uniformity
induced by the generalized metric d̂.

Let
Vr = {(x̂, ŷ) ∈ X̂2 : δ (x̂, ŷ)< r}, r ∈ R+

stand for a fundamental system of entourages for the uniformity induced by the metric δ .
Consider an entourage Vr. Take any n >− ln(r/2), then we easily prove that Un ⊂Vr. Conversely,

if we take an entourage Un element in the base of the uniformity induced by d̂, it suffices to consider
any positive real number r, such that lnr <−n to have Vr ⊂Un. �

We should notice that the metric δ induces on X the discrete metric defined by

δ|X(x,y) =

{
1 if x 6= y,
0 if x = y .

Theorem 4.8. The metric space (X̂ ,δ ) and the generalized metric space (X̂ , d̂) are Cauchy complete.

Proof. Since the uniformity generated by δ is the same uniformity generated by d̂, we have only
to prove that (X̂ , d̂) is Cauchy complete.

Let {x̂n : n ∈ N} be a Cauchy sequence in (X̂ , d̂). The sequence {xn : n ∈ N} of points in F (∗X)
extends to an internal hyper-sequence {xn : n ∈ ∗N} in ∗X .

For each n ∈ N, by the Cauchy property there exists kn ∈ N such that for all standard m≥ kn,
∗d(xm,xkn)< λn+1. (4.4)

But the set {m ∈ ∗N : ∗d(xm,xkn)< λn+1} is an internal set, so we conclude that there is some infinite
ωn ∈ ∗N such that (4.4) holds for all n ∈ ∗N with kn ≤ m ≤ ωn. By sequential comprehensiveness,
there is some infinite ω ∈ ∗N that is smaller than every ωn and for all m ∈ N, with m≥ kn, we have

∗d(xm,xω)≤ ∗d(xm,xkn)+
∗d(xkn ,xω)≤ 2λn+1 < λn.

It follows that xω is F -bounded and {x̂n : n ∈ N} converges to x̂ω .
�

Finally, we will compare on ρR, the field of Robinson’s real ρ-asymptotic numbers, the classical
valuation v introduced by Robinson and defined by v(x̂) = st(lnρ |x|), where st is the standard part
mapping in ∗R and the function p : ρR→ Z∪{+∞} defined by

p(x̂) = q(x,0) = sup
{

n ∈ Z :
|x|
ρn ∈

bR
}
.

Using the equality (4.3), we deduce that p is well defined.

Proposition 4.9. The function p is a pseudo-valuation on ρR compatible with its order, trivial on R
and satisfying:

(i) p(λ x̂) = p(x̂), for any x̂ ∈ ρR and λ ∈ R\{0},
(ii) p(x̂)≤ v(x̂), for any x̂ ∈ ρR.
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Furthermore p is not a valuation on ρR.

Proof. We leave the verification to the reader that p is a pseudo-valuation satisfying (i) and com-
patible with the order of ρR. Now, we shall prove the property (ii).

p(x̂)≤ v(x̂). (4.5)

Indeed, let n ∈ Z such that
|x|
ρn is bounded, i.e, there is a positive real number M such that

|x|
ρn ≤M. It

follows that lnρ(|x|)≥ lnρ(M)+n. Hence st(lnρ |x|)≥ n and v(x̂)≥ N(x̂). Finally, to prove that p is

not a valuation, that is, the condition (2.1) is not satisfied, it suffices to remark that p(l̂nρ
2
) =−1 and

p(l̂nρ) =−1. �

Theorem 4.10. The pseudo-valuation p and the valuation v induce the same topology on ρR which
is the order topology and all the topologies are compatible with the field structure of ρR.

Proof. It suffices to prove that for all n ∈ N+, we have

{x̂ ∈ ρR : p(x̂)> n} ⊂ {x̂ ∈ ρR : v(x̂)> n} ⊂ {x̂ ∈ ρR : p(x̂)≥ n}.
The first inclusion follows from the inequality (4.5). For the second, let x̂ ∈ ρR and n ∈ N+ such

that v(x̂)> n, that is, st(lnρ |x|)> n. It follows that lnρ |x|> n. Therefore |x|< ρ
n and p(x̂)≥ n. �

Remark 4.11. It is not surprising that the order topology on ρR can be defined by a pseudo-valuation
not a necessary a valuation. The set H = {x̂ ∈ ρR : there exist M ∈ R+,n ∈ N+ and |x| ≤ Mρ

n}
satisfies all the requirements in Cohn’s Theorem 2.2, that is, H is open, closed under addition and
contains only nilpotent elements. Indeed, one can easily show that H = {x̂ ∈ ρR : p(x̂)> 0}.

APPENDIX A. SPILLING PRINCIPLES

We recall several spilling principles in terms of a proper convex subring F of ∗R. We should note
that the familiar underflow and overflow principles in non-standard analysis follow as a particular case
for F = bR.

Theorem A.1 (Spilling Principles). [28] Let F be a proper convex subring of ∗R and A ⊂ ∗R be an
internal set. Then:

(i) Overflow of F : If A contains arbitrarily large numbers in F , then A contains arbitrarily
small numbers in ∗R\F . In particular,

F \ iF ⊂A ⇒A ∩ (∗R\F ) 6= /0

(ii) Underflow of F \ iF : If A contains arbitrarily small numbers in F \ iF , then A contains
arbitrarily large numbers in iF . In particular,

F \ iF ⊂A ⇒A ∩ iF 6= /0

(iii) Overflow of iF : If A contains arbitrarily large numbers in iF , then A contains arbitrarily
small numbers in F \ iF . In particular,

iF ⊂A ⇒A ∩ (F \ iF ) 6= /0

(iv) Underflow of ∗R \F : If A contains arbitrarily small numbers in ∗R \F , then A contains
arbitrarily large numbers in F . In particular,

∗R\F ⊂A ⇒A ∩ (F \ iF ) 6= /0

We should mention that these spilling principles fail if F = ∗R and iF = {0}.
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