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Abstract Let (K, v) be a henselian valued field of arbitrary rank which is not

separably closed. Let k be a subfield of K of finite codimension and vk be the

valuation obtained by restricting v to k. In this paper, we give some necessary

and sufficient conditions for (k, vk) to be henselian. In particular, it is shown

that if k is dense in its henselization, then (k, vk) is henselian. We deduce some

well known results proved in this direction through other considerations.
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1. INTRODUCTION

Let v be a valuation of a field K. It is well known that if (K, v) is henselian (re-

spectively complete of rank one), then every finite extension of (K, v) is henselian

(respectively complete). In 2006, Bevelacqua and Motley [1] characterized those

complete rank one valued fields (K, v) whose each subfield of finite codimension

is complete. They proved that if K is not an algebraically closed field, then every

finite codimensional subfield of K is complete in the v-adic topology if and only

if either the characteristic of K is zero or the characteristic is p > 0 and [K : Kp]

is finite. This has led us to consider the following analogous question :

Let (K, v) be a henselian valued field of arbitrary rank. Is it true that every

finite codimensional subfield of (K, v) is henselian with respect to the valuation

obtained by resricting v ? If not, how can we characterize those finite codimen-

∗This paper has appeared in Colloquium Mathematicum 120:1 (2010) 157-163.
†All correspondence may be addressed to this author.
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sional subfields of (K, v) which are henselian ?

It is known that the answer to the first question is ‘yes’ when K is not a sep-

arably closed field with rank v one (cf.[4, Theorem 4.4.4]) and is ‘no’ in general

(see Example 3.3 or [3, §3]). As regards the second question, Theorem 4.4.4 of [4]

also provides a sufficient condition for each finite codimensional subfield of (K, v)

to be henselian when v is a valuation of arbitrary rank and K is not a separably

closed field. If K is separably closed, then each valuation of K is henselian and

if k is a finite codimensional subfield of K, then either k is a separably closed

field or it is a real closed field and K = k(
√−1) (cf. [4, Theorem 4.3.5]). In the

latter case, k is not a henselian subfield of (K, v) with respect to any non-trivial

valuation v provided the ordering of k is archimedean (see Lemma 3.2). In this

paper, we give some necessary and sufficient conditions for any finite codimen-

sional subfield of (K, v) to be henselian, when K is not separably closed. These

conditions generate examples of non-henselian finite codimensional subfields of

henselian valued fields as shown in Example 3.3. Some results of Endler [2],

Engler [3] and Engler and Prestel [4, Chapter4] are also deduced in the course

of proof of the main theorem.

In what follows, Rv will denote the valuation ring of a valuation v defined on

K and Kv the residue field of v. A valuation w of K is called a coarsening of

v if Rv ⊆ Rw. If Rv 6= Rw, then the coarsening w of v is called proper. In this

situation, the valuation v of K is composed of w and the valuation v induced by

v on the residue field Kw of w; v will be written as wov.

With the above notations, we prove

Theorem 1.1. Let v be a henselian valuation of arbitrary rank of a field K

which is not separably closed. Let k be a subfield of K of finite codimension with

valuation denoted by vk obtained by restricting the given valuation to k.

Then the following statements are equivalent :

(i) (k, vk) is henselian.

(ii) k is dense in the henselization kh of (k, vk).

(iii) For each valuation w of K which is a proper coarsening of v = wov, the

residue field kw of w restricted to k, is henselian with respect to the restriction

of v to kw.

2



(iv) Whenever w is a proper coarsening of v = wov such that the residue field of

w is an algebraically closed field of characteristic zero, then the restriction of v

to kw has a unique prolongation to Kw.

The corollary stated below is an immediate consequence of statement (iv) of

the theorem.

Corollary 1.2. Let (K, v) be as in Theorem 1.1. If there exists no proper

coarsening w of v such that the residue field of w is an algebraically closed field of

characteristic zero, then each finite codimensional subfield of (K, v) is henselian.

In particular , the above corollary yields the following

Corollary 1.3. Let (K, v) be as above. If the characteristic of K is p > 0 or

rank v is one, then every finite codimensional subfield of (K, v) is henselian.

Recall that the residue field of a non-trivial valuation of a separably closed

field is algebraically closed (cf.[4, Theorem 3.2.11]). Therefore with notations

as in Theorem 1.1, if the residue field of a valuation v of K is not algebraically

closed, then for any proper coarsening w of v = wov, the residue field Kw of w is

not separably closed, for otherwise the residue field of the non-trivial valuation

v of Kw (which is same as the residue field of v) would be algebraically closed.

Thus Corollary 1.2 yields the following result, which is proved in [4, Theorem

4.4.4] through other considerations.

Corollary 1.4. Let (K, v) be as in Theorem 1.1. If the residue field of v is not

algebraically closed, then any finite codimensional subfield k of K is henselian

with respect to the valuation obtained by restricting v to k.

2. PRELIMINARY RESULTS

For a valued field (K, v) of arbitrary rank, recall that the v-adic topology on

K is the one for which a basis of neighbourhoods at each element a of K consists

of sets {b ∈ K | v(b− a) > λ} where λ is in the value group of v.

Lemma 2.1. If K is not separably closed and (K, v) is henselian, then every

field automorphism of K is continuous with respect to the v- adic topology.

Proof. If σ is any field automorphism of K, then clearly the valuation voσ of K

is henselian. Since K is not separably closed, it follows from Schmidt’s Theorem

[4, Theorem 4.4.1] that v and voσ are dependent valuations. Therefore v and
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voσ induce the same topology on K and so σ is continuous with respect to the

v-adic topology.

Proposition 2.2. Let (K, v) be as in Lemma 2.1 and k be a subfield of K such

that either k is the fixed field of the group G of automorphisms of K/k or K/k

is a finite separable extension, then k is a closed subset of K with respect to the

v-adic topology.

Proof. Suppose first that k is the fixed field of G. By Lemma 2.1, each σ

in G is continuous with respect to the v-adic topology. Therefore the function

fσ : K 7→ K given by fσ(a) = σ(a)−a is continuous on K. Thus k =
⋂
σ∈G

fσ
−1(0)

is closed because each fσ
−1(0) is closed in the Hausdorff space K and hence the

result is proved in this case.

Suppose now that K/k is a finite separable extension. We first show that if

K is a real closed field, then K = k. By Artin’s Theorem [5, A.17] the algebraic

closure K̃ of K has degree two over K and any proper finite codimensional sub-

field k′ of K̃ will be real closed with K̃ = k′(
√−1), which proves that K = k. So

it may be assumed that K is not real closed. Let E/k be the normal closure of

K/k. Then E/k is a finite Galois extension. Note that E is not separably closed

because otherwise K will be either a separably closed field or a real closed field

in view of [4, Theorem 4.3.5] and these are not the cases under consideration.

Since E is henselian with respect to the prolongation of v to E, it follows from

the first case proved above that k is closed in E and hence in K as desired.

Lemma 2.3. Let K1 be a purely inseparable extension of a valued field (K, v)

and v1 be the unique prolongation of v to K1. If (K1, v1) is henselian, then so is

(K, v).

Proof. If (K, v) is not henselian, then there exists β in the algebraic closure of K

such that v has more than one prolongations to K(β) and hence v1 has more than

one prolongations to K1(β) which contradicts the henselian property of (K1, v1).

Keeping in mind that a rank one valued field is dense in its henselization,

the following well known result due to Endler [2] is an immediate consequence

of Proposition 2.2 and Lemma 2.3.

Corollary 2.4. Let v be a henselian rank one valuation of a field K which is

not separably closed. If K/k is a normal extension (finite or infinite), then k is
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henselian.

Lemma 2.5. Let (K, v) be as in Lemma 2.1 and k be a finite codimensional

subfield of K with valuation obtained by restricting v. Suppose that k is dense in

the henselization kh. Then k is henselian.

Proof. As (K, v) is henselian, k ⊆ kh ⊆ K. If K/k is a finite separable ex-

tension, then k is closed in K by Proposition 2.2 and hence closed in kh. The

hypothesis k is dense in kh now implies that k = kh in this case.

Suppose now that K/k is not a separable extension. Let ks denote the sepa-

rable closure of k in K. Then K/ks is a purely inseparable extension. So there

exists an i such that Kpi ⊆ ks. By Lemma 2.3, Kpi
is henselian and hence ks

is henselian with respect to the restriction of v. Note that ks is not a separably

closed field, for otherwise its finite extension K will be separably closed which is

contrary to the hypothesis. By Proposition 2.2 applied to the extension ks/k, k

is closed in ks.

Since kh/k is a separable extension, we have

kh ⊆ ks ⊆ K. (1)

Using the hypothesis that k is dense in kh and the fact that k is closed in ks

proved in the preceeding paragraph, it follows from (1) that k = kh as desired.

3. PROOF OF THEOREM 1.1

Clearly (i) implies (ii). Also (ii) implies (i) in view of Lemma 2.5. We shall

prove that (i) ⇒ (iii) ⇒ (iv) ⇒ (i).

(i) ⇒ (iii). Let w be a proper coarsening of v with v = wov. Let wk and vk

denote respectively the restrictions of w to k and of v to the residue field kw of

wk, so that vk = wkovk. Since (k, vk) is henselian, (kw, vk) must be henselian as

stated in (iii).

Obviously (iii) implies (iv). Suppose now that (iv) holds and suppose to the

contrary that (k, vk) is not henselian. Then vk has atleast two prolongations

v and v′ to K because (K, v) is henselian. Let ṽ, ṽ′ be prolongations of v, v′

respectively to the algebraic closure K̃ of K (the prolongation of v′ may not be

unique). Since both ṽ, ṽ′ extend vk, they are conjugates over k. So there exists

an automorphism σ of Gal(K̃/k) such that ṽ′ = ṽoσ−1. As (K, v) is henselian,
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so is the isomorphic image (σ(K), ṽoσ−1) = (σ(K), ṽ′). Taking L = K.σ(K) as

the field compositum of K and σ(K), we see that L is henselian with respect to

vL and v′L, where vL and v′L are the restrictions of ṽ, ṽ′ respectively to L. Note

that both vL and v′L being prolongations of vk to L, none is a coarsening of the

other. Let w be the smallest common coarsening of vL and v′L with valuation

ring Rw = RvL
.Rv′L . Write vL = wovL, v′L = wov′L. We first show that vL and

v′L are independent valuations on the residue field Lw of w, i.e.,

Lw = RvL
.Rv′L . (2)

Let a +Mw ∈ Lw = Rw/Mw, where Mw is the maximal ideal of Rw. Then a is

in Rw. Therefore a =
∑

aia
′
i, ai ∈ RvL

, a′i ∈ Rv′L and hence the w-residue a of a

can be written as
∑

aia′i which belongs to RvL
.Rv′L proving (2). Therefore the

residue field Lw of w being henselian with respect to the independent valuations

vL and v′L is separably closed by Schmidt’s Theorem [4, Theorem 4.4.1]. Now,

we have kw ⊆ Kw ⊆ Lw and Lw is a separably closed field. Therefore by [4,

Theorem 4.3.5], either kw is a separably closed field or kw is a real closed field

with Lw an algebraically closed field of characteristic zero. The first possibility

cannot occur because

v and v′ are distinct prolongations of vk to Kw. (3)

If Lw is an algebraically closed field of characteristic zero, then by Artin’s

Theorem [5, A.17], either kw = Kw or Kw = Lw. But kw = Kw is not possible

in view of (3). The case Kw = Lw with Lw an algebraically closed field of

characteristic zero cannot occur by virtue of condition (iv) of the theorem and

(3). This contradiction completes the proof of the theorem.

The proof of (iv) implies (i) can be carried over verbatim to show that if

(K, v) is henselian and K/k is a normal extension with (k, vk) not henselian,

then there exists a proper coarsening w of v such that the residue field Kw is a

separably closed field of characteristic zero and consequently the residue field of

v will be algebraically closed by virtue of [4, Theorem 3.2.11]. Thus we obtain

the following result of Engler proved in [3, Corollary 3.5].

Theorem 3.1. Let v be a henselian non-trivial valuation of a field K whose

residue field is not algebraically closed. Let K/k be a normal extension (finite or

infinite). Then k is henselian with respect to the restriction of v to k.
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The following lemma will be used to construct examples of henselian valued

fields having non-henselian subfields of finite codimension. It can be deduced

from Lemma 4.3.6 and Theorem 4.3.7 of [4]. For reader’s convenience, we give

below a simple proof of the lemma.

Lemma 3.2. Let R be a real closed field with respect to an archimedean ordering

and R′ = R(
√−1) be its algebraic closure. Then R is not henselian with respect

to any non-trivial valuation v′ of R′.

Proof. The proof is split in two cases.

Case 1. v′ extends the p-adic valuation vp of Q for some prime number p.

Define f(x) = x2 − x + 2 when p = 2 and if p 6= 2, set f(x) = x2 + c where c is

a positive integer such that −c is a quadratic residue modulo p. Then f(x) has

distinct roots modulo p and consequently distinct roots in the residue field of v′.

If R were henselian with respect to the restriction of v′, then by Hensel’s Lemma

[4, Theorem 4.1.3], f(x) would have a root in R, say α, which is impossible as

neither α(1− α) can be 2 nor α2 can be negative in view of R being a real field.

Case 2. v′ is trivial on Q. Let y belonging to R be a positive element in the

maximal idealMv′ of v′. Since the ordering is archimedean, there exists a positive

integer r with ry > 1. Let n be a positive integer such that n < ry < n + 1.

Define f(x) = x2 − (ry − n)(ry − n − 1). Then the polynomial f(x) obtained

by replacing the coefficients of f(x) modulo Mv′ has two distinct roots in the

residue field of v′ restricted to R, viz. ±
√

n(n + 1). But f(x) has no root in R

as (ry − n)(ry − n− 1) is negative and thus R is not henselian.

Example 3.3. Let R be any real closed field with an archimedean ordering and

R′ = R(
√−1) be its algebraic closure. Let K = R′((t)) be the field of Laurent

series in one variable t over R′. Let vt be the t- adic valuation of K trivial on

R′ characterized by vt(t) = 1. Its residue field is R′. Let v′ be any non-trivial

valuation on R′ and v be the valuation of K given by v = vtov
′. Let k = R((t))

be the subfield of K of codimension two. By Lemma 3.2, R is not henselian with

respect to the restriction of v′ to R which implies that k is not henselian with

respect to the restriction of the henselian valuation v = vtov
′ of K.
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