
ROOTS OF IRREDUCIBLE POLYNOMIALS IN

TAME HENSELIAN EXTENSION FIELDS

Ron Brown

Department of Mathematics
2565 McCarthy Mall
University of Hawaii

Honolulu, HI 96822, USA
(email: ron@math.hawaii.edu)

Abstract. A class of irreducible polynomials P over a valued field (F, v) is introduced, which

is the set of all monic irreducible polynomials over F when (F, v) is maximally complete. A
“best–possible” criterion is given for when the existence of an approximate root in a tamely

ramified Henselian extension K of F to a polynomial f in P guarantees the existence of an
exact root of f in K.

§1. Introduction and the main theorem

Throughout this paper (F, v) will be a valued field with nontrivial value group vF ,

residue class field F and valuation ring O. For any a ∈ O and polynomial h ∈ O[x] we let

a and h denote the canonical images of a and h in F and F [x], respectively.

We begin with an example. Suppose that q is an odd prime. Then f(x) = x2 − q is

irreducible over the q-adic numbers Qq, and if K is an algebraic extension of Qq with an

element α with v(f(α)) > v(q) (where v is the q-adic valuation), then 2v(f ′(α)) = v(q)

and hence by Hensel’s Lemma (Engler and Prestel, 2005, Theorem 1.3.1) a root of f lies
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in K. More generally suppose that g ∈ F [x] is a generalized Schönemann polynomial over

F , i.e., that: g = pe + th where e ≥ 1; p ∈ O[x] is monic with p irreducible; h ∈ O[x] has

p ∤ h and deg pe > deg h; and t ∈ O has v(t) 6∈ svF for all divisors s > 1 of e. Then g

is also irreducible over F , and if (F, v) is Henselian and if a tamely ramified finite degree

extension (K, u) of (F, v) has an element α with u(g(α)) > v(t), then K has a root of g

(Brown, 2007, Lemma 4 and Corollary 7).

In this paper we generalize the above result to a large class P of irreducible polynomials

over F . If v is discrete rank one, then P is the set of monic polynomials over F which are

irreducible over the completion of (F, v), and if (F, v) is maximally complete (Schilling,

1950, Definition 9, p. 36), then P is the set of all monic irreducible polynomials over F .

(See Remark 6(C) below.) The role of “v(t)” in this generalization will be played for each

h ∈ P by an invariant γh of h lying in the divisible hull of vF which will be constructed

along with the set P, but which can be characterized intrinsically in several ways. (See

Remark 6(B).) The construction and analysis of P and the invariants γh will be made in

the next section. Anticipating that work, we close this introduction by stating our only

theorem. It will be proved in Section 3.

Theorem 1. Suppose that (F, v) is Henselian and h ∈ P. Suppose that α is an element

of a tamely ramified finite degree extension (K, u) of (F, v) with u(h(α)) > γh. Then there

is a root of h in K.

The analysis of γh will show that for each h ∈ P it is best possible in the above theorem

(see Remark 8 at the end of Section 3). The hypothesis that (K, u) is a tamely ramified

extension of (F, v) says that the field extension K/F is separable, the characteristic of F
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does not divide the ramification index eu/v = (uK : vF ), and [K : F ] is the product of

eu/v and the residual degree fu/v = [K : F ].

There are examples in (Brown, 2007, Remark 2(B)) showing that Theorem 1 gives a

stronger result in general than those obtained from some natural direct applications of

Hensel’s Lemma to the problem of the existence of roots of polynomials in P.

§2. The class P of polynomials

We shall let E denote the set of all extensions of v to a valuation on F [x] mapping into

QvF
⋃

{∞} where we let QvF denote a (fixed) divisible hull of vF . For extensions w of v

to a valuation on F [x] we allow w−1(∞) to be a nonzero ideal of F [x]. The extensions w

with w−1(∞) trivial correspond precisely to extensions of v to the rational function field

F (x), and the extensions with w−1(∞) nontrivial (in which case w−1(∞) is a maximal

ideal) correspond precisely to the extensions of v to the field F [x]/w−1(∞). This paper

is indeed about algebraic extensions of F ; however, valuations on F [x] give us a setting

in which we can describe ways in which two extensions of v to possibly different simple

algebraic extensions of F can be closely related.

A notational convention will be useful. Whenever w (respectively, wi) is used to denote

an extension of v to a valuation on F [x], we will denote the associated (surjective) place

by τ : F [x] −→ k
⋃

{∞} (respectively, by τi : F [x] −→ ki

⋃

{∞}).

Definition 2. Suppose that n ≥ 0. A strict system of polynomial extensions over (F, v) of

length n+ 1 is a finite sequence

g =
(

(g0, w0, γ0), · · · , (gn+1, wn+1, γn+1)
)
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of elements of F [x] × E × (QvF
⋃

{−∞}) such that for some a ∈ F ,

(A) g0 = x− a, γ0 = −∞, and w0(h) = v(h(a)) for all h ∈ F [x];

and when 0 ≤ i ≤ n:

(B) deg gi+1 > deg gi;

(C) γi+1 = wi(gi+1);

(D) wi+1(gi+1) = ∞;

(E) wi(Ar)/(di − r) ≥ wi(A0)/di > γi for all r < di where

gi+1 = gdi

i +
∑

r<di

Arg
r
i

is the gi–expansion of gi+1 (so degAr < deg gi for all r < di);

(F) if e > 0 is least with ewi(A0) ∈ diwiF [x], then the polynomial

(1) Y di/e +
∑

r<di/e

τi
(

s(di/e)−rAer

)

Y r

is irreducible over ki for all s ∈ F [x] with diwi(s) = −ewi(A0).

The symbol −∞ above is used with the convention that −∞ < a for all a ∈ QvF ∪{∞}.

One should observe that in (F) of the above definition we have e | di; indeed

(2) e =

(

wiF [x] + Z
1

di
wi(A0) : wiF [x]

)

.

Also one can check that the irreducibility of the polynomial (1) above over ki is independent

of the choice of s and, using the inequalities of (E), that the coefficients of this polynomial

are indeed finite.

We let P = P(F ) denote the set of all polynomials over F which appear as the first

coordinate of some term (h, w, γ) of some strict system of polynomial extensions over (F, v).
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That any such polynomial h uniquely determines both the corresponding coordinates w

and γ independently of any strict system of polynomial extensions in which h appears

will follow from Proposition 5 and Remark 6(B) below. Definition 2, while admittedly

complicated, puts the notion of a sequence of n+1 extensions of polynomials from (Brown,

1972, Definition 5.8, p. 467, and §7) (with the degrees of the polynomials strictly increasing

and the first polynomial linear) into a setting which allows an efficient inductive analysis

in Proposition 5 of the polynomials in P and their associated valuations and invariants.

While this paper uses ideas and some arguments from (Brown, 1972), we will not use the

results of that paper except in Remark 6(C), which itself is not applied elsewhere in this

paper.

Examples 3. Suppose that g = pe + th ∈ F [x] is a generalized Schönemann polynomial as

in Section 1.

(A) If deg p = 1 and e > 1, then ((p, u0,−∞), (g, u1, v(t))) is a strict system of

polynomial extensions of length one, where u0

(
∑

bip
i
)

= v(b0) and u1(cg +
∑

i<e
bip

i) =

mini(v(bi) + i
ev(t)) for all bi ∈ F , c ∈ F [x]. A concrete example over the field Q3 of 3-adic

numbers of such a polynomial g would be (x− 1)2 − 3.

(B) If deg p > 1, then ((x, w0,−∞), (p, w1, 0)) is a strict system of polynomial extensions

of length one, where w0(c) = v(c(0)) and w1(pc +
∑

i<deg p

bix
i) = mini<deg p v(bi) for all

c ∈ F [x], bi ∈ F .

(C) If deg p > 1 and e > 1, then ((x, w0,−∞), (p, w1, 0), (g, w2, v(t))) is a strict system

of polynomial extensions of length 2, where w2(cg+
∑

i<e
bip

i) = mini(w1(bi)+ i
ev(t)) for all

c ∈ F [x] and bi ∈ F [x] with deg bi < deg p. An example of such a polynomial g over Q3
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would be the classical Schönemann polynomial (x2 − 2)2 − 3.

The above examples generalize routinely to a class of polynomials considered by Khan-

duja and Saha (1997, Theorem 1.1) even without the separability requirement of their

theorem.

Let N ≥ 0. Our last two examples will be strict systems of polynomial extensions of

length N + 1. Both will have the form

g =
(

(g0, w0,−∞), (g1, w1, γ1), · · · , (gN+1, wN+1, γN+1)
)

where for each n we denote by wn an extension of v to a valuation on F [x] with wn(gn) = ∞.

(D) Let p be a rational prime and v be the p-adic valuation on Q with v(p) = 1. Let

g0 = x, g1 = x2 − p, and for each n ≥ 1 let gn+1 = g2
n − p2n

gn−1 and let γn = 4n−1
3

1
2n−1 .

Then (i) the sequence g above is a strict system of polynomial extensions over (Q, v) of

length N+1, and (ii) wN+1(gN ) = γN+1/2. The N = 0 case of the assertion (i) is included

in Example (A) above, and the general case of both assertions is easily proven by induction

on N using Proposition 5 below. (To prove (i) apply the Proposition to wN , and having

proved (i), then prove (ii) by applying the Proposition to wN+1. The key observation is

that the induction hypothesis implies that wN (gN+1 − g2
N ) = γN+1.) The Proposition

implies that the wn are uniquely determined.

(E) Let v be the t-adic valuation on the rational function field Q(t) with v(t) = 1. Let

g0 = x, g1 = x2−2, and for all n ≥ 1 let gn+1 = g2
n−t

2n+1−2n−1−1gn−1 and let γn = 2n−2.

Then (i) g is a strict system of polynomial extensions over (Q(t), v) of length N + 1, and

(ii) gN/t
2N−1 is a unit with respect to the valuation wn+1 and its residue class is a 2N+1st

root of 2. The N = 0 case of this assertion is a special case of Example (B) above, and
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the general case follows by induction on N using exactly the outline given parenthetically

in the previous example (D).

For the remainder of this section we assume that g is a strict system of polynomial

extensions over (F, v) and use the notation for g in the above Definition 2. In the next

Proposition we will also use the convention introduced just before Definition 2 as well as

the following

Notation 4. (A) Write J0 = {0} and g0 = 1. When 0 < i ≤ n+1 let Ji =
∏

j<i
{0, 1, . . . , dj −

1}. For any σ ∈ Zi we write 0 ≤ σ if all the coordinates of σ are nonnegative, in which case

we also write σ = (σ(0), · · · , σ(i−1)) and gσ =
∏

j<i

g
σ(j)
j . In all cases, {gσ : σ ∈ Ji} is a basis

for the F–space F [x]deg gi
, where for any m ≥ 1 we write F [x]m = {h ∈ F [x] : deg h < m}.

We will say that {gσ : σ ∈ Ji} is a valuation basis for F [x]deg gi
with respect to an extension

of v to a valuation w on F [x] if for all choices of aσ ∈ F we have

w

(

∑

σ∈Ji

aσg
σ

)

= min
σ∈Ji

w(aσg
σ) .

(B) Let E denote either F [x] or a field extension of F . For any extension u of v to a

valuation on E let eu/v = (uE : vF ) denote the ramification index and fu/v = [E : F ]

denote the residual degree of the extension.

Proposition 5. Suppose that w is an extension of v to a valuation on F [x] with w(gn+1) >

γn+1. Then for all integers i with 0 ≤ i ≤ n we have:

(A) w(gi) = wi+1(gi) = γi+1/di;

(B) {gσ : σ ∈ Ji+1} is a valuation basis for w on F [x]deg gi+1
;
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(C) gi+1 is irreducible over F ; wi+1 is the unique extension of v to F [x] mapping gi+1

to ∞; and deg gi+1 = ewi+1/vfwi+1/v;

(D) there is an F–homomorphism Φi+1 : ki+1 −→ k with Φi+1τi+1(cg
σ) = τ(cgσ)

whenever c ∈ F , 0 ≤ σ ∈ Zi+1, and w(cgσ) ≥ 0.

In (A) of the above Proposition we have identified (as one can do, uniquely) the subgroup

of elements of wF [x] which have a nonzero multiple in vF with a subgroup of our fixed

divisible hull QvF of vF . Part (C) above is equivalent to the assertion that if u is an

extension of v to F [ξ] where ξ is a root of gi+1, then deg gi+1 = [F [ξ] : F ] = eu/vfu/v.

Remarks 6. We note some consequences of the Proposition above.

(A) Suppose that 0 ≤ i ≤ n. Since wi+1(gi+1) = ∞, the place τi+1 maps F [x]deg gi+1

onto ki+1

⋃

{∞} and wi+1 maps F [x]deg gi+1
onto wi+1F [x]

⋃

{∞}. Combining (A), (B)

and (D) of the Proposition shows that w and wi+1 agree on F [x]deg gi+1
and that Φi+1τi+1

and τ agree on F [x]deg gi+1
.

(B) Part (C) of the above Proposition says that gi+1 uniquely determines wi+1 for

all i ≤ n. We now argue that gi+1 also uniquely determines γi+1. Specifically, γi+1 is

the minimal element of QvF with the property that if u and u∗ are extensions of v to

F [x] with u(gi+1) > γi+1 < u∗(gi+1), then they agree on F [x]deg gi+1
. That γi+1 has this

property follows from the remarks in the previous paragraph; γi+1 is the minimal element

of QvF with this property, since wi(gi+1) = γi+1 < wi+1(gi+1), but wi and wi+1 do not

agree on gi ∈ F [x]deg gi+1
. Since gi+1 uniquely determines γi+1, we can unambiguously

denote γi+1 by γgi+1
(independently of any strict system of polynomial extensions in which

gi+1 appears but of course depending on the choice of (F, v)). This is the notation used
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in the statement of Theorem 1. Another characterization of γi+1 can be adapted from

(Brown, 1972, Proposition 5.6, p. 467): γi+1 is the minimal element of QvF such that

if h ∈ F [x]deg gi+1
and wi+1(h) > γi+1, then gi+1 + h is irreducible. A third intrinsic

characterization of γi+1 follows from the fact that it is best possible in Theorem 1 (see

Remark 7 below).

(C) First suppose that (F, v) is a maximally complete field (Schilling, 1950, p. 36). By

the Proposition all the elements of P are monic irreducible over F . Conversely any monic

irreducible polynomial h over F can be shown by the methods of (Brown, 1972) to be in

P. Basically one takes the (possibly transfinite) generating sequence of the augmented

signature (Brown, 1972, Definition 7.5, p. 477) of the unique extension w of v to F [x] with

w(h) = ∞, and then deletes all terms whose degree is the same as that of a later term.

Next suppose that (F, v) is discrete rank one, say with completion (F̃ , ṽ). Any strict

system of polynomial extensions over (F, v) lifts to one over (F̃ , ṽ) by just extending the

valuations on F [x] to extensions of ṽ to F̃ [x]. Thus each element of P is irreducible over F̃ .

In fact, in this case P is exactly the set of monic polynomials over F which are irreducible

over F̃ . The key fact here is that for any monic polynomial h in F [x] which is irreducible

over F̃ there is a unique extension w of ṽ to F̃ [x] with w(h) = ∞, and if we take the

systems of representatives A and B of (Brown, 1972, §4) to be in F , then the generating

sequence of the augmented signature of w will be a sequence of polynomials in F [x] with

last term h.

The remainder of this section is devoted to a proof of the Proposition. The proof of

part (A) especially borrows heavily from the proof of the Fundamental Lemma in Section
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8 of (Brown, 1972). We included these arguments here since it seemed unreasonable to ask

the reader to extract them from (Brown, 1972), where the exposition involves complicated

machinery, some of which assumes that (F, v) is maximally complete. The proof will show

that when 0 ≤ i ≤ n, then the value group of wi+1 is wiF [x] + Z(γi+1/di) and the residue

class field of wi+1 is isomorphic to an extension of the residue class field of wi by a root of

the polynomial (1) of Definition 2.

Given our strict system of polynomial extensions g, we set for each i ≤ n:

(3) qi = γi+1/di , ei = (wiF [x] + Zqi : wiF [x]) , and fi = di/ei .

Note that q0 > γ0 = −∞ (by Definition 2 applied with i = 0) and that if 0 ≤ i ≤ n,

then with A0 as in Definition 2 we have

(4) diqi = γi+1 = wi(gi+1) = wi(A0) > diγi

(using the definition of qi and parts (C), (D) and (E) of Definition 2, respectively). Hence,

if 0 ≤ i ≤ n, then

(5) qi > γi and if i < n, then qi+1 > diqi .

Finally, by Equation (2) for any i ≤ n the value of e in Definition 2(F) is exactly the ei

above.

By induction we may assume that the Proposition is true for all strict systems of poly-

nomial extensions over (F, v) of length less than n+ 1.

Our first task is to prove that w(gi) = qi whenever 0 ≤ i ≤ n. Just suppose that

this is not true. Then there exists a smallest t with 0 ≤ t ≤ n and w(gt) 6= qt. Hence
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w(gi) = qi for all i < t, and by our induction hypothesis on n and the inequality (5) we

have w(gi) ≤ γi < qi whenever t < i ≤ n.

Claim 1. If w(gt) < qt, then w(gi+1) = diw(gi) whenever t ≤ i ≤ n.

Proof of Claim 1. Suppose that t ≤ i ≤ n. We may suppose by induction on i that

w(gm+1) = dmw(gm) whenever t ≤ m < i. We use the notation of Definition 2(E). For

each r < di we can write

Ar =
∑

σ∈Ji

crσg
σ

for some crσ ∈ F . If i > 0 we can apply our induction hypothesis on n to the valuation wi

to show that for each r < di

(6) wi(Ar) = min
σ∈Ji

(

v(crσ) +
∑

m<i

σ(m)qm

)

.

Equation (6) is trivially true if i = 0. Thus by Equation (4) above and Definition 2(E) for

all r and σ we have

w(crσg
σ) ≥ wi(Ar) +

∑

m<i

σ(m)(w(gm) − qm)

≥ (di − r)qi +
∑

m<i

σ(m)(w(gm) − qm) .

Now w(gm) = qm for all m < t, and w(gm) < qm whenever t ≤ m ≤ i. Hence for all r < di
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and σ ∈ Ji setting σ(i) = r yields

w
(

crσg
σgr

i

)

= w(crσg
σ) + rw(gi)

≥ diqi +
∑

m≤i

σ(m)(w(gm) − qm)

≥ diqi +
∑

t≤m≤i

(dm − 1)(w(gm) − qm)

= diw(gi) + (qt − w(gt)) +
∑

t≤m<i

(qm+1 − dmqm) +
∑

t≤m<i

(dmw(gm) − w(gm+1))

> diw(gi)

(since qt > w(gt), and since by our induction hypothesis on i and formula (5), the last

summation above is zero and the penultimate one is nonnegative). Therefore

w(gi+1) = w

(

gdi

i +
∑

r<di

∑

σ∈Ji

crσg
σgr

i

)

= w(gdi

i ) = diw(gi) ,

proving the claim.

If w(gt) < qt, then the above claim tells us that w(gn+1) = dnw(gn) < dnqn = γn+1, a

contradiction. Hence we may conclude that if w(gt) 6= qt, then w(gt) > qt. Thus by our

induction on n, {gσ : σ ∈ Jt} is a valuation basis for w on F [x]deg gt
.

Claim 2. w(gt+1) = dtqt and t < n.

Proof of Claim 2. Note that wt and w agree on F [x]deg gt
by induction on n. We can write

gt+1 = gdt

t +
∑

r<dt

Arg
r
t where Ar ∈ F [x]deg gt

for each r. If r 6= 0, then

w(Arg
r
t ) = wt(Ar) + rw(gt) >

dt − r

dt
wt(A0) + rqt = dtqt

(cf. display (4)). But w(gdt

t ) = dtw(gt) > dtqt and w(A0) = wt(A0) = dtqt, so w(gt+1) =

dtqt, as claimed. Thus t 6= n since otherwise w(gn+1) = dnqn = γn+1 < w(gn+1). This

completes the proof of Claim 2.
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Claim 3. If t < i ≤ n, then w(gi+1) = diw(gi).

Proof of Claim 3. We are of course assuming that w(gt) 6= gt and hence that n > t and

w(gt) > qt. We my assume inductively that w(gm+1) = dmw(gm) whenever t < m < i. As

in the proof of Claim 1 we write

gi+1 = gdi

i +
∑

r<di

∑

σ∈Ji

crσg
σgr

i .

Then for all 0 ≤ r < di and σ ∈ Ji we have (again setting σ(i) = r)

w(crσg
σgr

i ) ≥ diqi +
∑

m≤i

σ(m)(w(gm) − qm)

≥ diqi +
∑

t<m≤i

(dm − 1)(w(gm) − qm)

=
∑

t<m<i

(qm+1 − dmqm + dmw(gm) − w(gm+1))

+ qt+1 − w(gt+1) + diw(gi)

> diw(gi) = w(gdi

i )

(the last inequality uses formula (5) and our induction hypotheses on i and n). The claim

follows immediately.

Since n > t, we can take i = n in Claim 3 to obtain

w(gn+1) = dnw(gn) ≤ dnqn = γn+1 ,

contradicting the hypothesis on w. Hence for all i ≤ n we have w(gi) = qi. Applying this

result with wi+1 in place of w shows that wi+1(gi) = qi = γi+1/di. Thus our induction

hypothesis on n implies (A) of the Proposition. In particular, w(gn) = qn > γn, so that
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parts (B), (C) and (D) of the Proposition are valid for all i < n by our induction hypothesis

on n. We now prove them for i = n.

Because wn+1(gn) = w(gn) = qn > γn, we may assume by our induction on n that we

have F–homomorphisms Φn : kn −→ k and Φ′
n : kn −→ kn+1 with Φnτn(cgσ) = τ(cgσ)

and Φ′
nτn(cgσ) = τn+1(cg

σ) whenever c ∈ F , 0 ≤ σ ∈ Zn, and w(cgσ) ≥ 0. As usual we

write

gn+1 = gdn

n +
∑

r<dn

Arg
r
n .

There exist b ∈ F and µ ∈ Jn such that w(sfnA0) = 0 where s = bgµ (if n > 0 then this

follows from (B) with i = n− 1). By Definition 2(F) the polynomial

G = G(Y ) = Y fn +
∑

r<fn

τn(sfn−rAren
)Y r

is irreducible over kn, and hence Φn(G) is irreducible over Φn(kn).

We now show that τ(sgen

n ) is a root of Φn(G). By hypothesis and formula (4)

w(gn+1) > γn+1 = w(A0) = −w(sfn) ,

and if 0 ≤ r < dn and en ∤ r, then

w(Arg
r
n) >

dn − r

dn
w(A0) + rqn = dnqn = −w(sfn) .

Hence

w



(sgen

n )fn +
∑

r<fn

(Aren
sfn−r)(sgen

n )r



 = w
(

sfn

(

gn+1 −
∑

′Arg
r
n

))

> 0

where
∑

′ is the sum over all r < dn with en ∤ r. Thus τ(sgen

n ) is indeed a root of

τ



Y fn +
∑

r<fn

Aren
sfn−rY r



 = Φn(G) .
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(The equality above holds by the choice of Φn, since {gσ : σ ∈ Jn} is a valuation basis for

w on F [x]deg gn
and hence each Aren

sfn−r is a sum of integral elements of the form cgσ

where c ∈ F and 0 ≤ σ ∈ Zn.)

Replacing w by wn+1 and τ by τn+1 in the above argument shows that the irreducible

polynomial Φ′
nG over Φ′

nkn has root τn+1(sg
en

n ) in kn+1. This shows that fwn+1/v ≥

fwn/vfn. Moreover, it also shows that the unique F–isomorphism ψ0 : Φ′
n(kn) −→ Φn(kn)

with ψ0Φ
′
n = Φn lifts to an isomorphism ψ : Φ′

n(kn)[τn+1(sg
en

n )] −→ Φn(kn)[τ(sgen

n )]

taking τn+1(sg
en

n ) to τ(sgen

n ) (after all, ψ0(Φ
′
n(G)) = Φn(G)).

Since wn(gn) = ∞,

wnF [x] = wn(F [x]deg gn
) \ {∞} = vF +

∑

i<n

Zqi

(by induction on n, using (A) and (B) of the statement of the Proposition). By our proof

of part (A) we have wn+1F [x] ⊇ wnF [x]. Hence ewn+1/v ≥ enewn/v by the definition of en

in the display (3).

Because wn+1(gn+1) = ∞, there is a monic irreducible factor h of gn+1 with wn+1(h) =

∞. Then wn+1 induces an extension u of v to the quotient field F [x]/(h) and we have

deg gn+1 ≥ deg h = [F [x]/(h) : F ]

≥ eu/vfu/v = ewn+1/vfwn+1/v

≥ enfnewn/vfwn/v

= enfn deg gn = deg gn+1

(using our induction hypothesis on n). This shows that gn+1 = h is irreducible and that

[F [x]/(gn+1) : F ] = deg gn+1 = ewn+1/vfwn+1/v = eu/vfu/v .
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Thus u is the unique extension of v to F [x]/(gn+1), cf. (Engler and Prestel, 2005, Theorem

3.3.4). It follows that wn+1 is the unique extension of v to F [x] with wn+1(gn+1) = ∞.

This completes the proof of (C) when i = n; it also shows that kn+1 = Φ′
n(kn)[τn+1(sg

en

n )]

and hence that our homomorphism ψ has domain kn+1. Thus in order to prove (D) when

i = n it suffices to show that ψτn+1(cg
σ) = τ(cgσ) whenever c ∈ F , 0 ≤ σ ∈ Zn+1,

and w(cgσ) = v(c) +
∑

j≤n

σ(j)qj ≥ 0. This is obvious if w(cgσ) > 0, so we suppose that

w(cgσ) = 0. This condition implies that we can write cgσ = cgρgenj
n where 0 ≤ ρ ∈ Zn

and 0 ≤ j ∈ Z. We can also write w(sj) = −w(dgδ) for some d ∈ F and δ ∈ Jn. Then

ψ(τn+1(s
jdgδ))ψ(τn+1(cg

σ))

= ψτn+1(cdg
δ+ρ)ψτn+1((sg

en

n )j)

= ψ0Φ
′
nτn(cdgδ+ρ)τ((sgen

n )j)

= Φnτn(cdgδ+ρ)τ((sgen

n )j)

= τ(cdgδ+ρ(sgen

n )j)

= ψ(τn+1(s
jdgδ))τ(cgσ) 6= 0 ,

so indeed ψτn+1(cg
σ) = τ(cgσ), proving (D) for i = n.

It remains to prove (B) when i = n. Consider any nonzero polynomial

B =
∑

j<dn

Bjg
j
n ∈ F [x]deg gn+1

where each Bj ∈ F [x]deg gn
. Using induction on n, it suffices to prove that

w(B) = min
j<dn

w(Bjg
j
n) .

16



We may without loss of generality suppose that all the nonzero terms of B have the same

value and that B0 6= 0 (divide out the largest power of gn dividing all the terms). This

implies that Bj = 0 whenever en ∤ j. With s as above we may pick b ∈ F [x]deg gn
with

w(bB0s
fn) = 0. Then all nonzero terms of

sfnbB =
∑

j<fn

Bjen
sfn−jb(sgen

n )j

have the same value, namely, w(B0s
fnb) = 0. Hence H(Y ) :=

∑

j<fn

τ(Bjen
sfn−jb)Y j

is a nonzero polynomial over Φn(kn) of degree less than fn, the degree of the minimal

polynomial Φn(G) of τ(sgen

n ) over Φn(kn). Hence 0 6= H(τ(sgen

n )), and therefore

0 = w
(

∑

j<fn

Bjen
sfn−jb(sgen

n )j
)

= w(sfnbB) .

Thus w(B) = −w(sfnb) = w(B0), which was to be proved. This completes the proof of

(B) in the case i = n and hence the proof of the Proposition.

Remark 7. Let w be as in Proposition 5. We record here some corollaries of the proof of

Proposition 5 above. First, ewn+1/v = e0 · · · en and wn+1F [x] = vF +
∑

0≤i≤n Zqi. Next,

if we treat the F -homomorphisms Φi : ki → k as identifications, then whenever 0 ≤ i ≤ n

we can regard ki as a subfield of ki+1 and the extension ki+1/ki is generated over ki by a

root of the polynomial (1) of Definition 2.

§3. Proof of Theorem 1

Let β denote a root of h in some algebraic extension of K. Since (F, v) is Henselian, v

has unique extensions to F (α) and to F (β), both of which we also denote by v. We let wα

and wβ denote the extensions of v to F [x] taking each f ∈ F [x] to v(f(α)) and v(f(β)),
17



respectively. The idea of the proof is that the Proposition of Section 2 can be applied to

wα and wβ to obtain an injective homomorphism of short exact sequences

1 −−−−→ F (β)
•
−−−−→ F (β)•/1 + Mβ −−−−→ vF (β) −−−−→ 0





y





y





y

1 −−−−→ F (α)
•
−−−−→ F (α)•/1 + Mα −−−−→ vF (α) −−−−→ 0

where Mα and Mβ are the maximal ideals of the valuation rings of F (α) and F (β) and

where for any field E we let E• denote the multiplicative group of nonzero elements of E.

This is sufficient to guarantee that F (β) is F -isomorphic to a subfield of F (α), and hence

that h has a root in F (α). A convenient vehicle for expressing the argument formally is

the functor ∆ of Brown and Harrison (1970), which we now review.

Let S(F,Γ, r) denote the generalized Laurent series field with residue class field F , value

group Γ, and symmetric factor set r, so S(F,Γ, r) consists of formal sums
∑

γ∈Γ

cγt
γ with

well–ordered support {γ ∈ Γ : cγ 6= 0} (Schilling, 1950, pp. 23–24); if the factor set is

trivial we write S(F,Γ) for S(F,Γ, 1). For any valued field (E,w) we let ∆E = B/b where

B = BE =
{

∑

bγt
γ ∈ S(E,wE) : w(bγ) ≥ γ ∀γ ∈ wE

}

and

b = bE =
{

∑

bγt
γ ∈ S(E,wE) : w(bγ) > γ ∀γ ∈ wE

}

,

and we let ∆w : B/b −→ wE
⋃

{∞} be defined by the formula

∆w
(

∑

bγt
γ + b

)

= inf{γ ∈ wE : w(bγ) = γ}

(setting inf φ = ∞). Then ∆(E,w) := (∆E,∆w) is a valued field (Brown and Harrison,

1970), and ∆ is a functor on the category of valued fields. (Here, morphisms (E,w) −→
18



(E′, w′) are pairs (ϕ, ϕ∗) where ϕ : E −→ E′ is a homomorphism and ϕ∗ : wE −→ w′E′ is

an injective order homomorphism with ϕ∗w = w′ϕ; ∆ acts on morphisms in the obvious

way.)

Since h ∈ P we may assume that h = gn+1 where g is a strict system of polynomial

extensions of length n + 1 as in Section 2, whose notation we use here and below. Thus

γh = γn+1 (cf. Remark 6(B)). Also by Proposition 5(C), wβ = wn+1. Finally, we set

w = wα, so that w satisfies the hypotheses of Proposition 5.

It is convenient to set

C = F [x]deg h

⋃

{agσ : a ∈ F, 0 ≤ σ ∈ Zn+1} .

By parts (B) and (D) of the Proposition there exists an F–homomorphism ϕ : kn+1 −→ k

such that ϕτn+1 and τ agree on {f ∈ C : w(f) ≥ 0}. Also by (A) and (B) of the Proposition

for all f ∈ C we have w(f) = wn+1(f), and so

wn+1F [x] = vF +
∑

0≤i≤n

Zqi ⊆ wF [x] ⊆ QvF .

Now let T be a system of representatives in F for vF , so that for each γ ∈ vF there exists

a unique aγ ∈ T with v(aγ) = γ. By formula (3)

Tβ := {agσ : a ∈ T, 0 ≤ σ ∈ Zn+1, σ(i) < ei ∀i ≤ n}

is a system of representatives in F [x] for wn+1F [x]. Since w(f) = wn+1(f) for all f ∈ Tβ ,

there is a system of representatives Tα ⊇ Tβ in F [x] for wF [x]. For each γ ∈ wF [x] let Aγ

denote the unique element of Tα with w(Aγ) = γ. Thus Tβ = {Aγ : γ ∈ wn+1F [x]} and

Aγ = aγ for all γ ∈ vF .
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These observations on F [x] let us establish connections between F (α) and F (β). After

all, we may identify vF (α) with wF [x]; vF (β) with wn+1F [x]; F (α) with k; and F (β)

with kn+1. Thus we will regard ϕ as an F–homomorphism from F (β) to F (α) with

ϕ
(

f(β)
)

= f(α) for all f ∈ C with w(f) ≥ 0. Similarly we have vF (β) ⊆ vF (α) and

v(f(α)) = v(f(β)) for all f ∈ C. Finally, T ∗
α := {f(α) : f ∈ Tα} and T ∗

β := {f(β) : f ∈ Tβ}

are systems of representatives in F (α) and F (β) for vF (α) and vF (β), respectively. Indeed

for any γ ∈ vF (β), the elements of Tβ , T ∗
α and T ∗

β of value γ (under the valuations wn+1,

v, and v) are Aγ, Aγ(α) and Aγ(β), respectively.

The systems of representatives T ∗
α and T ∗

β yield symmetric factor sets

rα : vF (α) × vF (α) −→ F (α)
•

and rβ : vF (β) × vF (β) −→ F (β)
•
. For example, for all

δ, γ ∈ vF (α) we have

rα(δ, γ) = Aδ(α)Aγ(α)Aδ+γ(α)−1 .

As in (Brown and Harrison, 1970, Proposition, p. 372) we have an isomorphism

Θα : ∆F (α) −→ S
(

F (α), vF (α), rα
)

mapping each formal sum
∑

bγt
γ + bF (α) to

∑

bγAγ(α)−1 tγ , and an analogous isomor-

phism

Θβ : ∆F (β) −→ S(F (β), v(β), rβ) .

Suppose that δ, γ ∈ vF (β) and set ρ = δ + γ. Then since any product of the Aµ (for
20



µ ∈ vF (β)) is in C , we have

ϕ(rβ(δ, γ)) = ϕ
(

Aδ(β)Aγ(β)Aρ(β)−1 A−ρ(β)A−ρ(β)−1
)

= ϕ((AδAγA−ρ)(β))
(

ϕ((AρA−ρ))(β))
)−1

= (AδAγA−ρ)(α) (AρA−ρ)(α)
−1

= Aδ(α)Aγ(α)Aρ(α)−1 = rα(δ, γ) .

It follows that ϕ induces a homomorphism of valued fields

Φ : S
(

F (β), vF (β), rβ
)

−→ S
(

F (α), vF (α), rα
)

taking each formal sum
∑

bγt
γ to

∑

ϕ(bγ)tγ .

Combining Φ with the isomorphisms Θα and Θβ above yields a ∆F–homomorphism

Υ0 : ∆(F (β), v) −→ ∆(F (α), v) .

We now extract some arguments from (Brown and Harrison, 1970) (which do not depend

on the hypothesis there that (F, v) is maximally complete) to show that the existence of

Υ0 implies the existence of an F–homomorphism F (β) −→ F (α). This of course implies

that there exists a root of h in F (α), and hence it will complete the proof of the Theorem.

By hypothesis F (α) and F (β) are tamely ramified over F (apply Remark 6(A) and

Proposition 5(C) with i=n). Hence both are separable extensions of F . (If F (α) is not

a separable extension of F , then there exists a proper, purely inseparable and tamely

ramified extension F (α)/E. The residue class field of F (α) is therefore both separable and

inseparable over that of E, so the residual degree is one. Similarly the ramification index
21



is one, and this contradicts that the field extension is proper and tamely ramified. The

argument for F (β) is the same.) Hence F (α) and F (β) are contained in a Galois extension

L of F . Let G denote the large ramification group of L/F , so G is the set of σ ∈ Gal(L/F )

with v(σ(a) − a) > v(a) for all a ∈ L•. Our hypothesis that (F, v) is Henselian implies

that G is a normal subgroup of Gal(L/F ), so LG/F is a Galois field extension. That

(F, v) is Henselian also implies that the extension LG/F is tamely ramified (Zariski and

Samuel, 1960, pp. 67–78). Further, LG contains every tamely ramified subextension E/F

of L/F , including both F (α) and F (β). After all, the large ramification group H of an

extension L/E with E/F tamely ramified is clearly contained in G, but the extension LH

of LG cannot be proper because it is both tamely ramified (since LH/E and E/F are both

tamely ramified) and wildly ramified (since it is a subextension of L/LG, cf. (Zariski and

Samuel, 1960, pp. 67-78)). Thus we may as well suppose that L/F is tamely ramified and

G is trivial. It follows that the natural homomorphism arising from the functor ∆, call it

D : Gal(L/F ) −→ Gal(∆L/∆F ) ,

is injective (one checks directly that in general the kernel is the large ramification groupG of

L/F ). Thus D is surjective, since both the domain and codomain of D have order [L : F ] =

[

L : F
]

(vL : vF ) = [∆L : ∆F ]. By Galois theory the ∆F–homomorphism Υ0 extends

to an automorphism Υ ∈ Gal(∆L/∆F ) with Gal(∆L/∆F (α)) ⊆ ΥGal(∆L/∆F (β))Υ−1.

One checks that D maps Gal(L/F (α)) onto Gal(∆L/∆F (α)) and similarly for F (β). Ap-

plying the isomorphism D−1 we therefore have

Gal(L/F (α)) ⊆ D−1(Υ) Gal(L/F (β))(D−1(Υ))−1 .
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Hence F (β) is F -isomorphic to a subfield of F (α). Theorem 1 is proved.

Remark 8. We now argue that γh is best possible in Theorem 1 and in fact in a superficial

generalization of Theorem 1, in which we replace the hypothesis that (F, v) is Henselian

by the hypothesis that (K, u) is finite degree and tamely ramified over a Henselization

of (F, v). This fact gives another characterization of γh independent of any strict system

of polynomial extensions in which h happens to appear. Without loss of generality h is

not linear, and hence we may assume that h = gn+1 for some strict system of polynomial

extensions g over (F, v) as in Definition 2. Then g can be modified to give a strict system of

polynomial extensions over (FH , vH) where (FH , vH) is a Henselization of (F, v) by simply

replacing each valuation wi by the unique extension w∗
i of vH to FH [x] with w∗

i (gi) = ∞.

(Uniqueness follows from the fact that an extension (E, u) of (F, v) by a root of gi has degree

fu/veu/v (Proposition 5(C)), and hence the same is true for an extension of (FH , vH).) Let

ξ be a root of gn in a field extension of FH . Then FH [ξ] is a tamely ramified finite degree

extension of FH (say with valuation u) with u(h(ξ)) = wn(gn+1) = γn+1 = γh. However,

FH [ξ] cannot contain a root of h since its degree over FH is deg gn, which is strictly less

than the degree of the irreducible polynomial h = gn+1 over FH .
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