ROOTS OF GENERALIZED SCHÖNEMANN POLYNOMIALS IN HENSELIAN EXTENSION FIELDS

Ron Brown

Abstract

We study generalized Schönemann polynomials over a valued field F. If such a polynomial f is tame (i.e., a root of f generates a tamely ramified extension of F), we give a best-possible criterion for when the existence in a Henselian extension field K of an approximate root of f guarantees the existence of an exact root of f in the extension field K.

Let (F, v) be a valued field with residue class field \bar{F}, value group $v F$, and valuation ring A. For any $a \in A$ and polynomial $h \in A[x]$ we let \bar{a} and \bar{h} denote the canonical image of a and h in \bar{F} and $\bar{F}[x]$, respectively. Using notation as in [5, pp. 82-83], we call a polynomial $k \in A[x]$ a generalized Schönemann polynomial over (F, v) if it can be written in the form

$$
k=p^{e}+t h
$$

where $e \geq 1 ; p \in A[x]$ is monic with \bar{p} irreducible over $\bar{F} ; h \in A[x]$ has degree less than $e \operatorname{deg} p ; \bar{p}$ does not divide \bar{h}; and, finally, $t \in A$ and $v(t) \notin s v F$ for any divisor $s>1$ of e.

If $v F$ is discrete rank one, then the above condition on t is satisfied when $v(t)$ is positive and generates $v F$; thus the Schönemann polynomials of [5, pp. 82-83] are indeed generalized Schönemann polynomials in the above sense. We allow the case $p=x$, in which case we obtain generalized Eisenstein polynomials. We use the above notation in the statement of our first theorem.

Theorem 1. Suppose $k=p^{e}+$ th is a generalized Schönemann polynomial over (F, v) with \bar{p} separable over \bar{F} and e not divisible by the characteristic of \bar{F}. If a Henselian extension (K, u) of (F, v) has an element α with $u(k(\alpha))>v(t)$, then k has a root in K.

In Remark 6B below we will see that when $e \neq 1$, the value $v(t)$ is best possible in Theorem 1.

Remarks 2. (A) The hypotheses of the first sentence of Theorem 1 guarantee that an extension of F by a root of k is tamely ramified (cf. the proof of Lemma 4). One would like a generalization of Theorem 1 allowing wild ramification. The Eisenstein polynomial $x^{2}-2$ over the valued field of 2-adic numbers $\left(\mathbb{Q}_{2}, v_{2}\right)$ has no root in $\mathbb{Q}_{2}[\sqrt{-6}]$ even though $v_{2}\left((\sqrt{-6})^{2}-2\right)>v_{2}(2)$. Thus as stated Theorem 1 is not valid without the hypotheses of its first sentence.
(B) We will see below in the proof of Theorem 5 that the hypotheses of Theorem 1 imply that $v\left(k^{\prime}(\alpha)\right)=\left(1-\frac{1}{e}\right) v(t)$. Thus if $e \leq 2$, then we have $v(k(\alpha))>2 v\left(k^{\prime}(\alpha)\right)$, and hence the existence of a root of k in K follows from a standard version of Hensel's Lemma [2, Theorem 4.1.3(5), p. 88]. When $e>2$ the application of Theorem 1 gives a stronger result than the application of this version of Hensel's Lemma. Similar remarks hold for versions of Hensel's Lemma involving the discriminant of f. For example the Eisenstein polynomial $x^{3}-2$ over $\left(\mathbb{Q}_{2}, v_{2}\right)$ has discriminant -108 ; applying the HenselRychlik Theorem of [4, Theorem 10.8, p. 263] to it gives a weaker result than applying Theorem 1 since $v_{2}(-108)=v_{2}(4)>v_{2}(-2)$.

We will prove a modest generalization of Theorem 1 with an eye toward a more sweeping
generalization (cf. Remark 8). We extend v to $F[x]$ with the Gaussian valuation, so

$$
v\left(\sum a_{i} x^{i}\right)=\min _{i} v\left(a_{i}\right) \quad \text { for all } a_{i} \in F .
$$

Notation 3. For the remainder of this paper $k \in F[x]$ will be assumed to have the form $k=p^{e}+\sum_{i<e} A_{i} p^{i}$ where $e \geq 1$ and
(a) $p \in A[x]$ is monic with \bar{p} irreducible over \bar{F};
(b) for all $i<e, A_{i} \in A[x], \operatorname{deg} A_{i}<\operatorname{deg} p$, and $A_{0} \neq 0$;
(c) $v\left(A_{0}\right) \notin s v F$ for any divisor $s>1$ of e;
(d) $e v\left(A_{i}\right) \geq(e-i) v\left(A_{0}\right)>0$ whenever $i<e$.

We also set $f=\operatorname{deg} p$. Condition (c) above says that in the divisible hull of $v F$ we have $\left(v F+\mathbb{Z} \frac{1}{e} v\left(A_{0}\right): v F\right)=e$ and that when $i \neq 0$, the inequalities of (d) are strict.

Any generalized Schönemann polynomial $k=p^{e}+t h$ is easily seen to satisfy the conditions in Notation 3 above. (Since p is monic, there exist $B_{i} \in A[x]$ of degree less than deg p with $h=\sum_{i<e} B_{i} p^{i}$; the fact that $\bar{p} \nmid \bar{h}$ tells us that $v\left(t B_{0}\right)=v(t)$.) Polynomials satisfying the conditions of Notation 3 with \bar{p} separable over \bar{F} are also considered by Khanduja and Saha; in the next lemma we expand on their Theorem 1.1 [3, p. 38].

Lemma 4. (A) The polynomial k is irreducible over F, and if α is a root of k in some algebraic extension of F, then v has a unique extension, say v^{\prime}, to $F[\alpha]$ and the ramification degree and ramification index of v^{\prime} / v are f and e, respectively.
(B) If α is an element of some valued field extension (K, u) of (F, v) with $u(k(\alpha))>$ $v\left(A_{0}\right)$, then $u(\alpha) \geq 0, \bar{p}(\bar{\alpha})=0, u\left(p(\alpha)^{e}\right)=v\left(A_{0}\right)=u\left(A_{0}(\alpha)\right)=u\left(\sum_{i<e} A_{i}(\alpha) p(\alpha)^{i}\right)$, and $\overline{p(\alpha)^{e} / \sum_{i<e} A_{i}(\alpha) p(\alpha)^{i}}=-1$.

Proof. We begin by proving (B). Pick any $b \in F$ with $v(b)=v\left(A_{0}\right)$. Since valuation rings are integrally closed, we have $u(\alpha) \geq 0$ (note that α is a root of $k-k(\alpha)$). Since all the coefficients of the polynomials A_{i} are in the maximal ideal of v, we have $u\left(p(\alpha)^{e}\right)>0$, so $\bar{p}(\bar{\alpha})=0$. Because $v(b)=v\left(A_{0}\right) \neq \infty$, thus $\overline{b^{-1} A_{0}}$ is a nonzero polynomial of degree less than that of \bar{p}, the irreducible polynomial of $\bar{\alpha}$ over \bar{F}. Thus $b^{-1} A_{0}(\alpha)$ is a unit, so $v\left(A_{0}\right)=v(b)=u\left(A_{0}(\alpha)\right)$. If $u\left(p(\alpha)^{e}\right)>v\left(A_{0}\right)$, then whenever $0<i<e$ we have $u\left(A_{i}(\alpha)\right) \geq v\left(A_{i}\right)$ and hence

$$
u\left(A_{i}(\alpha) p(\alpha)^{i}\right)>\frac{e-i}{e} u\left(A_{0}(\alpha)\right)+\frac{i}{e} v\left(A_{0}\right)=u\left(A_{0}(\alpha)\right),
$$

so $u(k(\alpha))=v\left(A_{0}\right)$, a contradiction. On the other hand, if $u\left(p(\alpha)^{e}\right)<v\left(A_{0}\right)$, then for all $i<e$ we have

$$
\begin{aligned}
u\left(A_{i}(\alpha) p(\alpha)^{i}\right) & \geq \frac{e-i}{e} v\left(A_{0}\right)+i u(p(\alpha)) \\
& >(e-i) u(p(\alpha))+i u(p(\alpha))=u\left(p(\alpha)^{e}\right)
\end{aligned}
$$

so $u(k(\alpha))=u\left(p(\alpha)^{e}\right)<v\left(A_{0}\right)$, another contradiction. Thus $u\left(p(\alpha)^{e}\right)=v\left(A_{0}\right)$. The last assertions of (B) follow easily since $u\left(p(\alpha)^{e} b^{-1}\right)=0$ and by hypothesis

$$
u\left(\left(p(\alpha)^{e}+\sum A_{i}(\alpha) p(\alpha)^{i}\right) b^{-1}\right)=u(k(\alpha))-v\left(A_{0}\right)>0 .
$$

We now apply the results of (B) to prove (A). Let v^{\prime} denote any extension of v to $F[\alpha]$. We denote by $f_{v^{\prime} / v}$ and $e_{v^{\prime} / v}$ the ramification degree and index of v^{\prime} / v, respectively. Part B applied with $u=v^{\prime}$ tells us that $\bar{p}(\bar{\alpha})=0$, so $f_{v^{\prime} / v} \geq f$. That $\left(v F+\mathbb{Z} \frac{1}{e} v\left(A_{0}\right): v F\right)=e$ shows that $e_{v^{\prime} / v} \geq e$. But $e f=\operatorname{deg} k \geq[F[\alpha]: F] \geq e_{v^{\prime} / v} f_{v^{\prime} / v} \geq e f$ so that $e=e_{v^{\prime} / v}$
and $f=f_{v^{\prime} / v}$ and $\operatorname{deg} k=[F[\alpha]: F]$. Thus k is irreducible over F and v has a unique extension to $F[\alpha]$.

Theorem 1 will be a corollary of:

Theorem 5. Suppose that \bar{p} is separable over \bar{F} and that e is not divisible by the characteristic of \bar{F}. Further suppose that there is an integer $d>0$ with

$$
\begin{equation*}
e d v\left(A_{i}\right)>(e-i)(d+1) v\left(A_{0}\right)>0 \tag{1}
\end{equation*}
$$

whenever $0<i<e$. If $u(k(\alpha))>v\left(A_{0}\right)$ for some element α of a Henselian extension (K, u) of (F, v), then k has a root in K.

Remarks 6. (A) Working in the divisible hull of $v F$ we can rewrite condition (1) in the form

$$
\frac{1}{e-i} v\left(A_{i}\right)>\left(1+\frac{1}{d}\right)\left(\frac{1}{e}\right) v\left(A_{0}\right)>0 .
$$

The existence of such an integer d is automatic when $v F$ is rank one (as we observed earlier, the inequalities of Notation $3(\mathrm{~d})$ are strict when $i>0)$. The existence is also clear if k is a generalized Schönemann polynomial (just set $d=e$), so that Theorem 1 is indeed a corollary of Theorem 5 .
(B) We now show that if $e \neq 1$, then the value $v\left(A_{0}\right)$ in Theorem 5 is best possible, so that in particular the value $v(t)$ in Theorem 1 is best possible. Let α be a root of p in an algebraic extension (K, u) of a Henselization $\left(F^{\prime}, v^{\prime}\right)$ of (F, v). Since $\left(F^{\prime}, v^{\prime}\right)$ is an immediate extension of (F, v), the conditions of Notation 3 hold with (F, v) replaced by $\left(F^{\prime}, v^{\prime}\right)$, so k is irreducible over F^{\prime} by Lemma 4 . We have $u(\alpha) \geq 0$ since $p \in A[x]$, and
hence $u(k(\alpha))=u\left(A_{0}(\alpha)\right) \geq v\left(A_{0}\right)$. However the Henselian extension $F^{\prime}[\alpha]$ of F cannot have a root of k since k has degree ef, but α generates an extension of F^{\prime} of degree only f.

Proof of Theorem 5. We will use Lemma 4B repeatedly, and usually only implicitly. Observe that $p^{\prime}(\alpha)$ is a unit since \bar{p} is irreducible and separable over \bar{F} with root $\bar{\alpha}$. We now show that $u\left(k^{\prime}(\alpha)\right)=\left(1-\frac{1}{e}\right) v\left(A_{0}\right)$. We may write

$$
\begin{equation*}
k^{\prime}(\alpha)=e p(\alpha)^{e-1} p^{\prime}(\alpha)+\sum_{i<e}\left(A_{i}(\alpha) i p(\alpha)^{i-1} p^{\prime}(\alpha)+A_{i}^{\prime}(\alpha) p(\alpha)^{i}\right) \tag{2}
\end{equation*}
$$

Since char $\bar{F} \nmid e$ and $p^{\prime}(\alpha)$ is a unit, we have $u\left(e p^{e-1}(\alpha) p^{\prime}(\alpha)\right)=\left(1-\frac{1}{e}\right) v\left(A_{0}\right)$. It suffices to show that the other terms of (2) have larger values. If $0<i<e$ we have

$$
\begin{aligned}
u\left(A_{i}(\alpha) i p(\alpha)^{i-1} p^{\prime}(\alpha)\right) & \geq v\left(A_{i}\right)+(i-1) \frac{1}{e} v\left(A_{0}\right) \\
& >\left(\frac{e-i}{e}\right) v\left(A_{0}\right)+\left(\frac{i-1}{e}\right) v\left(A_{0}\right)=\left(1-\frac{1}{e}\right) v\left(A_{0}\right)
\end{aligned}
$$

and since the coefficients of A_{i}^{\prime} are integer multiples of those of A_{i}, we have

$$
u\left(A_{i}^{\prime}(\alpha) p^{i}(\alpha)\right) \geq v\left(A_{i}\right)+i u(p(\alpha)) \geq v\left(A_{0}\right)>\left(1-\frac{1}{e}\right) v\left(A_{0}\right)
$$

Finally, $u\left(A_{0}^{\prime}(\alpha)\right) \geq v\left(A_{0}\right)>\left(1-\frac{1}{e}\right) v\left(A_{0}\right)$. Thus indeed $u\left(k^{\prime}(\alpha)\right)=\left(1-\frac{1}{e}\right) v\left(A_{0}\right)$.
Let us write $r=-\sum_{i<e} A_{i} p^{i}$, so $k=p^{e}-r$. By the Lemma $p(\alpha) \neq 0$ and $\overline{r(\alpha) / p(\alpha)^{e}}=1$. Since char $\bar{F} \nmid e$, we may apply Hensel's Lemma to $X^{e}-r(\alpha) / p(\alpha)^{e}$ to show the existence of $\eta \in K$ with $\bar{\eta}=1$ and $\eta^{e}=r(\alpha) / p(\alpha)^{e}$, i.e., $r(\alpha)=(\eta p(\alpha))^{e}$. Applying Hensel's Lemma to $p-\eta p(\alpha)$ we deduce the existence of $\delta \in K$ with $\bar{\delta}=\bar{\alpha}$ and $p(\delta)=\eta p(\alpha)$ (recall that $u(p(\alpha))>0)$. Then $p(\delta)^{e}-r(\alpha)=0$. We may assume without loss of generality that
$p(\alpha) \neq p(\delta)$ (and hence that $\alpha \neq \delta)$ since otherwise

$$
k(\alpha)=p(\alpha)^{e}-r(\alpha)=p(\delta)^{e}-r(\alpha)=0,
$$

proving the theorem in this case.
We claim that $u(p(\alpha)-p(\delta))=u(\alpha-\delta)$. If α is not a unit, then p is monic and linear (since $\bar{p}(\bar{\alpha})=0$), and hence $p(\alpha)-p(\delta)=\alpha-\delta$. Suppose that α is a unit. Write $p=\sum b_{i} x^{i}$, and set

$$
\xi=\sum b_{i} \alpha^{i-1}\left(1+\left(\frac{\delta}{\alpha}\right)+\cdots+\left(\frac{\delta}{\alpha}\right)^{i-1}\right)
$$

Since $\overline{\delta / \alpha}=1$, the separability of \bar{p} implies that $\bar{\xi}=\bar{p}^{\prime}(\bar{\alpha}) \neq 0$. But $p(\alpha)-p(\delta)=(\alpha-\delta) \xi$, so that in this case we also have $u(p(\alpha)-p(\delta))=u(\alpha-\delta)$.

Now note that

$$
\begin{aligned}
k(\alpha) & =p(\alpha)^{e}-p(\delta)^{e}+p(\delta)^{e}-r(\alpha) \\
& =p(\alpha)^{e}-p(\delta)^{e}=p(\alpha)^{e}\left(1-\eta^{e}\right) \\
& =p(\alpha)^{e-1}(p(\alpha)-p(\delta))\left(1+\eta+\cdots \eta^{e-1}\right)
\end{aligned}
$$

Since $\bar{\eta}=1$ and the characteristic of \bar{F} does not divide e, therefore $1+\eta+\cdots+\eta^{e-1}$ is a unit and hence

$$
\begin{equation*}
u(k(\alpha))=(e-1) u(p(\alpha))+u(\alpha-\delta)=\left(1-\frac{1}{e}\right) v\left(A_{0}\right)+u(\alpha-\delta) . \tag{3}
\end{equation*}
$$

We next estimate $u(k(\delta))$. Note that

$$
\begin{aligned}
k(\delta) & =p^{e}(\delta)-r(\delta)+r(\alpha)-r(\alpha) \\
& =r(\alpha)-r(\delta)=\sum_{i<e} A_{i}(\delta) p(\delta)^{i}-A_{i}(\alpha) p(\alpha)^{i} .
\end{aligned}
$$

Each A_{i} is a sum of terms of the form $c x^{j}$ where $0 \leq j<f, c \in F$, and

$$
v(c) \geq v\left(A_{i}\right) \geq\left(1-\frac{i}{e}\right)\left(1+\frac{1}{d}\right) v\left(A_{0}\right),
$$

so $k(\delta)$ is a sum of terms of the form

$$
c \delta^{j} p(\delta)^{i}-c \alpha^{j} p(\alpha)^{i}=c\left(\delta^{j}\left(p(\delta)^{i}-p(\alpha)^{i}\right)+p(\alpha)^{i}\left(\delta^{j}-\alpha^{j}\right)\right)
$$

Arguing as above and using equation (3) we calculate that if $e>i>0$, then

$$
\begin{aligned}
& u\left(c \delta^{j}\left(p(\delta)^{i}-p(\alpha)^{i}\right)\right) \\
& \quad \geq v(c)+u\left(p(\alpha)^{i-1}(p(\alpha)-p(\delta))\left(1+\eta+\cdots+\eta^{i-1}\right)\right) \\
& \quad \geq\left(\left(1-\frac{i}{e}\right)\left(1+\frac{1}{d}\right)+\frac{i-1}{e}\right) v\left(A_{0}\right)+u(\alpha-\delta) \\
& \quad=u(k(\alpha))+\left(\left(1-\frac{i}{e}\right)\left(1+\frac{1}{d}\right)+\frac{i-1}{e}-\left(1-\frac{1}{e}\right)\right) v\left(A_{0}\right) \\
& \quad=u(k(\alpha))+\frac{e-i}{d e} v\left(A_{0}\right) \geq u(k(\alpha))+\frac{1}{d e} v\left(A_{0}\right)
\end{aligned}
$$

and similarly that if $j>0$ then

$$
\begin{aligned}
& u\left(c \left(p(\alpha)^{i}\right.\right.\left.\left.\left(\delta^{j}-\alpha^{j}\right)\right)\right) \\
& \quad \geq\left(\left(1-\frac{i}{e}\right)\left(1+\frac{1}{d}\right)\right) v\left(A_{0}\right)+\frac{i}{e} v\left(A_{0}\right)+u(\alpha-\delta) \\
& \quad \geq u(k(\alpha))+\frac{1}{d e} v\left(A_{0}\right) .
\end{aligned}
$$

Combining these inequalities we have

$$
u(k(\delta)) \geq u(k(\alpha))+\frac{1}{d e} v\left(A_{0}\right) .
$$

To summarize, we have shown that for any α in K with $u(k(\alpha))>v\left(A_{0}\right)$ we have $u\left(k^{\prime}(\alpha)\right)=\left(1-\frac{1}{e}\right) v\left(A_{0}\right)$ and we can find an α^{\prime} in K with $u\left(k\left(\alpha^{\prime}\right)\right) \geq u(k(\alpha))+\frac{1}{d e} v\left(A_{0}\right)>$
$v\left(A_{0}\right)$ (so that $\left.u\left(k^{\prime}\left(\alpha^{\prime}\right)\right)=\left(1-\frac{1}{e}\right) v\left(A_{0}\right)\right)$. Thus we can find $\alpha^{\prime \prime}$ in K with $u\left(k\left(\alpha^{\prime \prime}\right)\right) \geq$ $u\left(k\left(\alpha^{\prime}\right)\right)+\frac{1}{d e} v\left(A_{0}\right) \geq u(k(\alpha))+\frac{2}{d e} v\left(A_{0}\right)$ and $u\left(k^{\prime}\left(\alpha^{\prime \prime}\right)\right)=\left(1-\frac{1}{e}\right) v\left(A_{0}\right)$. Continuing in this manner we can find an element $\alpha^{*} \in K$ with

$$
u\left(k\left(\alpha^{*}\right)\right)>2\left(1-\frac{1}{e}\right) v\left(A_{0}\right)=2 u\left(k^{\prime}\left(\alpha^{*}\right)\right),
$$

so that by a standard version of Hensel's Lemma [2, Theorem 4.1.3(5), p. 88], k has a root in K.

We record a corollary to Theorem 5. We continue the hypotheses of Notation 3.

Corollary 7. Suppose that (F, v) is Henselian and that a finite degree tamely ramified extension (K, u) of (F, v) has an element α satisfying $u(k(\alpha))>v\left(A_{0}\right)$. Then k has a zero in K.

Proof. The "tame" hypothesis means that $[K: F]=[\bar{K}: \bar{F}](v K: v F)$, that \bar{K} / \bar{F} is separable, and that the characteristic of \bar{F} does not divide $(u K: v F)$. Then by Lemma 4, \bar{p} must be separable over \bar{F} and the characteristic of \bar{F} cannot divide e (a divisor of $(u K: v F))$. Theorem 5 then implies our result.

Remark 8. We plan to generalize the above Corollary (but not Theorem 5 itself) to a class of irreducible polynomials over F which when (F, v) is a maximal field is precisely the class of monic irreducible polynomials. In this generalization the role of the values $v\left(A_{0}\right)$ would be essentially played by the invariants " γ_{f} " of [1, p. 466].

Acknowledgements. Part of the work on this paper was done while the author was visiting the University of Saskatchewan. I acknowledge with pleasure the stimulating atmosphere
of the University's Algebra and Logic Group, and the generosity with which Professor Franz-Viktor Kuhlmann shared his knowledge of the literature of valuation theory.

References

[1] R. Brown, Valuations, primes and irreducibility in polynomial rings and rational function fields, Trans. Amer. Math. Soc., 174 (1972), 451-488.
[2] A. J. Engler and A. Prestel, Valued Fields, Springer-Verlag, Berlin (2005).
[3] F.-V. Kuhlmann, Valuation Theory, 2007 draft available at http://math.usask.ca/~fvk/Fvkbook.htm.
[4] S. Khanduja and J. Saha, On a generalization of Eisenstein's irreducibility criterion, Mathematika, 44 (1997), 37-41.
[5] P. Ribenboim, The Theory of Classical Valuations, Springer-Verlag, New York (1999).

Keywords: Henselian fields, Schönemann polynomials, irreducible polynomials, roots

MSC (2000): Primary 12J10; Secondary 12E05.
Department of Mathematics, 2565 McCarthy Mall, University of Hawaif, Honolulu, Hi 96822, USA

E-mail address: ron@math.hawaii.edu

