
SEMIORDERINGS AND WITT RINGS

Thomas C. Craven and Tara L. Smith*

Abstract. For a pythagorean field F with semiordering Q and associated preordering T ,

it is shown that the Witt ring WT (F ) is isomorphic to the Witt ring W (K) where K is a

closure of F with respect to Q. For an arbitrary preordering T , it is shown how the covering
number of T relates to the construction of WT (F ).

1. Introduction and notation.

In [Cr1], the first author introduced the concept of an order closed field, a field which
has no proper algebraic extension to which all of its orderings extend uniquely. These
were studied much more deeply in [Cr3] in which a second concept was introduced, that
of a strongly order closed field, a field with the property that it has no proper algebraic
extension to which all of its orderings extend. Among other things, it is shown that for
large classes of fields, the two concepts coincide. It is still an open question whether every
order closed field is strongly order closed. In [Cr3], although the spaces of orderings are
homeomorphic in going to an order closure, no attempt is made to keep the reduced Witt
ring from becoming larger. Indeed, [Cr3, §5] explores the reasons that this is impossible
when one deals with the entire set of orderings of a field. In the present paper we are able
to obtain control over the growth of the reduced Witt ring by restricting attention to the
orderings over certain types of preordering.

The work here depends strongly on the use of semiorderings of a field.

Definition. A semiordering on a field F is a subset Q of F satisfying 1 ∈ Q, Q ∪ −Q =
F, Q ∩ −Q = {0}, Q+Q ⊆ Q, and F 2Q = Q.

Thus a semiordering is more general than an ordering in that it need not be closed under
multiplication. A semiordering which is not an ordering is called a proper semiordering.
Semiorderings have had a major place in the theory of formally real fields since the original
definition and use for quadratic form theory by Prestel [P]. An excellent source of general
information on semiorderings can be found in a survey by Lam [L]. More recent uses are
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found in [PD] and [JP]. They also show up in applications to division algebras, where a
Baer ordering is just a generalization of semiordering to the situation of a division ring with
a nontrivial involution (cf. [Cr4]). Following [P] and [L], we write YF for the topological
space of all semiorderings and XF for the subspace of orderings, where the topology is
given by the Harrison subbasis.

We allow our orderings, semiorderings, etc. to contain zero, but sometimes need to
eliminate zero from a set. In general, for any subset S ⊆ F , we write Ṡ for S \ {0}.

We follow Efrat and Haran [EH] in defining a field F with semiordering Q to be semireal
closed (SRC) if Q does not extend to any algebraic extension of F and to be quadratically
semireal closed (QSRC) if Q does not extend to any quadratic extension of F . We extend
this to say that, given an arbitrary semiordered field (F,Q), an extension (K, Q̃) is a
semireal closure (resp. quadratic semireal closure) of F if K is contained in the algebraic
(resp. quadratic) closure of F , Q̃ ∩ F = Q and Q does not extend to any algebraic (resp.
quadratic) extension of K. There is a subtlety here that is not readily apparent. This
is not the same as saying that (K, Q̃) is SRC (resp. QSRC) with Q̃ ∩ F = Q. As an
example, take F = Q((x)), the field of Laurent series over the rationals, and let Q be its
ordering in which x is positive. Then a semireal closure of F will be the real closed field
L = Q̃((x))(x1/n, n = 2, 3, 4, . . . ), where Q̃ is a real closure of Q. Inside this field, we
have F ′ = Q(

√
2)((x)) which has four orderings and four proper semiorderings. (For the

construction, see [P, Theorems 7.8, 7.9].) Let Q′ be one of the proper semiorderings of F ′

that restricts to Q. Then (F ′, Q′) has a semireal closure (K, Q̃) inside L which has four
orderings and is a SRC field extending (F,Q), but is not a semireal closure of (F,Q) since
Q will extend further even though Q̃ will not.

For any field F , we denote the algebraic closure by F̄ and the quadratic closure by Fq.
We shall begin by proving the existence of semireal closures, but first we state one of the
few theorems in the literature on extending semiorderings.

Theorem 1.1 [P, Theorems 1.24, 1.26], [Br, 2.16–2.18]. Let F be a field and let K be an
extension of F . A semiordering Q of F extends to K if and only if

∑n
1 aix

2
i = 0 has no

nontrivial solution for all ai ∈ Q and xi ∈ K. If [K : F ] is odd, then Q always extends to
K. If K = F (

√
a), then Q extends to K if and only if aQ ⊆ Q. �

Theorem 1.2. Let (F,Q) be a semiordered field. Then there exist a semireal closure and
a quadratic semireal closure of (F,Q).

Proof. We do the semireal closure case. The quadratic case is done by replacing the
algebraic closure F̄ by the quadratic closure. Consider the collection of all subfields of
F̄ to which Q extends. For any chain Fα of such subfields, the union is again a field to
which Q extends by Theorem 1.1 since any equation

∑n
1 aix

2
i = 0 depends on only finitely

many of the subfields. Thus Zorn’s Lemma guarantees a maximal element of our class of
subfields, which is a semireal closure by definition. �
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Preorderings associated with semiorderings.

A preordering of a field F is a proper subset T ⊆ F satisfying F 2 ⊆ T, T + T ⊆ T
and T · T ⊆ T . A preordering is always equal to the intersection of the set of orderings
containing it [L, Theorem 1.6]. We write

YT = {Q ∈ YF | T ·Q ⊆ Q }

for the space of all semiorderings associated with a given preordering T and XT for the
subspace of all orderings in YT , the topology being inherited from YF . Note that the spaces
YF and XF occur by taking T as the preordering of all sums of squares in F . We think of
the reduced Witt ring Wred(F ) as a subring of the ring of continuous functions C(XF ,Z),
where Z has the discrete topology. To develop a local version of the work in [Cr3], we
work only with the set XT for a preordering T associated with a given semiordering. By
restricting functions from XF to XT , we obtain a quotient ring WT (F ) of the reduced
Witt ring Wred(F ) [L, §1]. One of our major goals is to find an extension field K of
F such that the canonical homomorphism Wred(F ) → W (K) induces an isomorphism
WT (F ) ∼= W (K). In the next section we are able to do this for certain preorderings by
using quadratic semireal closures.

Definition. Let S be any subset of YF , that is, any collection of semiorderings of the field
F . Following [EH], we say that the semiorderings in S form a cover of the preordering

T = { a ∈ F | aQ ⊆ Q for all Q ∈ S }.

Efrat and Haran note that the set of all Q ∈ YT containing an arbitrary preordering T
form a cover of T and define the covering number cn(T ) to be the minimum size of a cover
for T . We shall use the notation TS for the preordering above associated with S, writing
TQ if S = {Q}.

2. Quadratic semireal closures for pythagorean fields.

For an inclusion of fields F ⊆ K, the image of the induced ring homomorphism
W (F ) →W (K) is generally of great interest, but also often difficult to compute. Given a
formally real field F , constructing a pythagorean algebraic extension to which a given set
of orderings extends uniquely is not only complicated; it is very difficult to control what
happens to the Witt ring (see, for example, [Cr3, §5]). We now investigate the role of
quadratic semireal closures in this endeavor.

It turns out that we can actually construct quadratic semireal closures of a pythagorean
semiordered field (F,Q) by using valuation theory. Let T be the preordering TQ = { a ∈
F | aQ ⊆ Q }. We follow Lam [L, Chap. 3] in writing AT =

∏{A(P ) | P ∈ XF , P ⊇ T },
where A(P ) is the canonical valuation ring associated with the ordering P determined by
archimedean classes [L, Theorem 2.6]. The ring AT is a valuation ring associated to some
valuation v on F and v is fully compatible with T (i.e., 1 + mv ⊆ T , where mv is the
maximal ideal of AT ).
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Theorem 2.1. Let (F,Q) be a semiordered pythagorean field and let T, v, AT ,mv be as
above. The 2-henselization F̃ of F with respect to v is a quadratic semireal closure of
(F,Q). Furthermore, WT (F ) ∼= W (F̃ ).

Proof. First note that the space of orderings is the proper one: Restriction of orderings
(or semiorderings) from F̃ to F is a homeomorphism [P, Lemma 8.2], [L, Prop. 3.17]. The
semiordering Q is compatible with v in the strong sense that a ∈ Q, v(a) < v(b) implies
that a− b ∈ Q: Indeed, we have a− b = a(1− a−1b) where a ∈ Q, 1− a−1b ∈ 1 + mv ⊆ T ,
whence a − b ∈ Q. Let Q̃ be the extension of Q to F̃ . By [EH, Lemma 4.2], we shall
be finished if we can show that the preordering covered by Q̃ is F̃ 2. Let x ∈ F̃ be such
that xQ̃ = Q̃. Since a 2-henselian extension is immediate, the value groups and residue
fields are the same for v on F and its unique extension to F̃ . Thus we can find an element
z ∈ F with v(z) = v(x), so that x = uz, where u is a unit in AT . Furthermore, since the
residue fields are the same, the unit u has the form u0(1 +m) where u0 ∈ F and m is in
the extended maximal ideal. But the 2-henselian property implies, by Hensel’s lemma for
quadratics, that 1 + m is a square in F̃ . Thus we have x = u0zy

2 for some y ∈ F̃ and
u0z ∈ F . This gives xQ̃ = u0zQ̃, so that u0zQ ⊆ Q̃ ∩ F = Q. By definition u0z ∈ T .
By [L, Theorem 3.18], T extends uniquely to T̃ =

⋂
P̃ , where P̃ ranges over all orderings

of F̃ , hence T̃ = F̃ 2 since F̃ is pythagorean. But then x = u0zy
2 ∈ T · F̃ 2 = T̃ = F̃ 2 as

desired.

For the final statement, first note that we have F̃ 2 ∩ F = T [L, Theorem 3.18] and
F · F̃ 2 = F̃ , the latter by the argument above for x ∈ F̃ , but ignoring the condition
xQ̃ ⊆ Q̃. From this we obtain Ḟ /Ṫ ∼= Ḟ /( ˙̃F 2 ∩ Ḟ ) ∼= (Ḟ · ˙̃F 2)/ ˙̃F 2 ∼= ˙̃F/ ˙̃F 2, whence the
inclusion of F in F̃ induces an isomorphism WT (F ) ∼= W (F̃ ). �

We next show that for a pythagorean field, all quadratic semireal closures arise as above.

Proposition 2.2. Let (K,Q) be a semiordered pythagorean field with quadratic semireal
closure (K̃, Q̃).

(1) There exists a maximal immediate extension L of K inside K̃.
(2) If L0 is an immediate quadratic extension of L which is not in K̃, then K̃L0 is an

immediate quadratic extension of K̃.
(3) L is a 2-henselization of K with respect to the valuation v associated to T , the

preordering covered by Q.
(4) L is a quadratic semireal closed field, so L = K̃.

Proof. (1) is an easy application of Zorn’s lemma.
(2) Consider an immediate quadratic extension L0 = L(

√
a). We must show that K̃(

√
a)

is an immediate extension of K̃. By hypothesis, L(
√
a)v = Lv ⊆ K̃v, so K̃v = K̃(

√
a)v

and hence the residue degree fK̃(
√

a)/K̃ = 1. Also, v(
√
a) ∈ ΓL, whence v(

√
a) ⊂ ΓK̃ , so

the ramification index eK̃(
√

a)/K̃ = 1.
(3) The semiordering Q̃ extends to K̃L0 since the extension is immediate [P, Lemma
8.2]. But this contradicts the QSRC property of (K̃, Q̃). It follows that L must be a
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2-henselization of K with respect to the valuation v associated to the valuation ring AT ,
where T is the preordering covered by Q ([En, §26]).
(4) By Theorem 2.1, the field L is QSRC with respect to the semiordering induced by Q̃,
so L = K̃. �

¿From the previous two results, we immediately obtain our main theorem.

Theorem 2.3. Let (F,Q) be a semiordered pythagorean field and let (K, Q̃) be a quadratic
semireal closure. Let T be the preordering covered by Q. Then WT (F ) ∼= W (K).

The previous theorem applies only to preorderings with covering number one. However,
a field extension can always be made to lower the covering number (while increasing the
number of orderings and the size of the Witt ring, but in a very predictable way).

Corollary 2.4. Given any pythagorean field F with preordering T , there exists an ex-
tension field K of F which is QSRC and such that W (K) is isomorphic to a group ring
WT (F )[G], where G is an elementary abelian 2-group whose size depends on the covering
number of T . If cn(T ) is finite, then |G| = 2n with n ≥ log2 cn(T ) suffices.

Proof. Form the extension field of iterated Laurent series F ′ = F ((x1))((x2))..., which is
again pythagorean, such that the extension T ′ of T has covering number one. The fact
that this can be done follows from the computation of covering number in [EH, Proposition
5.7] or, more directly, from Proposition 3.5 below. In particular, this provides the bound
of n ≥ log2 cn(T ) for the number of indeterminates that suffices. Let Q be a semiordering
which covers T ′. We have W ′

T (F ′) ∼= WT (F )[G] essentially by an old theorem of Springer
(cf. [M, §5.7]). Now apply Theorem 2.3 to F ′ to obtain K. �

As a corollary of the comments prior to Theorem 2.1 on valuation rings, we have the
following, which generalizes Bröcker’s Trivialization Theorem for fans [L, Theorem 12.6] to
a much larger class of preorderings, a class which we have now shown to be of considerable
intrinsic interest.

Corollary 2.5. Let T be a preordering on a field F which is not an ordering and which
has covering number one. Then there exists a nontrivial valuation on F which is fully
compatible with T . �

3. Witt ring computations.

In this section we translate the concept of covering number into the language of Witt
rings, and give an effective means of calculating covering numbers for Witt rings of el-
ementary type. All work is done in the category of reduced Witt rings. In particular,
the nilradical is zero. The construction which gives all the finitely generated rings in this
category is described prior to Proposition 3.4 (in which one would take the group ∆ to be
finite).

Recall that for T a preordering on a field F , the chain length of T , cl(T ), can be defined
in terms of elements represented by binary T -forms, i.e., forms in WT (F ) [L, §8]. In
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particular, cl(T ) is the supremum of all integers k for which there exists a chain

DT 〈1, a0〉 ( DT 〈1, a1〉 ( · · · ( DT 〈1, ak〉.

The chain length can be computed (when it is finite) directly from WT (F ), using the
correspondence between the structure of WT (F ) and IT , the involution subgroup of the
W-group GF corresponding to T , as described in [CS1] and [MS]. We refer the reader to
[MSp] for the definition of a W-group. Recall that IT is a closed subgroup of the W-
group, generated by involutions (none of which are in the Frattini subgroup Φ(GF )), with
the property that T is precisely the set of elements in F whose square roots are fixed
by IT . These groups all lie in the category of pro-2-groups of exponent at most 4, and
with squares central. Free products of W-groups in this category correspond to direct
products of Witt rings (in the category of Witt rings), and semidirect products correspond
to group ring constructions. The connection between the structure of IT and cl(T ) is given
in [CS1, Theorem 4.2]. This is the W-group analog to [EH, Lemma 2.1]. In particular,
cl(T ) = cl(IT ), where for G a pro-2-group, cl(G) is as defined in [EH, §2]. In light of the
connection between cl(IT ) and the structure of WT (F ), we define the chain length of a
reduced Witt ring R to be cl(R) = cl(T ) = cl(IT ), where R ∼= WT (F ), when it is finite.
We then immediately obtain the following.

Lemma 3.1. Let W (F ) be a Witt ring and T a preordering on F .
(1) cl(T ) = 1 if and only if T is an ordering, if and only if WT (F ) ∼= Z.
(2) T is a fan if and only if cl(T ) ≤ 2. Furthermore, cl(T ) = 2 if and only if WT (F ) ∼=

Z[∆],∆ a nontrivial elementary abelian 2-group.
(3) If WT (F ) ∼= R1×· · ·×Rm, where each Ri has finite chain length, then cl(WT (F )) =∑m

i=1 cl(Ri).
(4) If WT (F ) ∼= R[∆], where ∆ is an elementary abelian 2-group and R is a reduced

Witt ring with cl(R) ≥ 2, then cl(WT (F )) = cl(R).

We next show that the covering number of a preordering is also a Galois-theoretic
property. While the proof given below is essentially analogous to [EH, Theorem 5.1], note
that the result is stronger, in that we are showing this to be true for any preordering in
any field, not just for the set of squares in a pythagorean field.

Theorem 3.2. Let T, T ′ be preorderings on fields F, F ′ respectively, and let I, I′ be corre-
sponding involution subgroups in GF and GF ′ respectively. If I ∼= I′, then cn(T ) = cn(T ′).

Proof. We need to show that any cover of T can be detected using only properties of I.
Kummer theory and the definition of I give a canonical isomorphism Ḟ /Ṫ ∼= H1(I) =
Hom(I,Z/2Z). As in [EH, proof of Theorem 5.1], we let ψ be the image of the class of
−1 under this isomorphism. Suppose that T has a cover Si, i ∈ I. This can be expressed
in terms of H1(I) and ψ by translating the conditions that each Si is a semiordering
containing T , and that

⋂
i∈I{x ∈ F | xSi ⊆ Si} = T , into conditions only involving H1(I)

and ψ. It is the fact that each Si must contain T that allows us to work with I instead of
Ḟ /(

∑
Ḟ 2) in the translation below.
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Following [EH, proof of Theorem 5.1], for each i ∈ I, we let Ai be the subset of H1(I)
corresponding to the set of Ṫ -cosets of Ḟ contained in Si. (Note that each Ṡi is a union
of Ṫ -cosets.) The condition that 1 ∈ Si is translated as 0 ∈ Ai. That Si ∩ −Si = {0}
and Si ∪ −Si = F is expressed as H1(I) = Ai∪̇(ψ + Ai). To express the condition
that every (non-empty) sum of finitely many non-zero elements of Si is non-zero uses
the representation of the Witt-Grothendieck ring of T -forms in terms of generators and
relations: ŴT (F ) ∼= Z[H1(I)]/J , where J is the ideal generated by all formal sums (in
the group ring) a + b − c − d such that a, b, c, d ∈ H1(I), a + b = c + d in H1(I), and
a ∪ b = c ∪ d in H2(I), the second cohomology group. (That these are the appropriate
relations for J follows from [CS1, Theorem 3.3] or [CS2].) Using Witt’s decomposition
theorem ([L, Corollary 1.21]), this final condition to verify that each Si is a semiordering
containing T is equivalent to the condition that for any a1, . . . , an ∈ Ai, the formal sum
a1 + · · ·+ an in Z[H1(I)] is not congruent to any formal sum b1 + · · · bn−2 +0 +ψ modulo
J . It now follows from [Be, §2, Kor. to Satz 6] that ψ can be identified in H1(I) as being
the only continuous homomorphism whose kernel contains no element of order 2 outside
its Frattini subgroup. (This is essentially because T extends to F (

√
a) as long as a /∈ −T .

Therefore, such an extension is real, and the corresponding subgroup of the W-group
will contain nontrivial involutions.) Thus the statement that each Si is a semiordering
containing T can be verified group theoretically in I.

It remains to express, in terms of the group I, the condition that Si, i ∈ I, cover T .
But this can be expressed as Si, i ∈ I, cover T if and only if

⋂
i∈I{a ∈ H1(I) | a + Ai =

Ai} = {0}. �

Since the covering number of a field (or in general any preordering) of finite chain length
depends only on the isomorphism type of the corresponding reduced Witt ring, we can then
make the following definition of the covering number of a reduced Witt ring, which is the
Witt ring analogue to the definition of covering number of the absolute pro-2 Galois group
of a field.

Definition 3.3. Let F be a formally real field and let T be a preordering of finite chain
length. We define the covering number of WT (F ) to be cn(WT (F )) = cn(T ). In particular,
cn(Wred(F )) = cn(F ).

Following Efrat and Haran, we see that for a reduced Witt ring W (F ) (of finite chain
length) we have a certain uniqueness of presentation of W (F ). This follows from the
uniqueness of presentation of the maximal pro-2 Galois group GF (2) for F a pythagorean
field of finite chain length, as described in [EH, §3], together with the fact that for
pythagorean fields, we have GF (2) ∼= GK(2) if and only if W (F ) ∼= W (K) (see [Ja]),
and in turn, W (F ) ∼= W (K) if and only if the W-groups GF and GK are isomorphic (see
[MSp]). Similarly, for reduced Witt rings of a field with respect to a preordering T , we have
by [CS1] that WT (F ) ∼= WT ′(K) if and only if the corresponding involution subgroups IT

and IT ′ of GF and GK , respectively, are isomorphic.

It is well known (cf. [Cr2], [M]) that reduced Witt rings of finite chain length can
be constructed recursively through the operations of direct product (in the category of
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reduced Witt rings) and group ring construction – that is, the reduced Witt rings of finite
chain length are precisely the collection R of (isomorphism types of) rings such that

(1) Z ∈ R,
(2) if R1, . . . , Rm ∈ R, then R1 × · · · × Rm ∈ R (where × denotes direct product in

the category of Witt rings), and
(3) if R ∈ R and if ∆ is an elementary abelian 2-group, then R[∆] ∈ R.

Also, we have the isomorphisms Z × Z ∼= Z[Z/2Z] and (Z[∆1])[∆2] ∼= Z[∆1 × ∆2]. Other
than these two isomorphisms and the obvious fact that the rings Ri in a direct product
construction can be permuted, the construction of a given isomorphism type of reduced
Witt ring of finite chain length is unique.

A reduced Witt ring will be called decomposable if it can be written as R1 ×R2 where
R1 and R2 are reduced Witt rings, and otherwise it will be called indecomposable. The
next proposition follows immediately from the remarks above and [EH, Proposition 3.2].

Proposition 3.4. Let R 6∼= Z be a reduced Witt ring of finite chain length.
(1) There exists an elementary abelian 2-group ∆ (possibly trivial) together with inde-

composable reduced Witt rings R1, . . . , Rm, 2 ≤ m <∞, such that R ∼= (R1×· · ·×
Rm)[∆]. Moreover, cl(R1), . . . , cl(Rm) < cl(R).

(2) This presentation of R is unique up to a permutation of R1, . . . , Rm.
(3) R is indecomposable if and only if ∆ 6= {1} in (1).

We can now proceed to describe an effective method for calculating cn(R) for a reduced
Witt ring of finite chain length. This is the Witt ring version of [EH, Propositions 5.6,
5.7].

Proposition 3.5. Let R be a reduced Witt ring of finite chain length.
(1) If R ∼= R1 × · · · ×Rm, then cn(R) = cn(R1) + · · · + cn(Rm).
(2) If R = R′[∆], then

cn(R) =




2, if (∆, R′) ∼= (Z/2Z,Z)⌈
cn(R′)
|∆|

⌉
, if |∆| <∞ and (∆, R′) 6∼= (Z/2Z,Z)

1, if |∆| = ∞.

A straightforward translation exercise now allows one to determine cn(R) for reduced
Witt rings R of finite chain length. As in the final table of [EH], we can easily write
down the reduced Witt rings corresponding to pythagorean fields with a limited number
of square classes, and determine their covering numbers. Those with covering number one
correspond to semireal closed fields. This table is given in the Appendix for up to 32 square
classes. Determining the covering number of a formally real field which is not pythagorean
from the structure of its Witt ring is similarly straightforward. By Theorem 3.2 above, one
simply needs to determine its reduced Witt ring and then compute the covering number
for this.
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4. Connections with strongly order closed fields.

We have demonstrated that we can control the growth of the reduced Witt ring under
special algebraic extensions by restricting ourselves to the orderings over a preordering with
covering number one. This is in contrast to the work in [Cr3], where the entire space of
orderings was used and order closed and strongly order closed fields were investigated. (See
the introduction to this paper for definitions.) In this section, we look at some connections
between the notions of semireal closed and strongly order closed. In [Cr3, Theorem 2.1] it
is shown that a field F being strongly order closed is equivalent to F being pythagorean
and having the property that every polynomial in F [x] of odd degree has a root in F . In
comparison, we have

Proposition 4.1. A field F is SRC if and only if it is QSRC and every polynomial in
F [x] of odd degree has a root in F .

Proof. Assume that F is SRC. From [EH, Lemma 4.1] we see that F has no odd degree
extensions, from which it follows that every polynomial of odd degree has a root in F .
Conversely, assume that F is a QSRC field and every polynomial in F [x] of odd degree
has a root in F . We are then done by another application of [EH, Lemma 4.1], since F
has no odd degree extensions. �

¿From this, we easily obtain the fact that the SRC fields which we have been studying
here are strongly order closed, and in particular, are order closed.

Proposition 4.2. Every SRC field is strongly order closed.

Proof. We know that any SRC field is pythagorean. From Proposition 4.1, we know that
it has no odd degree extensions, and thus every minimal extension is quadratic. By [Cr3,
Theorem 2.1], it is strongly order closed. �

Corollary 4.3.

(1) Every SRC field is an intersection of real closed fields.
(2) Every QSRC field is an intersection of euclidean fields.

Proof. (1) By Proposition 4.2, all SRC fields are strongly order closed. It is clear that a
strongly order closed field is order closed, and such fields are known to be equal to the
intersections of all their real closures inside a fixed algebraic closure [Cr3, Theorem 2.9].
(2) is rather trivial, in that every pythagorean field is, in fact, an intersection of euclidean
fields. This is easy to see; just take K to be the intersection of all euclidean closures of a
pythagorean field F . Then K/F is a 2-extension. But adjoining any square root to F must
kill at least one ordering. Since all orderings of F extend to K, we must have K = F . �
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Appendix: Table of Reduced Witt Rings with a small number of square
classes.

The notation in the following table is as follows: Zn denotes the additive group of Z/nZ;
following [EH, p. 75], Dn denotes the free pro-2 product of n copies of Z2; the operations in
the Galois group column are described in [EH] and in more detail in [JW]; the operations
in the W-group column are defined in [MS]; the notation in the Witt ring column is defined
in [M]. In each case, the operations are defined within a specific category. For example,
the direct product in the category of Witt rings is not the same as in the category of rings.

No. of Pro-2 Galois group W-group Witt ring cover.
sq. cls. GF (2) GF W (F ) num.

2 D1 Z2 Z 1
4 D2 Z2 ∗ Z2

∼= Z4 o Z2 Z[x] 2
8 Z2 oD2 Z4 o (Z2 ∗ Z2) Z[x, y] 1
8 D3 Z2 ∗ Z2 ∗ Z2 Z × Z[x] 3
16 Z2

2 oD2 Z4 o (Z4 o (Z2 ∗ Z2)) Z[x, y, z] 1
16 (Z2 oD2) ∗D1 Z2 ∗ (Z4 o (Z2 ∗ Z2)) Z × Z[x, y] 2
16 Z2 oD3 Z4 o (Z2 ∗ Z2 ∗ Z2) Z3[x] 2
16 D4 Z2 ∗ Z2 ∗ Z2 ∗ Z2 Z[x] × Z[y] 4
32 Z2

2 oD3 Z4 o (Z4 o (Z2 ∗ Z2 ∗ Z2)) (Z × Z[x])[y, z] 1
32 Z3

2 oD2 Z4 o (Z4 o (Z4 o (Z2 ∗ Z2))) Z[x, y, z, w] 1
32 Z2 o ((Z2 oD2) ∗D1) Z4 o ((Z4 o (Z2 ∗ Z2)) ∗ Z2) (Z × Z[x, y])[z] 1
32 Z2 oD4 Z4 o (Z2 ∗ Z2 ∗ Z2 ∗ Z2) (Z[x] × Z[y])[z] 2
32 (Z2

2 oD2) ∗D1 (Z4 o (Z4 o (Z2 ∗ Z2))) ∗ Z2 Z × Z[x, y, z] 2
32 (Z2 oD2) ∗D2 (Z4 o (Z2 ∗ Z2)) ∗ (Z2 ∗ Z2) Z[x, y]× Z[z] 3
32 (Z2 oD3) ∗D1 (Z4 o (Z2 ∗ Z2 ∗ Z2)) ∗ Z2 Z × (Z3[x]) 3
32 D5 Z2 ∗ Z2 ∗ Z2 ∗ Z2 ∗ Z2 Z × Z[x] ∗ Z[y] 5
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