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Abstract. Suppose that F is a field such that the value groups
of the R−places on F , i.e., places from F into the real numbers R,
are all trivial or countable. The path-connected components of the
space M(F (x1, x2, · · · , xn)) of R-places on F (x1, x2, · · · , xn) are
shown then to correspond bijectively to those of M(F ). For exam-
ple, the space M(R(x1, x2, · · · , xn)) of R−places on the rational
function field R(x1, x2, · · · , xn) is path-connected, and similarly for
Q(x1, x2, · · · , xn). A key tool is a homeomorphism in the case that
F is a maximal field between the space of R−places on F (x) and
a certain space of sequences related to the “signatures” of [1].

1. The Main Theorem

We begin by paraphrasing part of the introduction of the paper [5]:
For any field F the space of R−places on F , i.e., places from F to the
field R of real numbers, will be denoted by M(F ). This space is an
important invariant of F for understanding the structure of the reduced
Witt ring of quadratic forms over F [4]. It also plays a natural role
in real algebraic geometry; given a formally real field F the points of
M(F ) correspond to the closed points of the real spectrum of the real
holomorphy ring of F [17]. The topology onM(F ) is that for which the
Harrison sets H(a) = {τ ∈ M(F ) : 0 < τ(a) < ∞} (for a ∈ F ) form a
subbasis [11, Section 1]. For discussion of the topology the reader could
consult [4, 6, 13]. It is easy to show that the space of R-places on the
rational function field R(x) is a simple closed curve, and the space of
R-places on an algebraic function field in one variable over a field with
finitely many orderings, all Archimedean, is known to be a (possibly
empty) disjoint union of a finite number of simple closed curves [3,
Theorem 2.1]. No analogous result is known for algebraic function
fields or even rational function fields in more than one variable over
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R. It is known that M(R(x1, x2, · · · , xn)) is compact, Hausdorff and
connected [6, page 5], [8, Theorem 2.12], but not whether it contains
a disk (and much less whether it contains a torus, a topic of the paper
[12]).
In the paper [5] R−places were called “real places”, but the termi-

nology used here has become more standard.
Throughout this paper F will denote a field. For any n > 0 restric-

tion of mappings gives a function res from the space of R−places of
the rational function field F (x1, x2, · · · , xn) to M(F ).

1.1. Main Theorem. Suppose that for each R−place of F , the value
group of the corresponding valuation is trivial or countable. Then res−1

gives a bijection from the set of path-connected components of M(F )
to the set of path-connected components of M(F (x1, x2, · · · , xn)).

1.2. Corollary. For any n ≥ 0 M(R(x1, · · · , xn)) is path-connected.

The n = 2 case of the above Corollary was proven in [5]; a number of
arguments of that paper are generalized in the proof of Theorem 1.1,
which will occupy the next five sections.

1.3. Remark. Corollary 1.2 was our first application of the above theo-
rem. We thank Professor Katarzyna Kuhlmann for a stimulating con-
versation which led to our dropping our original hypothesis that the
field F contained R. This gives us more simple applications, such as
that in the next corollary.

1.4. Corollary. Let K denote an algebraic extension of the field of
rational numbers Q. The number of path-connected components of
M(K(x1, x2, · · · , xn)) is the number of homomorphisms of K into R.

Proof. The space M(K) can be identified with the space of orderings
of K [4], which is disconnected. Thus the path-connected components
of M(K) are singletons, which of course correspond bijectively with
the homomorphisms of K into R. �

For example, M(Q[
√
2](x1, · · · , xn)) has exactly two path-connected

components and M(Q(x1, · · · , xn)) is path-connected.

2. The reduction to maximal fields

Suppose that σ ∈ M(F ). We call (F, σ) ultracomplete if it is a max-
imal field and σ maps onto R; we call an extension (E, ρ) of (F, σ) an
ultracompletion of (F, σ) if it is ultracomplete and the value group of
(E, ρ) is the value group of (F, σ). (Of course ρ here is assumed to be
an R-place.) This language comes from [2, Section 1], keeping in mind

2



that any R−place σ is associated with the “extended absolute value”
obtained by composing σ with the absolute value on R. From [2] we
use only the facts that ultracompletions at R-places admit only one
R-place and that they are unique up to place-preserving isomorphism.
(Both facts are easy to prove directly using respectively the fact that
ultracompletions are Henselian and the uniqueness of maximal imme-
diate extensions [10, Theorem 5].) We let res : M(F (x)) −→ M(F )
denote the obvious map obtained by restriction of maps. For any
σ ∈ M(F ), let (F̃σ, σ̃) denote an ultracompletion of (F, σ) and let
Ψ = Ψσ : M(F̃σ(x)) −→ M(F (x)) also be the map obtained by re-
striction of maps. Let comp : M(F ) −→ M(F (x)) be given by com-
position of places in M(F ) with the x−adic place on F (x). All these
maps are checked to be continuous and the composition res ◦ comp is
the identity map on M(F ). We will argue that Ψ maps onto res−1(σ);
this argument will use the next lemma.

2.1. Lemma. Suppose that σ ∈ M(F ). Any ultracomplete field (K, δ)
extending (F, σ) contains an ultracompletion of (F, σ).

Proof. Let (L, ρ) be maximal among all unramified extensions of (F, σ)
within (K, δ). We claim that (L, ρ) is an ultracompletion of (F, σ).
We begin by checking that ρ(L) ⊃ R. Suppose otherwise. Let

t ∈ R \ ρ(L). If t is transcendental over ρ(L), choose x ∈ K with
δ(x) = t. Then x is transcendental over L, and L(x) is an unramified
extension of (L, ρ) within (K, δ) [7, Corollary 2.2.2], a contradiction.
On the other hand, if t is algebraic over ρ(L), then we have a monic,
necessarily irreducible, polynomial f(y) ∈ L[y] with ρ(f) the minimal
polynomial of t over ρ(L). As we do have t ∈ R (the residue class field
of K), and K is henselian, by Hensel’s lemma K contains a root of f ,
which by a degree argument would generate an unramified extension
of (L, ρ) within (K, δ), again a contradiction. So we have ρ(L) ⊃ R.
It remains to show that (L, ρ) is a maximal field. First, since

(K, δ) is henselian, it contains a henselization of (L, ρ) [7, Theorem
5.2.2]. As henselizations are immediate, by the choice of (L, ρ), we
must have that this henselization is (L, ρ) itself, i.e., (L, ρ) is henselian.
It follows that (L, ρ) has no proper immediate algebraic extension [16,
Ostrowski’s Theorem, p. 236]. Now by [10, Theorem 4], if (L, ρ) is
not maximal, there exists in L a pseudoconvergent sequence 〈ai〉 with
no pseudolimit in L; however it has a pseudolimit u in K. Then
〈ai〉 cannot be of algebraic type, or by [10, Theorem 3] there would
be a proper immediate algebraic extension of (L, ρ). But if 〈ai〉 is of
transcendental type, then [10, Theorem 2] implies L(u) is an immediate
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extension of (L, ρ) in (K, δ). So we have a contradiction, establishing
maximality.

�

2.2. Lemma. Ψ maps M(F̃σ(x)) onto res−1(σ).

This lemma generalizes [5, Lemma 2.2] whose proof unfortunately
contained an error. The error can be corrected by making a more
careful construction of the field E in that proof.

Proof. Suppose that ρ ∈ res−1(σ). Let (K, δ) be an ultracompletion of
(F (x), ρ) (such field extensions are easily constructed). By the previous
lemma we have a homomorphism ∆ : (F̃σ, σ̃) −→ (K, δ) fixing F . Let
τ : F (x) −→ F̃σ(x) be the inclusion map. Extend ∆ to a map ∆′ from
F̃σ(x) to the rational function field K(z) by mapping x to z, and let
α be the natural place K(z) −→ K ∪ {∞} mapping z to x. Then
δα∆′ ∈ M(F̃σ(x)); we will show it maps under Ψ to ρ, which will
complete the proof of the lemma. Thus it suffices to show that

δα∆′τ = ρ.

For any rational function
∑

aix
i/
∑

bix
i ∈ F (x) we have (since ∆′ is

the identity on F and α∆′(x) = x)

δα∆′τ(
∑

aix
i/
∑

bix
i) = δ(

∑
aix

i/
∑

bix
i) = ρ(

∑
aix

i/
∑

bix
i),

completing the proof of the lemma.
�

2.3. Lemma. Let C be a path-connected component of M(F ). If for
all σ ∈ C the space M(F̃σ(x)) is path-connected, then C∗ := res−1(C)
is a path-connected component of M(F (x)).

Proof. Suppose α, β ∈ C∗. Then by hypothesis there exits a path from
res(α) to res(β), i.e., a continuous map f : [0, 1] −→ C taking 0 to
res(α) and 1 to res(β). Then comp ◦ f is a path from comp ◦ res(α)
to comp ◦ res(β). Note that comp ◦ res(α) ∈ res−1(res(α)) and α ∈
res−1(res(α)), so by the previous lemma, both α and comp ◦ res(α)
are in Ψres(α)(M(F̃res(α)(x))), which is path-connected. Therefore
there exists a path from α to comp ◦ res(α) and similarly a path from
comp ◦ res(β) to β. Combining these paths gives a path from α to
β. Thus C∗ is path-connected. Hence it lies in a path-connected com-
ponent C∗∗ of M(F (x)). Just suppose there exists δ ∈ C∗∗ \ C∗.
Then res(δ) lies in a path-connected component C ′ 6= C of M(F ). We
can pick some σ ∈ C. By hypothesis there is a path, say g, from δ
to comp(σ). Then the composition res ◦ g is a path from res(δ) to
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res ◦ comp(σ) = σ, contradicting that res(δ) and σ lie in distinct path-
connected components ofM(F ). Thus, C∗ is actually a path-connected
component of M(F (x)). �

This section’s title refers to the following proposition.

2.4. Proposition. If for all σ ∈ M(F ) the space M(F̃σ(x)) is path-
connected, then res−1 gives a bijection from the set of path-connected
components of M(F ) to the set of path-connected components of M(F (x)).

Proof. By the previous lemma res−1 gives a map from the set of path-
connected components of M(F ) to the set of path-connected compo-
nents of M(F (x)). This map is surjective since if σ ∈ M(F (x)), then
the path-connected component of σ is the inverse image under res of
the path-connected component of res(σ). On the other hand if α and α′

lie in distinct path-connected components, say C and C ′, of M(F ) but
res−1(C) = res−1(C ′), then there would be a path f from comp(α) to
comp(α′) so that res ◦ f would be a path from α to α′, a contradiction.
Hence, our map is also injective. �

Our Main Theorem 1.1 follows by induction from the previous propo-
sition combined with the next one.

2.5. Proposition. If (F, σ) is ultracomplete and the value group of σ
is trivial or countable, then M(F (x)) is path-connected.

The assertion of the above proposition is standard if the value group
is trivial. The proof of this proposition when the value group is not
trivial will occupy the next four sections of this paper. The next section
introduces some necessary notation; in the remaining sections it will
be convenient to assume that (F, σ) is ultracomplete with non-trivial
value group.

3. Valuations and cuts

Let v be a valuation on F associated with some place σ ∈ M(F ).
Let QvF denote a divisible hull of the value group vF of v. By a cut
of QvF we mean a subset C of QvF such that if a ∈ C and b ∈ QvF
with b ≤ a, then b ∈ C. (Our “cuts” might elsewhere be considered the
“lower set” of a cut.) We let Γ denote the union of QvF and the set
of cuts of QvF . The order ≤ on QvF is extended to Γ in the natural
way; for α, β ∈ Γ \ QvF and ρ ∈ QvF we write α ≥ β if and only if
α ⊇ β and α ≥ ρ if and only if ρ ∈ α (and write ρ ≥ α otherwise). We
will sometimes let ∞ denote the maximum of Γ, namely the cut QvF ,
and let −∞ denote the minimum of Γ, namely the empty cut ∅.
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Given a cut γ ∈ Γ one can verify that we have an ordered group
QvF ⊕ Z where (a, n) ≥ 0 if and only if either n = 0 and a ≥ 0 or
n > 0 and −a/n ∈ γ or, finally, n < 0 and −a/n /∈ γ. (Alternately,
Corollary 2.4.2 of [18] asserts the existence of an extension of QvF
generated by an element δ to an ordered abelian group with δ greater
than every element of the set γ and less than every element of QvF
not in γ. Such a group must have the order described above.) Given
such a group we will usually write (a, n) = a + nγ, identifying a with
(a, 0) and γ with (0, 1).
For any β ∈ QvF we let β+ be the smallest cut containing β, and

β− denote the cut consisting of all elements less than β. Note that for
α ∈ QvF and γ a cut, we have α ≤ γ if and only if α+ ≤ γ, and γ ≤ α
if and only if γ ≤ α−. Thus, for example, α− ≤ α ≤ α+.

3.1. Lemma. (A) Suppose that ∆ is an ordered abelian group contain-
ing vF such that ∆/vF is torsion. Then there exists a unique order
isomorphism θ fixing vF from ∆ to a subgroup of QvF .
(B) Suppose G is an ordered abelian group of the form G = ∆+ dZ

where ∆ is a subgroup of QvF containing vF and d has no nonzero
multiple in vF . Then there exists a unique cut δ of QvF and unique
order isomorphism from G to the subgroup ∆+δZ of the group QvF+δZ
which fixes ∆ and maps d to δ.

Because of part (A) of the above lemma, we will often identify groups
∆ as in (A) with subgroups of QvF .
In the proof below and elsewhere in the paper, notation of the form

A := B is used to indicate that the symbol A is being defined by the
expression B.

Proof. (A) Note that if δ ∈ ∆ has mδ ∈ vF for some positive integer
m, then θ must map δ to 1

m
(mδ), considered as an element of QvF .

(B) Let δ be the cut of QvF generated by δ0 := {1
s
α : 0 < s ∈ Z, α ∈

vF, α < sd}. We of course have a group isomorphism θ : ∆ + dZ −→
∆+ δZ fixing ∆ and mapping d to δ. Suppose that α + sd > 0 where
α ∈ ∆ and s ∈ Z. We claim that α + sδ > 0 (so that θ preserves
the order). This is trivial if s = 0; suppose s > 0. Then sd > −α, so
1
s
(−α) < δ and so α+sδ > 0 as claimed. Now suppose that s < 0. Then

for all β/t ∈ δ0 (with the obvious notation), we have −α/s > d > 1
t
β,

so that −α/s > δ, whence α + sδ > 0.
It remains to show that δ is unique. Suppose we have another cut δ′

and order isomorphism θ′ : ∆+ dZ −→ ∆+ δ′Z fixing ∆ and mapping
d to δ′. First suppose that δ > δ′. Then there exists 0 < s ∈ Z and
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α ∈ vF with δ > 1
s
α > δ′ so sδ > α > sδ′, and hence

0 < θ′θ−1(sδ − α) = sδ′ − α < 0,

a contradiction. The case when δ < δ′ is handled similarly.
�

The following application of the above lemma is used in the next
section to describe bijections from the spaces of Proposition 2.5 to
certain sets of sequences.

3.2. Lemma. Suppose that τ ∈ M(F (x)) is an extension of σ. Then
there exists a unique valuation vτ of F (x) associated with τ and ex-
tending v such that either vτF (x) ⊂ QvF or else there exists a monic
f ∈ F [x] such that vτ (f) is a cut of QvF ; vτF (x) = ∆ + Zvτ (f) for
some subgroup ∆ of QvF ; and vτ (g) ∈ ∆ for all polynomials g ∈ F [x]
of degree less than the degree of f .

Proof. Let u be an extension of v associated with τ . By Lemma 3.1(A)
we may uniquely identify the subgroup of uF (x) of elements with some
positive multiple in vF with a subgroup ∆ of QvF . Note that the set
of such elements depends only on τ and is independent of the choice of
u. (After all, u(f) ∈ ∆ if and only if τ(f br) ∈ R• for some 0 < b ∈ Z

and 0 6= r ∈ F .) If uF (x) = ∆, we are done. Otherwise there exists
a monic polynomial f ∈ F [x] of minimal degree such that u(f) is not
in ∆. Then for all polynomials gi of degree less that that of f we
have u(

∑
gif

i) = min(u(gi) + iu(f)), so that uF (x) = ∆ + Zu(f).
Hence by Lemma 3.1(B) there is a unique cut γ of QvF and a unique
order isomorphism θ : uF −→ ∆+ Zγ taking u(f) to γ and fixing ∆.
Then vτ := θu is an extension of v to a valuation associated with τ
satisfying the conditions of the lemma. If w, with corresponding monic
polynomial g, is another such extension, then since deg(f − g) < deg g
and w(f) /∈ ∆,

w(f) = w(f − g + g) = min(w(g), w(f − g)) = w(g).

Then w(f) is a cut of QvF and hence

vτ (f) = {1
s
v(d) : 0 6= d ∈ F, 0 < s ∈ Z, vτ (f) >

1

s
v(d)}

= {1
s
v(d) : 0 6= d ∈ F, 0 < s ∈ Z, τ(f s/d) = 0}

= {1
s
v(d) : 0 6= d ∈ F, 0 < s ∈ Z, w(f s/d) > 0} = w(f).

Hence for gi as above,

w(
∑

gif
i) = min(w(gi) + iw(f)) = vτ (

∑
gif

i),
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so w = vτ .
�

The notation vτ will be used frequently below.

4. The bijection M(F (x)) −→ S
As indicated at the end of Section 2, we will assume now that (F, σ),

with associated (nontrivial) valuation v, is ultracomplete, i.e., a max-
imal field with σ mapping onto R. We may therefore assume without
loss of generality that in fact F is a power series field R(tvF , c) where
c is a suitable factor set [10, Theorem 6]. We generalize the arguments
of [5], again using ideas that go back to [14, 1], to give a bijection from
M(F (x)) to a set S of sequences.
We first use the set Γ introduced in the previous section to generalize

the “signatures” of [5]. We will need to consider sequences 〈an〉i<n

where now we allow n to be an arbitrary ordinal number and where
the i range over all ordinal numbers less than n. We will let 0 denote
the first ordinal number and denote the successor of an ordinal number
n by n+ 1.

4.1.Definition and Notation. A presignature is a sequence S = 〈(qi, θi)〉i<n

of elements of Γ × R, usually abbreviated 〈qi, θi〉i<n, such that for all
i < n,

θi = 0 ⇔ qi /∈ QvF and θi = 0 ⇒ i+ 1 = n.

The degree of S is (ΓS : vF ) where for m ≤ n we set Γm = vF +∑
i<m Zqi and set ΓS = Γn; the length of S is n. We call S a signature

if (Γi : vF ) < ∞ when i < n and if the sequence 〈qi/(Γi : vF )〉i<n

is strictly increasing. Finally, we let S denote the set of signatures of
infinite degree. It should be noted that these definitions are related to
but different from those of [1].
Set ei = eSi = (Γi+1 : Γi) for all i < n, and for each m ≤ n,

Jm = JS
m = {σ ∈

⊕

0≤i<m

Z : 0 ≤ σ(i) < ei ∀i < m}.

Then the number of elements of Jn is the degree of S. If g = 〈gi〉i<m

is a sequence of polynomials in F [x], then for each σ ∈ Jm we set

gσ =
∏

i<m g
σ(i)
i . If k < m we will identify Jk with the subset of Jm

consisting of elements σ with σ(i) = 0 for all i ≥ k; this identification
does not affect the meaning of gσ.
We next describe a bijection from M(F (x)) to S. We begin by show-

ing how, given a signature S = 〈qi, θi〉i<n, to construct its associated
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sequence g = 〈gi〉i<n′ of polynomials in F [x] where n′ = n if S has
infinite degree and n′ = n+ 1 otherwise. The case when S has infinite
degree (so n′ = n) applies directly to the bijection Φ of Theorem 4.3(A)
below, and the case when S has finite degree (where n′ = n+1) is crit-
ical for the application of Theorem 4.3(C), which plays a fundamental
role in many of our arguments. The construction of g will be inductive;
we start by setting g0 = x. Now suppose that for some ordinal k < n′

we have constructed gi for all i < k. If k is not a limit ordinal, say
k = m+ 1, then we set

gk = gemm + θmt
αmgσm (4.1)

where αm ∈ vF and σm ∈ Jm are uniquely determined by the condition
that

emqm = αm +
∑

i<m

σm(i)qi. (4.2)

Next suppose that k is a limit ordinal. Since (Γk : vF ) < ∞, there is
a least k0 < k with ei = 1 whenever k0 ≤ i < k. We then set

gk = gk0 +
∑

σ∈Jk

(∑
θjt

αj

)
gσ (4.3)

where for each σ ∈ Jk, the inside sum above is over all j with k0 ≤ j < k
and σj = σ. These inside sums are in our power series field since for
all σ ∈ Jk the sequence 〈αj〉k0≤j<k is strictly increasing. (Recall the
definition of αj and the fact that 〈qi/(Γi : vF )〉i<n is strictly increasing.)

4.2. Notation. Suppose S = 〈qi, θi〉i<n is a signature. We write S ⊲ T
if T is a signature which is an initial segment (not necessarily proper
and possibly empty) of S. If m ≤ n we will also set Sm := 〈qi, θi〉i<m;
thus, for example, S ⊲ Sm.
If S has finite degree, then we let cut(S) denote the cut of QvF

determined by {(Γn : Γi)qi : i < n}, i.e., the smallest cut containing
this set. Note that by the above definiton of a signature, for all i < n
we have qi ≥ cut(Si).

4.3. Theorem. There exists a unique bijection Φ : M(F (x)) −→ S
such that for all S ∈ S and τ ∈ M(F (x)) we have
(A) Φ(τ) = S if and only if vτ (gi) = qi for all i < n;
(B) If Φ(τ) = S, then {gσ : σ ∈ Jn} is a valuation basis over v for

the restriction of vτ to F [x], and vτF (x) = ΓS;
(C) for all ρ ∈ M(F (x)) and k < n, we have Φ(ρ) ⊲ Sk if and only

if vρ(gk) ≥ q for all q ∈ cut(Sk).
(D) if Φ(τ) = S and k < n, then gk is irreducible over F and on

all polynomials over F of degree less than that of gk, vτ agrees with
9



the composition of the natural map F [x] −→ F [x]/(gk) with the unique
extension of v to F [x]/(gk).

The notation introduced in this section with respect to a signature S
has been used in the statement of the above theorem. In particular, we
have let g = 〈gi〉i<n denote the associated sequence of polynomials of
S. (In the proof below, g will be defined in a different way, but it will
turn out to be the associated sequence of polynomials of a signature
S.) Note that in (B) above we are asserting that for all dσ ∈ F the
value of vτ on

∑
dσg

σ is the minimum of the values vτ (dσg
σ). The

uniqueness assertion in (D) follows from the fact that (F, v) is Henselian
and F [x]/(gk) is an algebraic field extension of F .

4.4. Remark. The condition “vρ(gk) ≥ q for all q ∈ cut(Sk)” of part
(C) above is equivalent to saying that vρ(gk) ≥ cut(Sk) because vρ(gk)
is either in QvF or it is a cut of QvF . After all, if it is not in QvF
then using part (B) above we deduce that gk is a monic polynomial of
minimal degree with value under vρ not in QvF , and so by the proof
of Lemma 3.2 its value under the map vρ is indeed a cut of QvF .

Proof. The map Φ will be obtained from the bijection of [1, Corollary
4.3] by restriction of the domain and codomain of that bijection and by
modifying it so as to take advantage of the significant simplifications
possible in the context of this theorem. (References as this one to [1,
Section 4] should be assumed to include their generalizations indicated
in [1, Sections 7 and 8].)
The bijection of [1] requires a choice of a set of representatives A

for vF and a “display” Υ of F [1, page 475]. For these we make the
obvious choices: let A = {tγ : γ ∈ vF} and let Υ : R(tvF , c) −→ W be
the map taking each

∑
i∈I bit

i to {biti(1 + p) : i ∈ I} where of course
each bi is in R and I is a well-ordered subset of vF . Here, W denotes
the set of well-ordered subsets of F×/(1 + p), where p is the maximal
ideal of the valuation v, and where we write a(1 + p) < b(1 + p) if and
only if v(a) < v(b).
We identify the residue class field of v with R. Since (F, σ) is ultra-

complete, σ is its only R-place and in particular it is the only R-place
associated with v. The R-places on F (x) must extend σ and they
therefore correspond bijectively with the equivalence classes of totally
ramified extensions of v to F (x) (i.e., those with residue class field R).
By [1, Corollary 4.3], the set of equivalence classes of extensions of v
to F (x) is bijective with the set of “signatures” over (R, vF ) of infinite
degree (in the sense of [1, Definition (7.3)]), and by [1, Supplement
4.2(C)] the set of equivalence classes of totally ramified extensions is
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bijective with the set, call it B, of those “signatures” which are repre-
sented by “presignatures” of the form 〈θi, qi〉i<n (all in the sense of [1,
Definition 7.3]) where θi ∈ R for all i < n; we shall henceforth call these
R-signatures to distinguish them from the signatures of this paper.
We now define a bijection from S to B. Using the language and

notation of Definition and Notation 4.1 (and setting am = tαm), for
any S = 〈qi, θi〉i<n ∈ S and any m < n we set

M〈θi,qi〉i<m
= τ(ambmg

σmgγm)

where am ∈ A, bm ∈ A, σm ∈ Jm, and γm ∈ Jm are (uniquely) deter-
mined by the equations

v(am) +
∑

j<m

σm(j)qj = −
(
v(bm) +

∑

j<m

γm(j)qj

)
= emqm; (4.4)

and where g is a generating sequence for, and τ is an R-place (whose
valuation is) associated with, the R-signature 〈θi, qi〉i<m (cf. [1, Def-
inition 7.5]). The key point here is that M〈θi,qi〉i<m

is independent of
the choice of τ since ambmg

σmgγm is a product of polynomials of degree
less than that of 〈θi, qi〉i<m [1, Lemma F of Section 8]. We define
∆ : S −→ B by setting

∆(〈qi, θi〉i<n) = the equivalence class of 〈θ′i, qi〉i<n

where we inductively define for all m < n

θ′m = −θmM〈θ′i,qi〉i<m
,

so in particular θ′0 = −θ0τ(a0b0) (starting the induction).
We define Φ : S −→ M(F (x)) by letting Φ(S) be the unique R-place

associated with the R-signature ∆(S) for each S ∈ S .
Our next tasks are to verify that ∆ (and hence Φ) is a bijection, and

to show for any S ∈ S, that the associated sequence of polynomials
of S is exactly the generating sequence of ∆(S). The first of these
tasks is accomplished by constructing the inverse of ∆. By Lemma
3.1 each R-signature has a unique representative 〈θi, qi〉i<n such that
for all i < n we have (θi, qi) ∈ R × Γ, and 〈qi, θi〉i<n ∈ S. If T ∈ B
is represented by such a presignature 〈θi, qi〉i<n, then we let ∆′(T ) =
〈qm,−θm/M〈θi,qi〉i<m

〉m<n. Moreover, if we write ∆∆′(T ) = 〈θ′′i , qi〉i<n,
then we must have θm = θ′′m for all m < n, so that ∆∆′ is the identity
map. After all, by induction on m we have

θ′′m = −(−θm/M〈θi,qi〉i<m
)M〈θ′′i ,qi〉i<m

= θm.
11



(Note that θ′′0 = θ0τ(a0b0)/τ(a0b0) = θ0.) The argument that ∆′∆ is
the identity is similar, but doesn’t require induction. Thus ∆ is indeed
bijective.
Now suppose that S = 〈qi, θi〉i<n ∈ S, and g = 〈gi〉i<n is the gener-

ating sequence for ∆(S) = 〈θ′i, qi〉i<n and τ is the R-place associated
with ∆(S). We suppose (inductively) that for some r < n the sequence
〈gi〉i<r is an initial segment of the associated sequence of polynomials
of S. We show now that gr is also in the associated sequence of poly-
nomials of S so that this sequence is in fact g. First suppose that we
can write r = m+ 1. Pick am, bm, σm, γm as in Equation 4.4. Then for
some θ ∈ R we have gr = gemm + θamg

σm . By [1, Definition (7.5)(v)] we
have θ′m = τ(bmg

γmgemm ), so that by the definition of ∆

θ = τ

(
gm+1 − gemm

amgσm

)
= τ

( −θ′m
amgσmbmgγm

)
= θm;

hence gr is in the associated sequence of polynomials of S.
On the other hand, if r is a limit ordinal, then gr (described in [1,

Definition 7.5(iii)]) is also the r-th element of the associated sequence
of polynomials of S (defined in formula 4.3). The crucial point here
is that by our choice of the set of representatives A for vF and the
display Υ we see that in the notation of display 4.3, for each σ ∈ Jk we
have that Υ(

∑
θjt

αj) = ∪Υ(θjt
αj).

We now check that Φ satisfies the conditions of the theorem. Con-
dition (B) follows from the Supplement of [1, (4.2)]. Part (C) follows
from the fundamental lemma [1, (3.5), as generalized on page 479].
Necessity in part (A) of the theorem follows from the fact that S is
associated with vτ . Sufficiency follows from the fundamental lemma
[1, (3.5)]. When the length n of S is a limit ordinal this is obvious.
Suppose that n = m+1. Then Φ(τ)⊲Sm and so 〈gi〉i<n is a generating
sequence for vτ and vτ (gm) = qm 6= QvF , so Φ(τ) = S [1, Definition
7.5(iv)]. Part (D) follows from the discussion of algebraic extensions in
[1, page 465, including formula (15)]. The uniqueness of the map Φ is
immediate from part (A).

�

We end this section with an application of the above theorem which
will be needed in the next section.

4.5. Lemma. Let S = 〈qi, θi〉i<n be a signature of finite degree whose

length n is a limit ordinal. Suppose Ŝ = 〈q̂i, θ̂i〉i<n̂ is a signature of

infinite degree, Ŝ ⋫ S, and Ŝ ⊲ Si for some i < n with deg S = degSi.

Let j be the smallest ordinal for which (q̂j, θ̂j) 6= (qj, θj). Then v̂(gn) =
min(qj, q̂j).

12



Proof. Note that j ≥ i and gk = ĝk for all k ≤ j. Let v̂ and v′ denote

the valuations associated with the signatures Ŝ and S ′, respectively,
where S ′ is the signature with S ′ ⊲ S and with n-th term (cut(S), 0).
Then v′(gn) = cut(S) > v′(gj) = qj. Also gn − gj has degree less than
that of Si and hence by Theorem 4.3(A and D) we have v̂(gn − gj) =
v′(gn − gj) = min(cut(S), qj) = qj. Similarly v̂(gn − gj+1) = qj+1. If
qj 6= q̂j, then using Theorem 4.3(A) we see that v̂(gn) = v̂(gn−gj+gj) =
min(v̂(gn − gj), v̂(gj)) = min(qj, q̂j). If on the other hand qj = q̂j, so

that θj 6= θ̂j, then gj+1 − ĝj+1 has the form (θj − θ̂j)ag
σ where v̂ and

v′ both assign to agσ the value qj. Also q̂j+1 > êj q̂j = ejqj = qj, so
that v̂(gj+1) = min(v̂(ĝj+1), v̂(gj+1 − ĝj+1)) = min(q̂j+1, qj) = qj, and
v̂(gn) = min(v̂(gn − gj+1), v̂(gj+1)) = min(qj+1, qj) = qj. �

5. The homeomorphism Φ : M(F (x)) −→ S
We continue to assume in this section that (F, σ) is ultracomplete

and that vF is nontrivial. We now put a topology on S which will make
the bijection Φ of Section 4 a homeomorphism. In outline, we present
a subbasis for S, and show in Lemma 5.3 that it makes Φ continuous
and in Lemma 5.4 that it generates a Hausdorff topology on S. Since
M(F (x)) is compact we conclude the following.

5.1. Theorem. Φ is a homeomorphism and S is compact.

We now give the subbasis for S and introduce some notation that
will be used throughout the remainder of the paper; to some extent
we are just formalizing the use of notation that appeared in earlier
sections.

5.2. Notation. If we denote a signature by Ŝ then we will write Ŝ =

〈q̂i, θ̂i〉i<n̂; set Γ̂m = Z+
∑

i<m Zq̂i for allm ≤ n̂, and set êi = (Γ̂i+1 : Γ̂i)

for all i < n̂. We will also let ĝ = 〈ĝi〉i<n̂ (or ĝ = 〈ĝi〉i≤n̂+1 if Ŝ has

finite degree) denote the associated sequence of polynomials of Ŝ and

write ĝm+1 = ĝêmm + θ̂mâmĝ
σ̂m (see Section 4 and equation (4.1); here

âm denotes tα̂m).
We will use similar notation if the circumflex above is replaced by

another symbol (or omitted completely). For example if S∗ is a signa-
ture, we write S∗ = 〈q∗i , θ∗i 〉i<n∗ , and if S is a signature we continue to
use the notation introduced in Section 4, so S = 〈qi, θi〉i<n.
Suppose that S is a signature of finite degree. Pick 0 < δ ∈ R,

0 < δ′ ∈ QvF , β ∈ QvF , and α ∈ QvF ∪ {−∞} such that β ≥ α ≥
cut(S). If n is a limit ordinal, we also let i = iS be the least ordinal
with deg S = degSi.

13



We give S the coarsest topology such that for all such S, δ, δ′, α, β
and i as above the following four sets are open:

PS,δ,δ′ = {Ŝ ∈ S : n̂ > n; Ŝ ⊲ Sn−1; qn−1 = q̂n−1;

| θn−1 − θ̂n−1 |< δ; if θn−1 = θ̂n−1, then q̂n ≤ δ′ + en−1qn−1}
(defined only if n is not a limit ordinal and n > 0; n− 1 denotes here
the predecessor of n);

DS,β,δ = {Ŝ ∈ S : Ŝ ⊲ S, β ≥ q̂n, and if β = q̂n then |θ̂n| > δ}
∪ {Ŝ ∈ S : Ŝ ⋫ S, Ŝ ⊲ Si, and q̂i ≥ qi}

(defined only if n is a limit ordinal);

NS,β,δ = {Ŝ ∈ S : Ŝ ⊲ S; q̂n ≥ β; and q̂n = β only if | θ̂n |< δ},
and

NS,α,β,δ = {Ŝ ∈ S : Ŝ ⊲ S; β ≥ q̂n ≥ α; and q̂n = β only if | θ̂n |> δ}.
We now prove Theorem 5.1 by proving the two lemmas promised

above.

5.3. Lemma. The map Φ : M(F (x)) → S is continuous.

Proof. Suppose that γ ∈ vF , 0 < b ∈ Z, and f ∈ F [x]. Then for
any τ ∈ M(F (x)), we have τ(1 + (f b/tγ)2) ∈ (0,∞) if and only if
vτ (f) ≥ γ/b and similarly that τ(1 + (tγ/f b)2) ∈ (0,∞) if and only if
vτ (f) ≤ γ/b. Thus we will sometimes let H(v(f) ≥ γ/b) denote the
Harrison set H(1+(f b/tγ)2)) and similarly for H(v(f) ≤ γ/b), and also
set H(v(f) = γ/b) = H(v(f) ≥ γ/b) ∩H(v(f) ≤ γ/b). Finally, we will
also let H(v(f) ≥ −∞) denote the set of R-places τ with vτ (f) ≥ −∞;
it will be either all of M(F (x)), or the complement of the singleton set
consisting of the R-place whose valuation maps x to −∞ (cf., the first
paragraph of Section 3).
We will show that each of our subbasic open sets is the image of an

open subset of M(F (x)). We continue to use the notation of Notation
5.2. With β and S as in Notation 5.2, we set e = (ΓS + Zβ : ΓS) and
choose µ ∈ Jn and a ∈ A such that eβ = v(a) +

∑
j<n µ(j)qj. In each

case below we will assume that τ ∈ M(F (x)) and set Ŝ = Φ(τ).
We begin by showing that Φ(H) = DS,β,δ where

H := H(v(gi) ≥ qi) ∩H(δ−2 − (gen/ag
µ)−2).

Suppose that τ ∈ H. By Theorem 4.3(A) if Ŝ ⊲ S, then vτ (gj) = qj
whenever j < n, so vτ (ag

µ) = eβ. Also vτ (g
e
n/ag

µ) ≤ 0, so vτ (gn) ≤
β. If the last inequality is strict, then Ŝ ∈ DS,β,δ, so suppose that
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vτ (gn) = β. Then ĝn+1 = gen + θ̂nag
µ, so |θ̂n| = |τ(gen/agµ)| > δ, so

again Ŝ ∈ DS,β,δ. Next suppose that Ŝ ⋫ S. By Theorem 4.3(C)
and the last sentence of 4.2, since by hypothesis vτ (gi) ≥ qi, therefore

Ŝ ⊲Si. Thus gi = ĝi, so again Ŝ ∈ DS,β,δ. Conversely, suppose now that

Ŝ ∈ DS,β,δ. If Ŝ ⊲ S, then vτ (gi) = qi and vτ (gn) = vτ (ĝn) = q̂n ≤ β and
if β = q̂n, then

|τ(gen/agµ)| = |τ((ĝn+1 − θ̂nag
µ)/agµ)| = |θ̂n| > δ,

so τ ∈ H. On the other hand if Ŝ ⋫ S, we still have Ŝ ⊲ Si, so
vτ (gi) = q̂i ≥ qi. Also by Lemma 4.5 for some j < n we have vτ (gn) =
min(qj, q̂j) ≤ qj < cut(S) < β, so again we have τ ∈ H.
We will now show that that Φ(H) = NS,β,δ where

H = H(v(gn) ≥ β) ∩H(δ2 − (gen/(ag
µ)2)).

We must show that τ ∈ H if and only if Φ(τ) ∈ NS,β,δ. If τ ∈ H,

then vτ (gn) ≥ β > cut(S), so by Theorem 4.3(C) we have Ŝ ⊲ S and
therefore ĝi = gi for all i ≤ n. (In the application of the theorem let the
signature of length n+1 with initial segment S and last term (QvF, 0)
play the role of S and n play the role of k .) Hence q̂n = vτ (ĝn) =

vτ (gn) ≥ β. If vτ (ĝn) = vτ (gn) = β, then ên = e and ĝn+1 = gen+ θ̂nag
µ,

so

|θ̂n| =
∣∣∣∣τ
(
ĝn+1

agµ
− gen

agµ

)∣∣∣∣ = |τ(gen/(agµ))| < δ

since τ ∈ H. Now suppose that Φ(τ) ∈ NS,β,δ. Then Ŝ ⊲ S and hence
ĝn = gn. Therefore β ≤ q̂n = vτ (ĝn) = vτ (gn). If vτ (gn) > β, then
vτ (g

e
n/(ag

µ)) > 0 so τ(δ2 − (gen/(ag
µ)2)) ∈ (0,∞). But if vτ (gn) = β,

then ên = e and ĝn+1 = gen + θ̂nag
µ, so δ > |θ̂n| = |τ(gen/(agµ))| and

hence in either case τ(δ2 − (gen/(ag
µ))2) ∈ (0,∞). Thus τ ∈ H.

We next show that Φ(H) = NS,α,β,δ where now we set

H = H(β ≥ v(gn)) ∩H(v(gn) ≥ α) ∩H(δ−2 − (gen/(ag
µ))−2).

First suppose that τ ∈ H. Arguing as in the previous paragraph, we

conclude that Ŝ ⊲ S, so that gj = ĝj for all j ≤ n. Thus q̂n =
vτ (ĝn) = vτ (gn) is between α and β. If q̂n = β, then e = ên and

ĝn+1 = gen + θ̂nag
µ, so |θ̂n| = |τ(gen/(agµ))| > δ. Hence Ŝ ∈ NS,α,β,δ.

Now suppose that Ŝ ∈ NS,α,β,δ. Arguing as above we deduce that
gj = ĝj for all j ≤ n and β ≥ vτ (gn) ≥ α. If vτ (gn) < β, then
vτ (ag

µ/gen) > 0, so |(τ(gen/(agµ)))−1| = 0 < δ−1. If vτ (gn) = β, then

ĝn+1 = gen + θ̂nag
µ, so δ < |θ̂n| = |τ(gen/(agµ))|. Hence τ ∈ H.
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Finally we suppose that n > 0 and that n is not a limit ordinal and
show that Φ(H) = PS,δ,δ′ where now (with the obvious notation) H
denotes

H(v(gn−1) = qn−1, v(gn) ≤ δ′ + en−1qn−1) ∩ H(δ2 − (gn/(bg
ρ))2)

and where we now pick b ∈ A and ρ ∈ Jn−1 with en−1qn−1 = v(b) +∑
j<n−1 ρ(j)qj. Suppose that Ŝ = Φ(τ) ∈ PS,δ,δ′ . Since Ŝ ⊲ Sn−1 we

have gj = ĝj for all j < n and so vτ (gj) = vτ (ĝj) = q̂j = qj for all j < n.
Hence

gn = g
en−1

n−1 + θn−1bg
ρ and ĝn = g

en−1

n−1 + θ̂n−1bg
ρ.

Thus

vτ (gn)− en−1qn−1 = vτ

(
g
en−1

n−1

bgρ
+ θn−1

)
= vτ

(
ĝn
bgρ

− θ̂n−1 + θn−1

)

which equals 0 if θn−1 6= θ̂n−1 since q̂n > en−1qn−1, and which is at most

δ′ if θn−1 = θ̂n−1. Moreover

|τ(gn/(bgρ))| =
∣∣∣∣τ
(

ĝn
bgρ

− θ̂n−1 + θn−1

)∣∣∣∣ = | − θ̂n−1 + θn−1| < δ,

so τ ∈ H. Conversely, suppose that τ ∈ H. Then vτ (gn−1) = qn−1 >

cut(Sn−1), so by Theorem 4.3(C), Ŝ ⊲ Sn−1 and hence ĝj = gj for all
j ≤ n− 1. Hence qn−1 = vτ (gn−1) = vτ (ĝn−1) = q̂n−1. Also

|θn−1 − θ̂n−1| = |τ((gn − ĝn)/(bg
ρ))| = |τ(gn/(bgρ))| < δ.

Finally, suppose that θn−1 = θ̂n−1, so gn = ĝn. Then

q̂n − en−1qn−1 = vτ (gn)− en−1qn−1 ≤ δ′.

Thus Φ(τ) = Ŝ ∈ PS,δ,δ′ . �

5.4. Lemma. S is Hausdorff.

Proof. Suppose that S∗ and Ŝ are two distinct elements of S. Then

there is a least n with (q∗n, θ
∗
n) 6= (q̂n, θ̂n). We will find disjoint open

sets N ∗ and N̂ containing S∗ and Ŝ, respectively. Set S := S∗
n = Ŝn.

First suppose that q̂n = q∗n, so that θ̂n 6= θ∗n. Let δ denote a positive

rational less than |θ̂n−θ∗n| and let δ′ denote a positive element of QvF .

At least one of θ∗n and θ̂n is nonzero, so q̂n = q∗n is in QvF , so both

θ∗n and θ̂n are nonzero and n∗ and n̂ are both larger than n+ 1. Then

Ŝn+1 = 〈q̂i, θ̂i〉i≤n and S∗
n+1 = 〈q∗i , θ∗i 〉i≤n are distinct signatures of

finite degree. If there exists q̂ ∈ QvF with q̂n+1 > q̂ > ênq̂n, then

set N̂ = NŜn+1,q̂,δ
; otherwise we have q̂n+1 = (ênq̂n)

+ and we set N̂ =
PŜn+1,δ/2,δ′

. Similarly, if there exists q∗ ∈ QvF with q∗n+1
> q∗ > e∗nq

∗
n,
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then set N ∗ = NS∗

n+1
,q∗,δ and otherwise set N ∗ = PS∗

n+1
,δ/2,δ′ . Then

clearly Ŝ ∈ N̂ and S∗ ∈ N ∗. Suppose S ′ ∈ N̂ ∩ N ∗. If q̂ and q∗ both

exist then S ′ ⊲ S∗
n+1 and S ′ ⊲ Ŝn+1, so θ̂n = θ′n = θ∗n, a contradiction.

If neither exists then δ < |θ∗n − θ̂n| ≤ |θ∗n − θ′n| + |θ′n − θ̂n| ≤ δ, a
contradiction. Thus without loss of generality q̂ exists and q∗ does not,

so that θ′n = θ̂n and δ/2 > |θ′n − θ∗n| = |θ̂n − θ∗n| > δ, a contradiction.

Therefore N ∗ and N̂ are indeed disjoint.
Hence without loss of generality we may assume that q̂n < q∗n. Sup-

pose that there exist α and β in QvF with q̂n < α < β < q∗n. Now
suppose further that there exists δ ∈ QvF with q̂n ≥ δ ≥ cut(S). Then

we set N̂ = NS,δ,α,1 so Ŝ ∈ N̂ and set N ∗ = NS,β,1, so S∗ ∈ N ∗.

Just suppose that S ′ ∈ N ∗ ∩ N̂ . Then β ≤ q′n ≤ α < β, a contradic-
tion. Hence without loss of generality no such δ exists. Thus either
(1) n = 0 and q̂0 is the empty cut, or (2) n is a successor ordinal and
q̂n = (en−1qn−1)

+, or (3) n is a limit ordinal and q̂n = cut(S).

In the first case (1) above, Ŝ = 〈(∅, 0)〉 ∈ N̂ := N̂∅,−∞,α,1 and S∗ ∈
N ∗ := N̂∅,β,1 and if S ′ ∈ N̂ ∩N ∗, then α ≥ q′0 ≥ β, a contradiction, so

N̂ and N ∗ are indeed disjoint.

In the second case (2) above S∗ ∈ N ∗ := NS,β,1 and Ŝ ∈ N̂ :=
PS,1,β−α (because q̂n = (en−1qn−1)

+ ≤ β − α + en−1qn−1). Further, if

S ′ ∈ N̂ ∩ N̂ ∗, then

β ≤ q′n ≤ (β − α) + en−1qn−1 < β,

a contradiction.
Now consider the third case (3). Then S∗ ∈ NS,β,1 and Ŝ ∈ DS,α,1.

If S ′ ∈ DS,α,1 ∩ NS,β,1, then β > α ≥ v′(gn) = q′n ≥ β, a contradiction.
(Here we have let v′ denote the valuation associated with S ′.)
We may now assume there are no such α and β. But there does exist

some β ∈ QvF with q̂n ≤ β ≤ q∗n. Thus one of the following cases must
occur:
(4) q∗n = β+ and q̂n = β, or
(5) q∗n = β and q̂n = β−, or
(6) q∗n = β+ and q̂n = β−.
In the first of these cases (labeled (4)) since q̂n ∈ QvF therefore

θ̂n 6= 0. Then S∗ ∈ N ∗ := NS,β,|θ̂n|/2
. Also Ŝ ∈ N̂ := NS,β,β,|θ̂n|/2

. But

if S ′ ∈ N ∗ ∩ N̂ , then q′n = β so |θ̂n|/2 < |θ′n| < |θ̂n|/2, a contradiction.
Now consider the case labeled (5). Note that θ∗n 6= 0 since q∗n = β ∈

QvF . First suppose that n is not a limit ordinal. Then there exists
α ∈ QvF such that q̂n = β− > α > cut(S). It then suffices to take

N̂ = NS,α,β,2|θ∗n| and N ∗ = NS,β,2|θ∗n|. Next suppose that n is a limit
17



ordinal. Again set N ∗ = NS,β,2|θ∗n| and now set N̂ = DS,β,2|θ∗n|. Clearly,

Ŝ ∈ N̂ and S∗ ∈ N ∗; suppose S ′ ∈ N̂ ∩ N ∗. Then q′n = β and hence
|2θ∗n| < |θ′n| < |2θ∗n|, a contradiction.
Finally we consider the last case (6). First note that S∗ ∈ N ∗ :=

NS,β,1. If n is not a limit ordinal then again there exists α ∈ QvF

with q̂n = β− > α ≥ cut(S) and we can take N̂ = NS,α,β,1. If n is a

limit ordinal we can take N̂ := DS,β,1. In either case Ŝ ∈ N̂ and if

S ′ ∈ N ∗∩N̂ , then q′n = β, and hence 1 > |θ′n| > 1, a contradiction. �

6. Path-connectedness

In this section we continue with the hypothesis that (F, σ) is ultra-
complete, and assume in addition that it has countable value group.
Our object is to complete the proof of the Main Theorem 1.1 by proving
Proposition 2.5.
Suppose that S is a signature of finite degree. We give Γ × R the

lexicographic order and consider its ordered subset

AS = {(q, θ) ∈ Γ× R : q ≥ cut(S); θ ≤ 0; and θ = 0 ⇔ q /∈ QvF}.
For any (q, θ) ∈ Γ × R we set S(q, θ) = S ⊕ (q, θ) if q /∈ QvF and

S(q, θ) = S⊕(q, θ)⊕(((ΓS+Zq : ΓS)q)
+, 0) otherwise. (For sequences A

and B we let A⊕B denote the concatenation of A and B; if B = {b} is a
singleton, we will often write A⊕ b for A⊕B.) Note that if (q, θ) ∈ AS

or (q,−θ) ∈ AS , then S(q, θ) ∈ S. We will show that AS is order
isomorphic to the interval [0, 1] and that the function (q, θ) 7→ S(q, θ)
maps AS (given the order topology) continuously into S.
We first show that AS is order isomorphic and therefore homeomor-

phic (with respect to the order topology) to a closed interval. We note
that AS has smallest element (cut(S), 0) and largest element (QvF, 0),
so by [15] we only need to show that AS has the least upper bound
property and that it has a countable order dense subset, i.e., a count-
able subset such that between any two distinct elements of AS we can
find an element of the subset.

6.1. Lemma. T := {(q, θ) ∈ AS : q ∈ QvF, θ ∈ Q} is a countable order
dense subset of AS.

Proof. Since vF is countable, so is T . Suppose (qi, θi) ∈ AS (i = 1, 2)
with (q1, θ1) < (q2, θ2).
Case 1: q1 = q2 = q ∈ QvF . Then θ1 < θ2; choosing θ ∈ Q between

them, we have (q1, θ1) < (q, θ) < (q2, θ2).
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Case 2: Neither q1 nor q2 is in QvF . Then we can find q ∈ QvF
between them, and we have (q1, θ1) < (q,−1) < (q2, θ2).
Case 3: q1 ∈ QvF and q2 /∈ QvF . Choose θ ∈ (θ1, 0) so (q1, θ1) <

(q1, θ) < (q2, θ2).
Case 4: q1 /∈ QvF and q2 ∈ QvF . Similar. �

6.2. Lemma. AS has the least upper bound property.

Proof. Suppose that B ⊆ AS.Wemay assume without loss of generality
that B is nonempty (since AS has a minimum) and that it is not finite.
Let α = {q ∈ QvF : ∃(q′, θ′) ∈ B; q ≤ q′}. Then α is a cut in QvF and
α ≥ cut(S) since B 6= ∅. We note that (α, 0) is necessarily an upper
bound for B. (For if not, we’d have some (q′, θ′) ∈ B with q′ > α, but
then we could find q ∈ QvF with α < q ≤ q′, which implies q ∈ α, a
contradiction.)
Case 1: α is not of the form q+, q ∈ QvF . Then we claim that

(α, 0) = sup(B). This holds because if we take any (q1, θ1) < (α, 0)
then, as α 6= q+1 , there is some q ∈ QvF with q1 < q < α, but then
q ∈ α and so (q1, θ1) is not an upper bound for B. (And, as observed
above, (α, 0) is an upper bound for B.)
Case 2: α = q+ for some q ∈ QvF . Then either (q+, 0) = supB

or θ∗ := sup{θ : (q, θ) ∈ B} < 0. In the latter case, clearly (q, θ∗) =
supB. �

6.3. Corollary. AS is order isomorphic to [0, 1].

The Corollary follows from the previous two lemmas and [15, Theo-
rem 2.30] (either apply the theorem to the interior of AS or as suggested
in the paragraph just before [15, Exercise 2.37, page 40], apply the proof
of Theorem 2.30 of [15]).

We set NS = {S ′ ∈ S : S ′
⊲ S} and define the function

E = ES : AS −→ NS

by setting E(q, θ) = S(q, θ).

6.4.Theorem. Let S be a signature of finite degree and length n. Then
E : AS → NS is continuous.

Proof. It suffices to show that if (q, θ) ∈ AS and Ŝ := E(q, θ) ∈ N
where N has one of the forms DM,β,δ, PM,δ,δ′ ,NM,β,δ, or NM,α,β,δ, then
there exists an open interval I of AS containing (q, θ) such that E(I) ⊂
N . For M as above let us write M = 〈qMi , θMi 〉i<m, so of course m is
the length of M .
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We begin by assuming that N = DM,β,δ, so m is a limit ordinal and
we can let i = iM (cf. 5.2). Let (q′, θ′) ∈ AS and let τ ′ and v′ denote
the R-place and valuation associated with S ′ := E(q′, θ′).

We first suppose that Ŝ ⊲ M and m = n. Then M = S, β ≥ q̂n = q

and if β = q, then |θ̂n| > δ, so θ = θ̂n < −δ. Thus

(q, θ) ∈ I := [(cut(S), 0), (β,−δ)) ⊂ AS.

If (q′, θ′) ∈ I, then S ′ ⊲ S and q′m = q′ ≤ β with equality holding only
if θ′m = θ′ < −δ, so |θ′m| > δ. Hence S ′ ∈ N . Thus, E(I) ⊂ N .

Next suppose that Ŝ ⊲ M and n 6= m. Since Ŝ ⊲ M and m is a limit
ordinal, therefore S ⊲ M , so n > m. We have β ≥ q̂m = qm = q′m and

if β = q′m then |θ′m| = |θ̂m| > δ. Thus S ′ ∈ N , so E(AS) ⊂ N .

Finally consider the case that Ŝ ⋫ M . Since Ŝ ⊲ Mi, therefore S ⊕
(q, θ) ⊲ Mi. If n + 1 = i, then S = Mn and (using the notation of 4.1
and 5.2)

((ΓS + Zq : ΓS)q)
+ = (eMn qMn )+ ≤ qMi ≤ q̂i = ((ΓS + Zq : ΓS)q)

+,

which contradicts the fact that qMi is in QvF . Thus i ≤ n. Hence S⊲Mi

and hence S ′ ⊲ Mi. And further, S ′ ⋫ M since otherwise Ŝ ⊲ S ⊲ M
since m is a limit ordinal. If i < n, then q′i = qi = q̂i ≥ qMi , so S ′ ∈ N .
Thus if i < n, then we can take I = AS. Hence suppose i = n. Then

(q, θ) ∈ I :=
(
(qMn , η), (QvF, 0)

]
⊂ AS

where we choose η < θ. Then if (q′, θ′) ∈ I, we have q′i = q′n = q′ ≥
qMn = qMi , so S ′ ∈ N . Hence indeed we have E(I) ⊂ N .
The proof of the theorem in the remaining cases where N has one of

the forms PM,δ,δ′ ,NM,β,δ, or NM,α,β,δ is a routine generalization of the
proofs of Lemmas 5.5 and 5.6 of [5] (the subasic open set NM,δ of that
paper corresponds to our subbasic open set PM,δ,δ). We will give the
proof here only in the case that N = PM,δ,δ′ where the notation in this
paper differs the most from that in [5].
We first suppose that n > m. Consider any S∗ ∈ NS. Then q∗m−1 =

qm−1 = q̂m−1 = qMm−1 and similarly, θ∗m−1 = θm−1 = θ̂m−1, so |θ∗m−1 −
θMm−1| = |θ̂m−1 − θMm−1| < δ, and if θ∗m−1 = θMm−1, then θ̂∗ = θMm−1, so
q∗m = qm = q̂m ≤ δ′ + eMm−1q

M
m−1. Also S∗ ⊲ S ⊲ Mm−1. Hence S

∗ ∈ N .
Thus E(AS) ⊂ NS ⊂ N , so we may take I = AS.

Therefore we may now assume that n ≤ m. But n+2 ≥ length of Ŝ >
m ≥ n. Hence m = n or m = n+ 1.
First consider the case that m = n + 1. Since Ŝ ∈ N , therefore

Mn = S and

|θ − θMn | = |θ̂n − θMn | < δ
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and
qMn = q̂n = q > cut(S),

so
(q, θ) ∈ I :=

(
(qMn , θMn − δ), (qMn ,min (θMn + δ, θ/2)

)
⊂ AS

(keep in mind that θ < 0). Now if (q′, θ′) ∈ I and S ′ = E(q′, θ′) =
S(q′, θ′), then q′n = q′ = qMn and |θ′n − θMn | = |θ′ − θMn | < δ. Also
q′m = (e′q′)+ = (eMn qMn )+ < eMn qMn + δ′ (where e′ = (ΓS + Zq′ : ΓS)).
Thus S ′ ∈ N , and hence E(I) ⊂ N .
Finally, consider the case that m = n. Then n is a successor ordinal

and Mn−1 = Sn−1. Also, qn−1 = q̂n−1 = qMn−1 and δ > |θ̂n−1 − θMn−1| =
|θn−1 − θMn−1|. Let (q′, θ′) ∈ AS and S ′ = E(q′, θ′). Then S ′ ⊲ S ⊲

Mn−1 and q′n−1 = qn−1 = q̂n−1 = qMn−1 and similarly |θ′n−1 − θMn−1| < δ.
Therefore if θ′n−1 = θn−1 6= θMn−1, then S ′ ∈ N , so E(AS) ⊂ N . Hence
suppose that θn−1 = θMn−1. By hypothesis q = q̂m ≤ δ′ + eMn−1q

M
n−1, so

that
(q, θ) ∈ I :=

[
(cut(S), 0), (eMn−1q

M
n−1 + δ′, θ/2)

)
⊂ AS.

Now suppose that (q′, θ′) ∈ I. Then by the choice of I we have q′m =
q′ ≤ eMn−1q

M
n−1 + δ′. Thus S ′ ∈ N . And hence E(I) ⊂ N .

�

We need another class of homeomorphisms. We let Ω denote the
first uncountable ordinal. Let ǫ = 〈ǫi〉0≤i<Ω be a sequence with each
ǫi ∈ {±1}. Define a map Ψǫ : S → S by the formula

Ψǫ(S
′) = 〈q′i, ǫiθ′i〉i<n′ (6.1)

for all S ′ ∈ S.
6.5. Lemma. Ψǫ is a homeomorphism.

Proof. Ψǫ is continuous since for all appropriate T, α, β, δ and δ′ we
have

Ψǫ(PT,δ,δ′) = PΨǫ(T ),δ,δ′ ,

Ψǫ(NT,β,δ) = NΨǫ(T ),β,δ,

Ψǫ(NT,α,β,δ) = NΨǫ(T ),α,β,δ,

and
Ψǫ(DT,β,δ) = DΨǫ(T ),β,δ.

(In the above formulas we use equation (6.1) to define Ψǫ(T ) even
though T is not in S.) Since Ψǫ is its own inverse, therefore Ψǫ is a
homeomorphism. �

We now turn more directly toward the proof that S is path-connected.
Our construction of paths will use a map ρ : {i : 0 ≤ i ≤ n} −→ [0, 1]
of the type whose existence is asserted in the next lemma.
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6.6. Lemma. If n > 0 is a countable or finite ordinal number, then
there exists a strictly increasing map ρ as above such that ρ(0) = 0 and
ρ(n) = 1 and if k ≤ n is a limit ordinal, then ρ(k) is the supremum of
{ρ(i) : i < k}.
Proof. Let Λ denote the set of ordinal numbers less than or equal to n
and let Λ0 denote the set of elements of Λ which are not limit ordinals
(so, for example, 0 ∈ Λ0). There is a strictly increasing map ǫ0 : Λ −→
[0, 1]. Define ǫ : Λ −→ [0, 1] by letting ǫ agree with ǫ0 on Λ0 and
setting ǫ(λ) = supλ>δ∈Λ0

ǫ0(δ) if λ ∈ Λ is a limit ordinal. Then an easy
argument by cases shows that ǫ is strictly increasing. It follows that
ǫ has the required sup property, and hence the required map ρ can
be obtained by composing it with a strictly increasing continuous map
[ǫ(0), ǫ(n)] −→ [0, 1] taking ǫ(0) to 0 and ǫ(n) to 1. �

Recall that the smallest element of Γ×R is −∞ = (∅, 0). We denote
the signature of length one whose only element is (∅, 0) by S−∞.

6.7. Proposition. Let S ∈ S. Then there is a continuous function
φ : [0, 1] −→ S such that φ(0) = S and φ(1) = S−∞.

Proof. Let ǫ = 〈ǫi〉0≤i<Ω be a sequence of numbers in {±1} (cf. Lemma
6.5) such that ǫiθi ≤ 0 for all i < n. If π0 were a path from S−∞ to
Ψǫ(S), then Ψǫ ◦ π0 would be a path connecting S−∞ to ΨǫΨǫ(S) = S.
Thus without loss of generality we may assume that θi ≤ 0 for all i < n.
Pick a map ρ of the type whose existence is asserted in Lemma 6.6.

For each i < n let µi : [ρ(i), ρ(i + 1)] −→ [(cut(Si), 0), (qi, θi)] be the
constant map if qi = cut(Si) (the codomain is then a singleton) and let
it be an order isomorphism otherwise (we can apply Corollary 6.3 here
since in this case the codomain is a subinterval of ASi

). Then for each
i < n we let φi = ESi

◦ µi, so that

φi(ρ(i)) = S+
i := Si ⊕ (cut(Si), 0)

and φi(ρ(i + 1)) = S+
i+1 if i + 1 < n and φi(ρ(i + 1)) = S if i + 1 = n.

We also let φn be the empty map if n is not a limit ordinal, and let
it be the function {(1, S)} otherwise. (We are of course identifying
each map f with its “graph” {(b, f(b)) : b ∈ domain of f}.) The
relation φ := ∪i≤nφi is a functional relation with domain [0, 1] and
range contained in S such that

φ(0) = φ0(0) = S0 ⊕ (cut(S0), 0) = S−∞

and φ(1) = S. It remains to prove that φ is continuous.
Let λ be any limit ordinal less than or equal to n. By the definition

of φ it suffices to show that it is left continuous at ρ(λ). LetN be one of
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our four types of subbasic open sets of S such that Ŝ := φ(ρ(λ)) ∈ N .
For any k < λ and t ∈ (ρ(k), ρ(λ)) there exists l ≥ k with l < λ and
with t ∈ [ρ(l), ρ(l+1)) (pick l minimal with ρ(l+1) > t and argue that
t ≥ ρ(l)). We can write µl(t) = (q, θ) ∈ ASl

where (q, θ) < (ql, θl); then
S∗ := Sl(q, θ) = φ(t). It suffices to show that if k is chosen properly,
then φ(t) = S∗ ∈ N for all t ∈ (ρ(k), ρ(λ)).
First consider the case that N = DS′,β,δ.
Subcase 1: Sλ ⊲ S ′ and Sλ 6= S ′. Since λ is a limit ordinal, we

therefore have λ > n′ +1. In this case we will will take k = n′ +1. For
t, l, q, θ and S∗ as above, we have Ŝ ⊲ Sk ⊲ S

′ and S∗ ⊲ Sl ⊲ Sk ⊲ S
′. Thus

(q∗n′ , θ∗n′) = (qn′ , θn′) = (q̂n′ , θ̂n′).

Since Ŝ ∈ N and Ŝ ⊲ S ′, therefore q̂n′ ≤ β with equality holding only

if |θ̂n′ | > δ. The last display tells us the same must be true of S∗ and
hence S∗ ∈ N , as required.
Subcase 2: Sλ = S ′. Thus λ = n′. In this case we take k = i′ + 1,

where i′ = iS′ (c.f., the third paragraph of 5.2). For t, l, q, θ and S∗ as
above, we have S∗ ⋫ S ′ because otherwise since n′ is a limit ordinal we
would have Sl ⊲ S

′ = Sλ, a contradiction. But we do have S∗ ⊲ Si′+1 =
S ′
i′+1, so q∗i′ = q′i′ and hence S∗ ∈ N .
Subcase 3: Sλ ⋫ S ′. In this case we let k = i′ +1. Since n′ is a limit

ordinal, we must have Ŝ ⋫ S ′. (Note that if λ = n, then Ŝ = Sλ.)

Thus Ŝ ⊲ S ′
i′ and q̂i′ ≥ q′i′ . Further, S∗ ⊲ Si′+1 ⊲ S

′
i′ and Ŝ ⊲ Si′+1 and

therefore q∗i′ = qi′ = q̂i′ ≥ q′i′ . Therefore S∗ ∈ N .
It remains to consider the case that N = PS′,δ,δ′ ,NS′,β,δ, or NS′,β,α,δ.

Then λ + 1 ≥ n̂ > n′, so either λ = n′ or λ > n′. In the first case
we must have N 6= PS′,δ,δ′ (since λ is a limit ordinal) and n > n′ = λ
(otherwise, S ∈ N so n > n′), so

β ≤ q̂n′ = q̂λ = cut(Sλ) = cut(S ′) ≤ β,

contradicting the fact that cut(S ′) /∈ QvF . Thus λ > n′ and hence,
since λ is a limit ordinal, λ > n′ + 1. We can then take k = n′ + 1 and
argue essentially as in subcase 1 above.

�

Proposition 2.5 is an immediate corollary of the above Proposition;
this completes the proof of the Main Theorem 1.1. Here is a partial
converse to the Main Theorem.

6.8. Remark. If K is a field with exactly one R−place, then M(K(x))
is path-connected if and only if the value group of the unique R−place
on K is countable. Sufficiency here is a (very) special case of our
main theorem; we now prove necessity. We will use the notation of
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this paper, but with F replaced by K. Just suppose that the value
group vK is uncountable and that M(K(x)) is path-connected. Then
there exists a path P : [0, 1] −→ M(K(x)) with vP (0)(x) = ∞ (that
is, the cut Qv(K) ) and with vP (1)(x) = −∞ (i.e., the empty cut).
Let γ be in vK. Then H(v(x) ≥ γ) and H(v(x) ≤ γ) are open sets
with union M(K(x)) containing P (0) and P (1) respectively. Hence
their intersection with the image of the path P cannot be empty, i.e.,
there is a number t ∈ [0, 1] with vP (t)(x) = γ. Thus the intersection
of H(vP (t)(x) = γ) with the image of P is a nonempty open subset of
the image of P . The collection of all these sets (for various γ ∈ vK) is
an uncountable set of pairwise disjoint nonempty open subsets of the
image of P , a contradiction. Hence MK(x)) is not path-connected.
The above argument shows that the fact thatM(K) is path-connected

does not imply that M(K(x)) is path-connected, in contrast with the
result of Harmon [8, Theorem 2.12] on connectedness.

7. Some questions

We let (F, σ) denote a field ultracomplete at an R-place σ.
1. Is the countability hypothesis of the Main Theorem 1.1 necessary?
2. We do not know if the space of R−places of the rational function

field over R in countably many variables is path-connected. It is not
hard to show that it is an inverse limit of the spaces of R−places of the
rational function fields over R in finitely many variables, and hence by
[9, Theorem 117] it is connected.
3. What is the homotopy group of M(F (x))? Same question for

R(x1, · · · , xn).
4. Does the space M(R(x1, · · · , xn)) contain a disk if n > 1?
5. Is the set of R-places of M(R(xi, · · · , xn)) with value group iso-

morphic to the value group of a particular R-place onM(R(xi, · · · , xn))
dense in M(R(xi, · · · , xn))? This is true if n = 2 [5, Theorem 6.3].
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