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Abstract. Marshall has generalized the notion of ∗-ordering to the setting of a ring with
involution. In this paper we analyze the ways in which a given ∗-ordering (on the set of

symmetric elements) can be extended to a multiplicatively closed ordering on a larger set of

elements. A complete answer is given for Ore domains.

1. Introduction and notation.

Considerable work has been done on the topic of orderings on skew fields with involution
(∗-fields), with several different generalizations of the usual ordering on a commutative field
being considered (see the survey article [Cr3] for references). Recently Marshall [M] has
extended the theory of ∗-orderings on ∗-fields to the case of general rings with involution
(∗-rings). He develops the notion of an extended ∗-ordering on a ∗-ring and shows that
every ∗-ordering has such an extension, as in the skew field case. The algebraic theory of
quadratic forms for commutative fields carries over extremely well to hermitian forms over
∗-fields in the context of orderings (see [C2]). There is reason to hope that real algebraic
geometry will work as well for ∗-rings. The ring-theoretic terminology in this paper will
follow that of Lam’s books [L1, L2].

In this paper we consider the problem of characterizing all extensions of a given ∗-
ordering on a ∗-ring R. In order to extend the elegant valuation-theoretic characterization
of ∗-orderings for ∗-fields, we first must slightly strengthen the definition of an extended
∗-ordering as given by Marshall [M, Definition 2.1]. The added condition is automatically
satisfied when inverses exist. In Section 2 we provide a complete characterization of all
extensions of a given ∗-ordering with support {0} on an Ore domain R containing 2−1. In
Section 3 we construct a class of extensions of a given ∗-ordering with support {0} on any
∗-domain R. We also construct an example of a ∗-ring which is not an Ore domain but
has a ∗-ordering with support {0}.

For any subset A ⊆ R, we set A× = A \ {0}. We define S(R) to be the set of all
symmetric elements in R, that is, S(R) = {r ∈ R | r∗ = r}.
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Definition 1.1 [M, Definition 1.2]. A ∗-ordering is a subset P ⊆ S(R) satisfying
(1) 1 ∈ P,−1 /∈ P ,
(2) P + P ⊆ P ,
(3) rPr∗ ⊆ P for any r ∈ R,
(4) P ∪ −P = S(R),
(5) for any a, b ∈ S(R), if aba ∈ P ∩ −P then a ∈ P ∩ −P or b ∈ P ∩ −P ,
(6) if a, b ∈ P then ab + ba ∈ P .

The set P ∩ −P is called the support of P .

The operation a 7→ rar∗ seen above in (3) occurs so often and is so fundamental that
we shall give it the name of ∗-conjugation. Marshall shows that the support generates a
∗-closed completely prime ideal p in R (i.e. R/p is a domain with an induced involution,
which we again denote by ∗), in the sense that p = { r ∈ R | rr∗ ∈ P ∩ −P } and
p ∩ S(R) = P ∩ −P . In the case when R is a division ring, Definition 1.1 is equivalent to
the usual definition of ∗-ordering [Cr1]. As is usual in real algebraic geometry, here we use
P ∩−P = {0} rather than the empty set in the earlier definitions which exclude zero from
orderings.

It is crucial to many proofs in this subject (as we shall see in the next section) that one
deal with a multiplicatively closed set. For this purpose, one extends a ∗-ordering to a
larger set containing some of the nonsymmetric elements and closed under multiplication.

Definition 1.2 [M, Definition 2.1]. A weak extended ∗-ordering of a ∗-ring R is a subset
Q of R satisfying

(1) Q + Q ⊆ Q,
(2) QQ ⊆ Q,
(3) Q∗ = Q,
(4) rQr∗ ⊆ Q for all r ∈ R,
(5) Q ∩ S(R) is a ∗-ordering P of R.

If the additional condition
(6) rxr∗ ∈ Q =⇒ x ∈ Q for any r not in the ideal generated by Q ∩ −Q

also holds, we shall call Q an extended ∗-ordering.

Marshall proves the existence of a weak extension of any ∗-ordering [M, Theorem 2.2];
we shall strengthen this to include condition (6) in Theorem 1.8. Condition (6) holds for all
extended ∗-orderings on ∗-fields. It is needed in Section 2 to obtain the correspondence be-
tween extensions of a ∗-ordering on an Ore domain and extended ∗-orderings on its field of
fractions. We shall see in Example 2.11 that there exist weak extended ∗-orderings of a ring
which are not extended ∗-orderings (that is, condition (6) fails to hold). Condition (6) has
very strong implications as we shall see below; it essentially guarantees the commutativity
that arises from having all multiplicative commutators sds−1d−1, s ∈ S(D)×, d ∈ D×, in
extended ∗-orderings of a skew field D [Ho]. Furthermore the appropriate modification of
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(6) also holds for all ∗-orderings as shown in Proposition 1.4. We next demonstrate the
(nonobvious, though elementary) power of condition (6). Note that the elements b and c
in the next proposition may not have any nice properties; they may even be skew units,
and so not be orderable in any sense.

Proposition 1.3. Let Q be an extended ∗-ordering on a ring R with P = Q ∩ S(R). Let
p be the (completely prime) ideal generated by Q ∩ −Q. Let a and bc be elements of Q
with abc /∈ p. Then cb and bac also lie in Q. In particular, bac + c∗a∗b∗ ∈ P . For any
s ∈ P \ −P and r ∈ R, if sr ∈ Q, then r ∈ Q.

Proof. Since bc ∈ Q and bb∗ ∈ Q, the product bcbb∗ ∈ Q, whence cb ∈ Q by condition
(6). Now a, cb ∈ Q, so acb ∈ Q and hence (ac)(bac)(ac)∗ = (acb)[(ac)(ac)∗] ∈ Q. Another
application of condition (6) gives bac ∈ Q. For the final statement, sr ∈ Q and s ∈ P
implies that srs = srs∗ ∈ Q and s /∈ p, so (6) again can be used to conclude that r ∈ Q. �

Proposition 1.4. Let P be a ∗-ordering on a ring R and set p equal to the ideal generated
by P ∩ −P . Let r ∈ R, r /∈ p and x ∈ S(R). If rxr∗ ∈ P , then x ∈ P .

Proof. Assume rxr∗ ∈ P but x /∈ P . Since the element x is symmetric, it lies in P ∪ −P .
Therefore −x ∈ P and hence −rxr∗ ∈ P . Thus rxr∗ ∈ P ∩ −P ⊆ p. By hypothesis, r
and hence r∗ are not in p. Since x /∈ P , we also have x /∈ p. Since p is a completely prime
ideal, this is a contradiction. �

Upon reflection, one sees that this proof could have been simplified by immediately
reducing to the domain R/p with the ∗-ordering induced by P . For the remainder of this
paper, we shall assume that R is a domain and that the support of any ∗-ordering P under
consideration is {0}. All results can be pulled back to arbitrary ∗-rings.

In order to prove the existence of an extension (in the strong sense) of any ∗-ordering,
we need some understanding of the valuation theory involved. Marshall [M, Section 3]
defines a valuation-like mapping on ∗-ordered ∗-rings associated to a given ∗-ordering P
as follows. For a, b ∈ S(R)×, we write a ∼ b if there exists an integer n ≥ 1 such that
n|a| ≥ |b| and n|b| ≥ |a|, where ≥ is the ordering on S(R) induced by P . We extend the
relation ∼ to R× by defining a ∼ b if aa∗ ∼ bb∗. We let v(a) denote the equivalence class
of a with respect to ∼ and let Γv = { v(a) | a ∈ R× }. Also set v(0) = ∞. We call v the
natural ∗-valuation associated to P . The set Γv is a totally ordered cancellation semigroup
under the ordering given by v(a) ≥ v(b) if nbb∗ ≥ aa∗ for some positive integer n and the
operation + defined by v(a) + v(b) = v(ab). Moreover, we have

Proposition 1.5 [M, Theorem 3.3].
(1) v is ∗-invariant.
(2) For a, b ∈ R, v(a + b) ≥ min{v(a), v(b)}.
(3) If a, b ∈ S(R)×, then v(ab − ba) > v(ab) = v(ba).
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Marshall proves very little about how much his mapping v behaves like a valuation. We
fill in some of those gaps with lemmas for later reference.

Lemma 1.6. Let R be a ∗-ring with ∗-ordering P and let v be the natural ∗-valuation
associated to P . If 0 6= a, b ∈ S(R), then v(ab + ba) = v(ab) = v(a) + v(b).

Proof. By the preceding proposition, we have that v(ab+ ba) ≥ min(v(ab), v(ba)) = v(ab).
Since it does not affect the values to change an element to its negative, we may assume
that a, b ∈ P . With respect to a weak extended ∗-ordering Q ⊇ P (which exists by [M,
Theorem 2.2]), we have 0 < ab < ab+ba, which implies that (ab)(ab)∗ < (ab+ba)(ab+ba)∗,
which by definition of the ordering of the set of values gives v(ab) ≥ v(ab + ba). Therefore
they are equal. �

Lemma 1.7. Let R be a ∗-ring with ∗-ordering P and let v be the natural ∗-valuation
associated to P . If a ∈ P and b ∈ S(R) with v(b) > v(a), then a + b ∈ P .

Proof. By definition, v(b) > v(a) means a2 = aa∗ > nbb∗ = nb2 for all integers n; since
a and b are symmetric, we must have either a > b or b > a. The relation between the
squares implies we cannot have b > a, so in particular, a ± b ∈ P . �

As noted earlier, Marshall [M, Theorem 2.2] shows that every ∗-ordering P is contained
in some weak extended ∗-ordering whose intersection with the symmetric elements is again
P . His proof is based on the theory for skew fields and, as we shall see, actually gives an
extended ∗-ordering. This will be carried still further in Theorem 3.1, where an entire
family of extensions is constructed.

Theorem 1.8. Let P be a ∗-ordering on a ∗-ring R in which 2 is a unit. There exists an
extended ∗-ordering Q with Q ∩ S(R) = P .

Proof. We follow Marshall [M, Proof of Theorem 2.2] in immediately factoring out the
ideal generated by P ∩ −P so that we may assume R is a domain and P ∩ −P = {0}.
Marshall shows that

Q = { p + k | p ∈ P, k∗ = −k, v(k) > v(p) }

is a weak extended ∗-ordering with Q ∩ S(R) = P . Thus we only need to check that Q
satisfies condition (6) of Definition 1.2. Assume that rxr∗ ∈ Q with r 6= 0. We can write
x = s + j, where s ∈ S(R) and j∗ = −j (use s = (x + x∗)/2, j = (x − x∗)/2). Then
rxr∗ = p + k where p = rsr∗ is symmetric and k = rjr∗ is skew. Since rxr∗ ∈ Q, we have
p ∈ P and v(k) > v(p). But then s ∈ P by Proposition 1.4, and v(j) = v(k) − 2v(r) >
v(p) − 2v(r) = v(s), so x = s + j ∈ Q. �
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This theorem remains true if 2 is not a unit in R, but the definition of Q no longer
works. In this case, one must form R ⊗Z Z[1/2], apply the theorem and then intersect
the extended ∗-ordering obtained with the ring R. The trouble one encounters with the
definition of Q given in the proof of the theorem is demonstrated in Example 2.10.

In the case when the ∗-ring under consideration is a ∗-field D, Craven [Cr4, Theorem
2.3] has provided a complete description of all extended ∗-orderings containing a given
∗-ordering P of D. In this case the set Γv is a group. We remark here that the set Γ+

v

defined in [Cr4, Section 2] should correctly be defined as

Γ+
v = { v(k) ∈ Γv | k ∈ D×, v(k) > 0, k∗ = −k } ∪ {∞}.

Theorem 1.9 [Cr4, Theorem 2.3]. Let D be a ∗-field with a ∗-ordering P and let v
be the associated order valuation with value group Γv. Then there is a one-to-one cor-
respondence between extended ∗-orderings Q containing P and convex subsets A ⊆ Γ+

v

containing { v(s1s2s
−1
1 s−1

2 − 1) | s1, s2 ∈ S(D)× } defined by QA = { s + k | s ∈ P, k∗ =
−k, v(k) − v(s) ∈ A } and AQ = { v(k) | 1 + k ∈ Q }.

In the definition of QA, we think of k = 0 as giving v(k)−v(s) = ∞ ∈ A, since it occurs
for s1 = s2 = 1. We shall see in Theorem 2.8 that this result generalizes to Ore domains
and ∗-orderings with support {0}.

2. Ore domains.

Let R be an Ore domain with field of fractions D (see [Co, Chap. 1]). We assume
throughout this section that 2 is a unit in R; this condition is needed in Theorem 2.8.

If D has an involution ∗, it restricts to an involution of R. Conversely, we wish to know
that an involution ∗ of R extends to an involution of D.

Lemma 2.1. Let R be a ∗-ring satisfying the right Ore condition. Then R also satisfies
the left Ore condition.

Proof. Recall that the left Ore condition says that for all x, y ∈ R×, there exist x1, y1, u ∈
R× such that uy1x = ux1y. So let x, y 6= 0. Set a = x∗, s = y∗. Then by the right Ore
condition there exist s1, a1, t ∈ R× such that x∗s1t = y∗a1t. Therefore t∗s∗1x = t∗a∗

1y. Set
x1 = a∗

1, y1 = s∗1, u = t∗ for the conclusion. �

Lemma 2.2. Let R be an Ore domain with an involution ∗ and field of fractions D. Then
the involution extends uniquely to D.

Proof. If ∗ extends to D, it must be defined so that (ab−1)∗ = (b∗)−1a∗. Thus we must
check that this is well defined. Suppose ab−1 = cd−1. Then there exist u, v ∈ R such that
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au = cv and bu = dv. Applying the involution, we obtain u∗a∗ = v∗c∗ and v∗d∗ = u∗b∗.
Since R is a left Ore domain by Lemma 2.1, we have b∗−1a∗ = d∗−1c∗. �

Theorem 2.3. Let Q be an extended ∗-ordering with support {0} on the Ore ∗-domain R
with field of fractions D. Define QD = { ab−1 ∈ D | ab∗ ∈ Q }. Then QD is an extended
∗-ordering on D and QD ∩ R = Q.

Proof. We first check that QD is well defined. Assume that ab−1 = cd−1 with ab∗ ∈ Q.
We must show that cd∗ ∈ Q. From the equality of the fractions, we know that there exist
b1, d1 ∈ R such that ad1 = cb1 and db1 = bd1. Now ab∗ ∈ Q implies that ad1d

∗
1b

∗ ∈ Q by
Proposition 1.3. Using the previous two equations, we obtain (cb1b

∗
1)d

∗ = (cb1)(db1)∗ =
(ad1)(d∗

1b
∗) ∈ Q, from which we obtain d∗cb1b

∗
1 ∈ Q using Proposition 1.3 to switch the

order of the factors. Then we obtain cd∗ ∈ Q as desired using Proposition 1.3 twice more,
first to cancel the norm and then to switch the order of the factors.

Closure under addition. Assume that ab−1, cd−1 ∈ QD, which means ab∗, cd∗ ∈ Q.
Then the sum is ab−1 + cd−1 = (ad1 + cb1)(bd1)−1 where db1 = bd1, b1, d1 ∈ R. But then
(ad1 + cb1)(bd1)∗ = ad1d

∗
1b

∗ + cb1(db1)∗ = ad1d
∗
1b

∗ + cb1b
∗
1d

∗ lies in Q since each summand
does by Proposition 1.3, and therefore ab−1 + cd−1 ∈ QD.

Closure under multiplication. Again we assume that ab−1, cd−1 ∈ QD. Then the
product is (ab−1)(cd−1) = (ac1)(db1)−1, where bc1 = cb1, b1, c1 ∈ R. Now (ac1)(db1)∗

lies in Q if and only if its product with b∗b lies in Q, which is true if and only if
a(b∗b)c1b

∗
1d

∗ = ab∗b(b−1cb1)b∗1d∗ = ab∗c(b1b
∗
1)d∗ lies in Q. However the final element

is known to be in Q by Proposition 1.3.

Closure under ∗-conjugation. Since ∗-conjugating by cd−1 is the same as ∗-conjugating
first by d−1 and then ∗-conjugating by c, we may do them as separate cases to simplify
notation. First assume that c ∈ R, ab−1 ∈ QD. Then c(ab−1)c∗ = cac1b

−1
1 , where

c∗b1 = bc1, b1, c1 ∈ R. The last equation gives us bc1b
∗
1 = c∗b1b

∗
1. Since c(ab∗)c∗ ∈ Q, so

is cab∗c∗(b1b
∗
1) = cab∗bc1b

∗
1, from which we obtain cac1b

∗
1 ∈ Q as desired. Next we work

with d−1(ab−1)d−1∗ for d ∈ R. This can be written as a1d
−1
1 (d∗b)−1 = a1(d∗bd1)−1 where

ad1 = da1, a1, d1 ∈ R. Now d∗(ab∗)d ∈ Q and we can multiply by the norm a1a
∗
1 to obtain

a1a
∗
1d

∗ab∗d = a1(d∗
1a

∗)ab∗d = a1d
∗
1(a

∗a)b∗d in Q, and hence a1d
∗
1b

∗d = a1(d∗bd1)∗ ∈ Q,
and so a1(d∗bd1)−1 ∈ QD.

Closure under ∗. Assume that ab−1 ∈ QD. Since Q is closed under the involution,
we have ab∗ ∈ Q, which implies ba∗ ∈ Q, and so ba−1 ∈ QD. But then (ab−1)∗ =
(ab−1)∗(ba−1)(ab−1), which lies in QD by closure under ∗-conjugation.

S(D) ⊆ QD ∪ −QD. Assume that ab−1 ∈ S(D). Then we also have b∗a = b∗(ab−1)b ∈
S(D) ∩ R = S(R). Hence either b∗a ∈ Q (which implies bb∗(ab∗) = b(b∗a)b∗ ∈ Q, hence
ab−1 ∈ QD) or b∗a ∈ −Q (which implies bb∗(ab∗) = b(b∗a)b∗ ∈ −Q, hence ab−1 ∈ −QD).
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QD ∩ R = Q. Assume that ab−1 ∈ QD ∩ R. Then we also have ab∗ = (ab−1)(bb∗) ∈ Q,
so ab−1 ∈ Q by Proposition 1.3. �

Remark 2.4. Keeping the notation above, we also have QD = { ab−1 ∈ D | b∗a ∈ Q }. For
since QD is closed under ∗-conjugation, we have ab−1 ∈ QD if and only if b∗ab−1b = b∗a ∈
QD ∩ R = Q.

Corollary 2.5. Let P be a ∗-ordering with support {0} on the Ore ∗-domain R with field
of fractions D. Define PD = { ab−1 ∈ S(D) | b∗a ∈ P }. Then PD is a ∗-ordering on
D and PD ∩ R = P . Moreover, this process gives a one-to-one correspondence between
∗-orderings on R and ∗-orderings on D.

Proof. Let Q be the extended ∗-ordering given by Theorem 1.8. Let QD be the extension
to D defined in Theorem 2.3. We claim that

PD = { ab−1 ∈ S(D) | b∗a ∈ P } = QD ∩ S(D).

If true, this will verify the first claim of the corollary. It is clear that PD ⊆ QD∩S(D) since
b∗a ∈ P implies b∗a ∈ Q, so that ab−1 ∈ QD ∩ S(D). Conversely, if ab−1 ∈ QD ∩ S(D),
then b∗a = b∗(ab−1)b ∈ QD ∩ S(D) ∩ R = P , so that ab−1 ∈ PD.

To show that this process gives a one-to-one correspondence, we need to show that for a
given ∗-ordering P ′ on D with P = P ′∩R, we have P ′ = PD. Let ab−1 ∈ P ′; closure under
∗-conjugation shows that b∗a ∈ P ′ ∩R = P , so ab−1 ∈ PD. Conversely, if ab−1 ∈ PD, then
b∗a ∈ P ⊆ P ′ and closure of P ′ under ∗-conjugation gives ab−1 ∈ P ′. �

Proposition 2.6. Let R be an Ore ∗-domain with field of fractions D. There is a one-
to-one correspondence between extended ∗-orderings on R with support equal to {0} and
extended ∗-orderings on D.

Proof. Given an extended ∗-ordering Q on R, form QD as in Theorem 2.3. Then QD∩R =
Q. Conversely, let Q′ be an extended ∗-ordering on D and let Q = Q′ ∩R. We must show
Q′ = QD = { ab−1 | ab∗ ∈ Q }. Let ab−1 ∈ QD; then ab−1 = ab∗b∗−1b−1 ∈ Q′ since
ab∗ ∈ Q ⊆ Q′ and Q′ is closed under multiplication by norms. Conversely, let ab−1 ∈ Q′.
Then ab−1bb∗ ∈ Q′ ∩ R = Q, so ab−1 ∈ QD. �

We next check that the order valuations defined by Marshall for ∗-orderings on R extend
to the order valuations as defined by Holland [Ho] for the associated ∗-orderings on D. Let
v be such an order valuation associated with a ∗-ordering P and let Γv be its associated
semigroup. Since Γv is a cancellation semigroup, we can form the Grothendieck group
Γ̃v. The next proposition shows that v extends to a ∗-valuation on D associated with the
∗-ordering PD and having value group Γ̃v.
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Proposition 2.7. Let v be the order valuation associated with the ∗-ordering P on the
Ore domain R. Let D and PD be as above. Extend v to D by defining ṽ(ab−1) = v(a)−v(b)
in Γ̃v. This gives a well-defined valuation on D which is the associated order valuation for
PD.

Proof. To check that ṽ is well defined, we need to see that if ab−1 = cd−1, then v(a)+v(d) =
v(c) + v(b). Since ab−1 = cd−1, there exist d1, b1 such that ad1 = cb1 and db1 = bd1.
Then v(a) + v(d1) = v(c) + v(b1) and v(b1) + v(d) = v(b) + v(d1). Adding these and
canceling we see v(a) + v(d) = v(c) + v(b). For the order valuation, the valuation ring is
A(PD) = { ab−1 ∈ D | nbb∗ − aa∗ ∈ PD for some positive integer n }. But ṽ(ab−1) ≥ 0
if and only if v(a) ≥ v(b), which is defined to mean nbb∗ ≥ aa∗ for some positive integer
n. �

Henceforth we shall use v to denote both the valuation on R and its unique extension
to D. We are finally in a position to give the valuation-theoretic characterization of all
extensions of a given ∗-ordering. We define

Γ̃+
v = { v(k) − v(s) ∈ Γ̃v | k, s ∈ R×, v(k) > v(s), k∗ = −k, s∗ = s } ∪ {∞}.

The difference between this and the ∗-field case prior to Theorem 1.9 is primarily a techni-
cality; if R is a skew field, the two definitions yield the same set (see the proof of Theorem
1.9). Thus, when R is a ∗-field, this yields Theorem 1.9.

Theorem 2.8. Let P be a ∗-ordering with support {0} on an Ore ∗-domain R. Assume
that 2 is a unit in R. There is a bijective correspondence between the extended ∗-orderings
which intersect S(R) in P and convex subsets of Γ̃+

v containing

{ v(ab − ba) − v(a) − v(b) | a, b ∈ S(R) }.

First note that this is reasonable: Using Proposition 1.5 and Lemma 1.6, we see that
{ v(ab− ba)− v(a)− v(b) | a, b ∈ S(R) } ⊆ Γ̃+

v . Let D be the field of fractions of R. Let A

be a convex subset of Γ̃+
v containing { v(ab−ba)−v(a)−v(b) | a, b ∈ S(R) }. With inverses

available, we can write v(ab − ba) − v(a) − v(b) = v(aba−1b−1 − 1). As noted following
Theorem 1.9, we have ∞ ∈ A, so convexity of A means that it contains all elements
greater than any given element in the set. The main step in the proof of Theorem 2.8 is
the following lemma concerning the set A which may be of independent interest.

Lemma 2.9. Let A be a convex subset of Γ̃+
v containing { v(ab− ba)− v(a)− v(b) | a, b ∈

S(R) }. Then A contains all elements v(xyx−1y−1 − 1) for x, y ∈ S(D)×.

Proof. (1) The set A contains v([x, y]− 1) for x, y either symmetric elements in R or their
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inverses. This is because

v([x, y−1] − 1) = v(xy−1x−1y − 1)

= v(xy−1 − y−1x) − v(x) − v(y−1)

= v(y(xy−1 − y−1x)y) − 2v(y)− v(x) − v(y−1)

= v(yx − xy) − v(x) − v(y)

and similarly, v([x−1, y−1] − 1) = v(yx − xy) − v(x) − v(y).

(2) If A contains v([a, b]− 1) and v([a, c]− 1), then A contains v([a, bc]− 1). Indeed, we
have

v([a, bc]− 1) = v(ab[c, a−1]a−1b−1 − 1)

= v(ab([c, a−1] − [b−1, a−1])a−1b−1)

= v([c, a−1] − 1 + 1 − [b−1, a−1])

≥ min(v([c, a−1] − 1), v([b−1, a−1] − 1))

= min(v(ac − ca) − v(a) − v(c), v(ab − ba) − v(a) − v(b)),

from which the claim follows by the convexity of A.

Working in D, we write x = ab−1, y = cd−1 ∈ S(D)×, a, b, c, d ∈ R and form the
commutator [x, y] = [ab−1, cd−1] = [a, b−1][b−1, acd−1][a, cd−1]. Since ab−1 ∈ S(D), we
have b∗(ab−1)b = b∗a = a∗b ∈ S(R). Thus we can write

ab−1 = (ab∗ba∗)(bb∗)[(bb∗)(ba∗bb∗)]−1,

showing that

(3) In any fraction ab−1 ∈ S(D), we may assume that a and b are products of symmetric
elements in S(R).

(4) If v(s − 1), v(t − 1) ∈ A, then v(st − 1) ∈ A. To see this, note that v(st − 1) =
v((s− 1)(t− 1) + (s− 1) + (t− 1)) ≥ min(v(s− 1), v(t− 1)) (where we have used the fact
that all such expressions are positive in the value group) to see that the product st also
yields a value in A by convexity.

We have seen above that the commutator [ab−1, cd−1] becomes a product of commuta-
tors of the form [r, z] or [r−1, z], where r ∈ S(R) and z is a product of symmetric elements
of S(R) and their inverses by (3). Using (2) (with induction) along with (1), we see that
each individual value v([r, z] − 1) and v([r−1, z] − 1) is in A. Then (4) shows that the
product also yields a value v([x, y]− 1) ∈ A. �

Proof of Theorem 2.8. The set A gives rise to a unique extended ∗-ordering QA defined
by QA = { s + k | s ∈ P, k∗ = −k, v(k) − v(s) ∈ A } as proved in Theorem 3.1 below. In
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view of Lemma 2.9, we can apply Theorem 1.9 to see that the set A corresponds uniquely
to an extended ∗-ordering QD of D. Clearly QD ∩R contains QA. To get equality, assume
that s + k ∈ QD ∩ R, where s ∈ PD = QD ∩ S(D) and k∗ = −k ∈ D. But then
2s = (s + k) + (s + k)∗ ∈ R, whence s, k ∈ R since 2 is a unit in R. Since v(k)− v(s) ∈ A,
we have s + k ∈ QA. �

Example 2.10. The condition that 2 be a unit in R is genuinely needed in this theorem.
To see this, consider the commutative ∗-field D = Q(x) with involution defined via x∗ =
−x. Let PD ⊆ S(D) = Q(x2) be the ∗-ordering in which −x2 = xx∗ is infinitesimal and
positive. Consider the subring R = Z[2x, 1

2
± x]. Note that there is a homomorphism

R → Z defined by x 7→ 1
2 ; thus 1

2 cannot be in R and hence neither can x. Letting
1
2

+ x play the role of s + k in the last paragraph of the previous proof, we see that while
1
2 + x lies in the maximal extended ∗-ordering of R containing P = PD ∩ R (since it is in
QD = { s + k ∈ D | v(k) > v(s), s ∈ PD, k∗ = −k }), it cannot lie in any QA since 1

2
and x

do not lie in R.

The following example shows that weak extended ∗-orderings need not be extended
∗-orderings.

Example 2.11. Let D = R((x)) be the field of Laurent series in one variable over the
real numbers. The involution is given by x∗ = −x. Let PD be the ordering of S(D) =
R((x2)) in which x2 = −xx∗ is negative. This set is a ∗-ordering of (D, ∗), and the
extended ∗-orderings containing it are described in [C3, Example 2.10]. The maximal one
is QD = {∑∞

i=2n aix
i ∈ D | (−1)na2n > 0 }. Now let R = R[[x]] ⊆ D. The induced

extended ∗-ordering Qmax = QD ∩ R is an extended ∗-ordering containing the ∗-ordering
P = PD ∩ R. Set Q = {∑∞

i=2n aix
i ∈ R | (−1)na2n > 0, a1 = 0 }. One easily checks that

Q is a weak extended ∗-ordering, but it does not satisfy the stronger condition. Indeed,
−x2 + x3 = xx∗(1 − x) ∈ Q, but 1 − x /∈ Q.

3. General domains.

When R is not an Ore domain, it is far more difficult to determine what transpires.
Indeed, until now there were no known examples of non-Ore domains with ∗-orderings of
support {0}. In this section we shall see that such domains exist. The construction shown
in Section 2 to give all extensions of a ∗-ordering on an Ore domain, is shown in the general
case to give a family of extensions.

Theorem 3.1. Let R be a ∗-domain in which 2 is a unit. Let P be a ∗-ordering with
support {0}. Let A be a convex subset of Γ̃+

v containing {v(ab − ba) − v(a) − v(b) | a, b ∈
S(R) }. Define

Q = QA = { s + k | s ∈ P, k∗ = −k, v(k) − v(s) ∈ A }.
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Then Q is an extended ∗-ordering which intersects the symmetric elements in P .

Proof. We check the six conditions of Definition 1.2. Clearly Q∗ = Q, rQr∗ ⊆ Q for all
r ∈ R and Q∩S(R) = P , the last because k = 0 gives v(k)−v(s) = ∞ ∈ A. The fact that
Q satisfies condition (6) of the definition is proved in a similar manner as the corresponding
result in Theorem 1.8 since the value v(k) − v(s) is unchanged by ∗-conjugation.
Closure under addition. Let si + ki ∈ Q, i = 1, 2, where 0 6= si ∈ P, k∗

i = −ki. Since
0 < s1 < s1 + s2, we have s1s

∗
1 < (s1 + s2)(s1 + s2)∗, which implies that v(s1) ≥ v(s1 + s2)

by definition of v. Similarly v(s2) ≥ v(s1 + s2), so that v(s1 + s2) ≤ min(v(s1), v(s2)). By
Proposition 1.5, v behaves as an ordinary valuation giving v(s1 + s2) ≥ min(v(s1), v(s2)),
so that v(s1 + s2) = min(v(s1), v(s2)). But then v(k1 + k2) ≥ min(v(k1), v(k2)) >
min(v(s1), v(s2)) = v(s1 + s2) so that (s1 + s2) + (k1 + k2) ∈ Q.
Closure under multiplication. Letting si, ki be as before, we write the product (s1+k1)(s2+
k2) = s + k, where

s = (s1s2 + s2s1 + k1k2 + k2k1 + k1s2 − s2k1 + s1k2 − k2s1)/2

and
k = (s1s2 − s2s1 + k1k2 − k2k1 + k1s2 + s2k1 + s1k2 + k2s1)/2,

where s∗ = s and k∗ = −k. By Lemma 1.6 v(s1s2 + s2s1) = v(s1) + v(s2), which, in turn,
equals v(s) since the remainder of s has larger value. Furthermore, we know s1s2+s2s1 ∈ P ,
whence s ∈ P by Lemma 1.7. Now v(k) ≥ min[v(s1s2 − s2s1), v(si) + v(kj) (i 6= j)]. If
v(k) ≥ v(si) + v(kj), then v(k) − v(s) ≥ v(si) + v(kj) − v(s) = v(kj) − v(sj) ∈ A. Then
s + k ∈ Q by the convexity of A. On the other hand, if v(k) ≥ v(s1s2 − s2s1), then
v(k) − v(s) ≥ v(s1s2 − s2s1) − v(s1) − v(s2) ∈ A by hypothesis. �

Example 3.2. Let R = Z〈x, y〉 be the free algebra on two variables over the integers.
This is the simplest possible domain for us to consider which is not an Ore domain [L2,
Proposition 10.25]. Define ∗ on R via x∗ = y, y∗ = x. We claim that (R, ∗) has a ∗-ordering
with support {0}. Using the notation of [M], we write T0 for the set of all finite sums
of permuted products of elements b1, b1, b2, b2, . . . , bm, bm ∈ S(R), r1, r

∗
1 , . . . , rn, r∗n ∈ R

(m, n ≥ 0), which are nested with respect to each ri, r
∗
i . That is, rj appears between ri

and r∗i if and only if r∗j also appears between ri and r∗i . By [M, Corollary 4.8] applied to
the zero ideal, (R, ∗) has a ∗-ordering with support {0} if and only if t,−t ∈ T0 ∩ S(R)
implies that t = 0. Now assume that t is an element such that t,−t ∈ T0 ∩ S(R). Let
(D, ∗) be any ∗-ordered ∗-field. For any d ∈ D, we have an induced ∗-homomorphism
φd : R → D defined via φd(x) = d. Since (D, ∗) has a ∗-ordering, the image of t must be
zero in D, for any symmetric element of D which is a finite sum of permuted products of
doubled symmetric elements and nested ∗-conjugates would otherwise be positive. Since
this holds for every d ∈ D, we actually have a polynomial t = f(x, x∗) which is identically
zero on D. It is known from work by Herstein [He, Theorems 1 and 2] that this forces D
to be finite dimensional over its center. However, D was arbitrary and several examples
which are infinite dimensional are given in [Cr2, §7]. It follows that t must be identically
zero in R and thus R has ∗-orderings with support {0}.
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We remark that although we can show that the ring R above must have ∗-orderings,
the construction of an explicit ∗-ordering P on R seems far more difficult.
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