ROOTS OF GENERALIZED SCHONEMANN
POLYNOMIALS IN HENSELIAN EXTENSION FIELDS

RoN BrROWN

ABSTRACT. We study generalized Schonemann polynomials over a valued field F. If such
a polynomial f is tame (i.e., a root of f generates a tamely ramified extension of F'), we
give a best-possible criterion for when the existence in a Henselian extension field K of an
approximate root of f guarantees the existence of an exact root of f in the extension field K.

Let (F,v) be a valued field with residue class field F', value group vF, and valuation
ring A. For any a € A and polynomial h € A[z] we let @ and h denote the canonical image
of a and h in F and F|x], respectively. Using notation as in [5, pp. 82-83], we call a
polynomial k € A[z| a generalized Schénemann polynomial over (F,v) if it can be written

in the form

k= p®+th

where e > 1; p € A[x] is monic with P irreducible over F; h € A[z] has degree less than
edeg p; p does not divide h; and, finally, t € A and v(t) € svF for any divisor s > 1 of e.
If vF is discrete rank one, then the above condition on ¢ is satisfied when v(t) is positive
and generates vF; thus the Schénemann polynomials of [5, pp. 82-83] are indeed general-
ized Schonemann polynomials in the above sense. We allow the case p = x, in which case
we obtain generalized Eisenstein polynomials. We use the above notation in the statement

of our first theorem.



Theorem 1. Suppose k = p®+th is a generalized Schénemann polynomial over (F,v) with
D separable over F and e not divisible by the characteristic of F. If a Henselian extension

(K,u) of (F,v) has an element a with u(k(a)) > v(t), then k has a root in K.

In Remark 6B below we will see that when e # 1, the value v(t) is best possible in

Theorem 1.

Remarks 2. (A) The hypotheses of the first sentence of Theorem 1 guarantee that an
extension of F' by a root of k is tamely ramified (cf. the proof of Lemma 4). One would
like a generalization of Theorem 1 allowing wild ramification. The Eisenstein polynomial
22 —2 over the valued field of 2-adic numbers (Qz, v2) has no root in Qs [\/—_6} even though
v2((v/=6)? — 2) > v2(2). Thus as stated Theorem 1 is not valid without the hypotheses of

its first sentence.

(B) We will see below in the proof of Theorem 5 that the hypotheses of Theorem 1
imply that v(k'(e)) = (1 — 1)v(¢). Thus if e < 2, then we have v(k(r)) > 2v(k()),
and hence the existence of a root of k in K follows from a standard version of Hensel’s
Lemma [2, Theorem 4.1.3(5), p. 88]. When e > 2 the application of Theorem 1 gives a
stronger result than the application of this version of Hensel’s Lemma. Similar remarks
hold for versions of Hensel’s Lemma involving the discriminant of f. For example the
Eisenstein polynomial 2% — 2 over (Qg,v2) has discriminant —108; applying the Hensel-
Rychlik Theorem of [4, Theorem 10.8, p. 263] to it gives a weaker result than applying

Theorem 1 since va(—108) = v2(4) > vo(—2).

We will prove a modest generalization of Theorem 1 with an eye toward a more sweeping
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generalization (cf. Remark 8). We extend v to F[z]| with the Gaussian valuation, so
v <Z aixi> = minwv(a;) forall a; € F.

Notation 3. For the remainder of this paper k € F[x] will be assumed to have the form
k=p°+ > A;p' where e > 1 and
i<e
(a) p € Alx] is monic with p irreducible over F;
(b) for all i < e, A; € Alx], deg A; < degp, and Ay # 0;

(c) v(Ag) & svF for any divisor s > 1 of e;

(d) ev(A;) > (e —i)v(Ap) > 0 whenever i < e.

We also set f = degp. Condition (c) above says that in the divisible hull of vF' we have
(vF 4+ Z2v(Ap) : vF) = e and that when i # 0, the inequalities of (d) are strict.

Any generalized Schonemann polynomial & = p© 4 th is easily seen to satisfy the condi-
tions in Notation 3 above. (Since p is monic, there exist B; € A[x] of degree less than deg p
with h = >, _, B;p'; the fact that p { h tells us that v(¢tBy) = v(t).) Polynomials satisfying
the conditions of Notation 3 with p separable over F' are also considered by Khanduja and

Saha; in the next lemma we expand on their Theorem 1.1 [3, p. 38].

Lemma 4. (A) The polynomial k is irreducible over F, and if « is a root of k in some
algebraic extension of F', then v has a unique extension, sayv', to Fla] and the ramification
degree and ramification index of v' /v are f and e, respectively.

(B) If a is an element of some valued field extension (K,u) of (F,v) with u(k(a)) >
v(Ao), then u(a) > 0, (&) = 0, u(p(@)®) = v(Ao) = u(Ao(@)) = u(¥,c, Aila)p(a)’),

and p(e)/ 32, .. Ai(a)p(a)’ = —1.




Proof. We begin by proving (B). Pick any b € F with v(b) = v(Ap). Since valuation rings
are integrally closed, we have u(a) > 0 (note that « is a root of k — k(«)). Since all the
coefficients of the polynomials A; are in the maximal ideal of v, we have u(p(«)€) > 0,
so p(@) = 0. Because v(b) = v(Ag) # oo, thus b~1Aj is a nonzero polynomial of degree
less than that of P, the irreducible polynomial of @ over F. Thus b~ !Ag(a) is a unit,
so v(A4p) = v(b) = u(Ap(a)). If u(p(a)®) > v(Ap), then whenever 0 < i < e we have

u(A;(a)) > v(A;) and hence

e—1

u(Ai(e)p(a)’) >

~Lu(Ap(a) + Lo(40) = u(Ao(a),

so u(k(a)) = v(Ap), a contradiction. On the other hand, if u(p(a)¢) < v(Ap), then for all

7 < e we have

so u(k(a)) = u(p(a)®) < v(Ap), another contradiction. Thus u(p(a)®) = v(Ap). The last

assertions of (B) follow easily since u(p(a)¢b~!) = 0 and by hypothesis

u(<p<a>e T ZAi<a>p<a>i>b—1) — u(k(a)) - o(Ao) > 0.

We now apply the results of (B) to prove (A). Let v' denote any extension of v to F[a].
We denote by f,//, and e, /, the ramification degree and index of v’ /v, respectively. Part
B applied with u = v’ tells us that p(@) = 0, so f,;, > f. That (vF + Z2Iv(Ag) : vF) =

shows that e,/ ,, > e. But ef = degk > [Fla] : F] > ey /yfor /v > ef so that e = e, ,
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and f = f,;, and degk = [F[a] : F]. Thus k is irreducible over F' and v has a unique

extension to Fla]. O
Theorem 1 will be a corollary of:

Theorem 5. Suppose that P is separable over F and that e is not divisible by the charac-

teristic of F. Further suppose that there is an integer d > 0 with
(1) edv(A;) > (e —i)(d+ 1)v(A4p) >0

whenever 0 < i < e. If u(k(a)) > v(Ag) for some element v of a Henselian extension

(K,u) of (F,v), then k has a root in K.

Remarks 6. (A) Working in the divisible hull of vF we can rewrite condition (1) in the

form

o 1 -u(4) > (1 + é) (%) v(Ag) > 0.

The existence of such an integer d is automatic when vF' is rank one (as we observed

earlier, the inequalities of Notation 3(d) are strict when ¢ > 0). The existence is also clear
if k is a generalized Schonemann polynomial (just set d = e), so that Theorem 1 is indeed
a corollary of Theorem 5.

(B) We now show that if e # 1, then the value v(Ap) in Theorem 5 is best possible,
so that in particular the value v(t) in Theorem 1 is best possible. Let « be a root of p
in an algebraic extension (K, u) of a Henselization (F’,v") of (F,v). Since (F’,v') is an
immediate extension of (F,v), the conditions of Notation 3 hold with (F,v) replaced by

(F',v"), so k is irreducible over F’ by Lemma 4. We have u(a) > 0 since p € A[z], and
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hence u(k(a)) = u(Ap(a)) > v(Ag). However the Henselian extension F'[a] of F' cannot

have a root of k since k has degree ef, but a generates an extension of F’ of degree only
f.

Proof of Theorem 5. We will use Lemma 4B repeatedly, and usually only implicitly. Ob-
serve that p’(«) is a unit since p is irreducible and separable over F' with root @. We now
show that u(k'(a)) = (1 — 1)v(A4g). We may write
(2) K () = ep(a)*'p'(a) + > (Ai(a)ip(a)'p'(a) + Aj(@)p(a)’)

i<e
Since char F' { e and p/(c) is a unit, we have u(ep®*(a)p/(a)) = (1 — 2)v(Ap). It suffices

to show that the other terms of (2) have larger values. If 0 < i < e we have

u(Ai(a)ip(a) ™ () = v(Ai) + (i - 1)év(A0)
i—1

(e—i

Jo(Ao) + (= )o(4o) = (1 - -)u(4o),

and since the coefficients of A’ are integer multiples of those of A4;, we have
‘ , 1
u(A(@)p*(@) 2 v(Ai) + du(p(e)) 2 v(Ao) > (1 = —)v(Ao).

Finally, u(Aj()) > v(A4g) > (1 — )v(Ap). Thus indeed u(k'(e)) = (1 — 1)v(4y).

e

Let us write r = — Y A;p’, so k = p¢ —r. By the Lemma p(«) # 0 and r(a)/p(a)¢ = 1.
i<e

Since char F' { e, we may apply Hensel’s Lemma to X¢ — r(a)/p(a)¢ to show the existence

of n € K with 7 =1 and n° = r(a)/p(a)¢, i.e., r(a) = (np(a))®. Applying Hensel’s Lemma

to p — np(a) we deduce the existence of § € K with 6 = @ and p(d) = np(a) (recall that

u(p(a)) > 0). Then p(d)¢ — r(e) = 0. We may assume without loss of generality that
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p(a) # p(d) (and hence that o # §) since otherwise
k(a) = p(a)® —r(a) = p(6)° —r(a) =0,

proving the theorem in this case.
We claim that u(p(a) — p(9)) = u(a — §). If a is not a unit, then p is monic and

linear (since p(@) = 0), and hence p(a)) — p(d) = a — 0. Suppose that « is a unit. Write

() (),

Since 0/a = 1, the separability of 7 implies that € = 5’ (@) # 0. But p(a) —p(8) = (a—0),

p=> bz’ and set

so that in this case we also have u(p(a) — p(9)) = u(a — 9).

Now note that

=p(a)® = p(0)° = p(a)®(1 —n°)
= p(a)* (p(a) —p(&))(L4+n+---n°").

Since 77 = 1 and the characteristic of F' does not divide e, therefore 1 4+n+---4+n°"1is a

unit and hence

(3) u(k(a)) = (e — Du(p(a)) + u(a — 0) = (1 — é) v(Ap) + u(aw —9).

We next estimate u(k(9)). Note that



Each A4; is a sum of terms of the form cz? where 0 < j < f, c € F, and

(&

o)) 2 o0 2 (1= 1) (147 ) ol
so k(d) is a sum of terms of the form
ep(8) — calp(a)’ = (& (p(6) — pla)’) + pla) (57 — o).
Arguing as above and using equation (3) we calculate that if e > i > 0, then

u(ed? (p(8)" = p(a)"))

> v(e) +ulp(e) " (pla) = (@)L +n+--+n"""))

> ((1—2) <1+é)+i;1)v(140)+u(a—5)
:u(k(oz))—F((l—é) 1+$)+2:1 —(1—2))0(140)
e — 1

> ((1 - é) (1 + é)) o(Ao) + To(A) + ula — 0)

Combining these inequalities we have
1
u(k(9)) = u(k(a)) + —-v(Ao) .

To summarize, we have shown that for any « in K with u(k(a)) > v(Ag) we have

u(k'(a)) = (1—1)v(Ap) and we can find an g/ in K with u(k(a')) > u(k(@)) + 1v(Ag) >



v(Ap) (so that u(k'(a’)) = (1 — 2)v(Ap)). Thus we can find o’ in K with u(k(a")) >
u(k(a')) + $v(A4o) > u(k(a)) + 2v(Ap) and u(k () = (1 — 1)v(Ap). Continuing in

this manner we can find an element o* € K with

u(k(a*)) > 2 (1 — %) v(Ao) = 2u(k'(a™)),

so that by a standard version of Hensel’s Lemma |2, Theorem 4.1.3(5), p. 88|, k has a root

in K. O
We record a corollary to Theorem 5. We continue the hypotheses of Notation 3.

Corollary 7. Suppose that (F,v) is Henselian and that a finite degree tamely ramified
extension (K, u) of (F,v) has an element « satisfying u(k(a)) > v(Ap) . Then k has a zero

in K.

Proof. The “tame” hypothesis means that [K : F] = [K : F|(vK : vF), that K/F is
separable, and that the characteristic of F' does not divide (uK : vF). Then by Lemma
4, p must be separable over F' and the characteristic of F' cannot divide e (a divisor of

(uK : vF)). Theorem 5 then implies our result. [

Remark 8. We plan to generalize the above Corollary (but not Theorem 5 itself) to a class
of irreducible polynomials over F' which when (F,v) is a maximal field is precisely the class
of monic irreducible polynomials. In this generalization the role of the values v(Ag) would

be essentially played by the invariants “vy;” of [1, p. 466].
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