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Abstract. For positive integers n > k, let Pn,k(x) =
k∑

j=0

(
n

j

)
xj be the polynomial

obtained by truncating the binomial expansion of (1 + x)n at the kth stage. These poly-

nomials arose in the investigation of Schubert calculus in Grassmannians. In this paper,

the authors prove the irreducibility of Pn,k(x) over the field of rational numbers when

2 6 2k 6 n < (k + 1)3.
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1. Introduction

For positive integers k and n with k 6 n − 1, let Pn,k(x) denote the polynomial
k∑

j=0

(
n

j

)
xj, where

(
n
j

)
= n!

j! (n−j)!
. In 2007, Filaseta, Kumchev and Pasechnik considered

the problem of irreducibility of Pn,k(x) over the field Q of rational numbers. This problem

arose during the 2004 MSRI program on “topological aspects of real algebraic geometry”

in the work of Inna Scherbak [6]. These polynomials have also arisen in the context of

work of Iossif V. Ostrovskii [3]. In the case k = 2, Pn,k(x) has negative discriminant and

hence is irreducible over Q. In fact it is already known that Pn,k(x) is irreducible over Q
for all n 6 100, k + 2 6 n (cf. [2, p.455]). In [2], Filaseta et al. pointed out that when

k = n−1, then Pn,k(x) is irreducible over Q if and only if n is a prime number. They also

proved that for any fixed integer k > 3, there exists an integer n0 depending on k such

that Pn,k(x) is irreducible over Q for every n > n0. So there are indications that Pn,k(x)

is irreducible for every n, k with 3 6 k 6 n− 2.

∗This paper has appeared in Journal of Number Theory 131 (2011) 300-308.
†All correspondence may be addressed to this author.
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In this paper, we prove the irreducibility of Pn,k(x) for all n, k such that 2 6 2k 6 n <

(k + 1)3. We consider the irreducibility of the polynomial Pn,k(x − 1) =
k∑

j=0

cjx
j, where

cj =
k∑

i=j

(
n

i

)(
i

j

)
(−1)i−j. As in [2], on using the identity

a∑
j=0

(−1)j

(
b

j

)
= (−1)a

(
b− 1

a

)
, a < b non-negative integers,

a simple calculation shows that

cj = (−1)k−j

(
n

j

)(
n− j − 1

k − j

)
=

(−1)k−j n(n− 1) · · · (n− k)

j!(k − j)!

1

(n− j)
. (1)

In fact we shall prove the irreducibility of Pn,k(x) using Newton polygons with respect to

primes exceeding k dividing
(

n
k

)
and some results of Erdős, Selfridge, Saradha, Shorey and

Laishram regarding such primes (cf. [7], [5]). The same method gives the irreducibility

of polynomial

Fn,k(x) =
k∑

j=0

ajcjx
j, (2)

where a0, a1, . . . , ak are non-zero integers and each ai has all of its prime factors 6 k.

We prove

Theorem 1.1. Let k and n be positive integers such that 2k 6 n < (k+1)3. Then Pn,k(x)

is irreducible over Q.

Theorem 1.1 is derived from the following more general result.

Theorem 1.2. Let k and n be positive integers such that 8 6 2k 6 n < (k + 1)3 and

Fn,k(x) be as in (2). Then Fn,k(x) is irreducible over Q except possibly when (n, k) belongs

to the set {(8, 4), (10, 5), (12, 6), (16, 8)}.

It may be pointed out that the polynomial1 F10,5(x) given by

F10,5(x) = 2000.c5x
5 − 375.c4x

4 − 9.c3x
3 + 10.c2x

2 − 27.c1x + 25.c0

= 2000.252x5 + 375.1050x4 − 9.1800x3 − 10.1575x2 − 27.700x− 25.126

has 7x2 + 7x + 1 as a factor which shows that Fn,k can be reducible over Q.

In the course of the proof of Theorem 1.2, we prove the following result which is of

independent interest as well.

1This example was constructed by the referee.
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Theorem 1.3. Let k, n be integers such that n > k + 2 > 4. Suppose there exists a prime

p > k, p|(n − l) with 1 6 l 6 k − 1 and ordp(n − l) = e such that gcd(e, l) 6 2 and

gcd(e, k − l) 6 2. If l1 < k/2 is a positive integer such that l /∈ {l1, 2l1, k − l1, k − 2l1},
then Fn,k(x) cannot have a factor of degree l1 over Q.

2. Notation and Preliminary Results

For any non-zero integer a, let vp(a)= ordp(a) denote the p-adic valuation of a, i.e., the

highest power of p dividing a and denote vp(0) by ∞. Let g(x) =
k∑

j=0

ajx
j be a polynomial

over Q with a0ak 6= 0. To each term aix
i, we associate a point (n − i, vp(ai)) ignoring

however the point (n− i,∞) if ai = 0 and form the set

S = {(0, vp(ak)), . . . , (n− j, vp(aj)), . . . , (k, vp(a0))}.

The Newton polygon of g(x) with respect to p is the polygonal path formed by the lower

edges along the convex hull of points of S. Slopes of the edges are increasing when calcu-

lated from left to right.

We begin with the following well known results (see [1] for Theorem 2.A and [4, 5.1.F]

for Theorem 2.B).

Theorem 2.A. Let p be a prime and g(x), h(x) belong to Q[x] with g(0)h(0) 6= 0 and

u 6= 0 be the leading coefficient of g(x)h(x). Then the edges of the Newton polygon of

g(x)h(x) with respect to p can be formed by constructing a polygonal path beginning at

(0, vp(u)) and using the translates of the edges in the Newton polygon of g(x) and h(x)

with respect to p taking exactly one translate for each edge. The edges are translated in

such a way as to form a polygonal path with slopes of edges increasing.

Theorem 2.B. Let (x0, y0), (x1, y1), . . . , (xr, yr) denote the successive vertices of the New-

ton polygon of a polynomial g(x) with respect to a prime p. Let ṽp denote the unique ex-

tension of vp to the algebraic closure of Qp, the field of p-adic numbers. Then g(x) factors

over Qp as g1(x)g2(x) · · · gr(x) where the degree of gi(x) is xi − xi−1, i = 1, 2, . . . , r and

all the roots of gi(x) in the algebraic closure of Qp have ṽp valuation yi−yi−1

xi−xi−1
. In particular

all the roots of an irreducible factor of g(x) over Qp will have the same ṽp valuation.

For an integer ν > 1, let P (ν) denote the greatest prime divisor of ν and let π(ν)

denote the number of primes not exceeding ν. As in [5], δ(k) will denote the integer
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defined for k > 3 by

δ(k) =





2, if 3 6 k 6 6;
1, if 7 6 k 6 16;
0, otherwise.

For numbers n, k and h, [n, k, h] will stand for the set of all pairs (n, k), (n + 1, k), . . . ,

(n + h− 1, k). In particular [n, k, 1] = {(n, k)}.
We shall denote by S the union of the sets

[6, 3, 1], [8, 3, 3], [18, 3, 1], [9, 4, 1], [10, 5, 4], [16, 5, 1], [18, 5, 3], [27, 5, 2], [12, 6, 2], [20, 6, 1],

[14, 7, 3], [18, 7, 1], [20, 7, 2], [30, 7, 1], [16, 8, 1], [21, 8, 1], [26, 13, 3], [30, 13, 1], [32, 13, 2],

[36, 13, 1], [28, 14, 1], [33, 14, 1], [36, 17, 1]

and by T the union of the sets

[38, 19, 3], [42, 19, 1], [40, 20, 1], [94, 47, 3], [100, 47, 1], [96, 48, 1], [144, 71, 2], [145, 72, 1],

[146, 73, 3], [156, 73, 1], [148, 74, 1], [162, 79, 1], [166, 83, 1], [172, 83, 1], [190, 83, 1],

[192, 83, 1], [178, 89, 1], [190, 89, 1], [192, 89, 1], [210, 103, 2], [212, 103, 2][216, 103, 2],

[213, 104, 1], [217, 104, 1], [214, 107, 12], [216, 108, 10], [218, 109, 9], [220, 110, 7]

[222, 111, 5], [224, 112, 3], [226, 113, 7], [250, 113, 1], [252, 113, 2], [228, 114, 5], [253, 114, 1],

[230, 115, 3], [232, 116, 1], [346, 173, 1], [378, 181, 1], [380, 181, 2], [381, 182, 1], [392, 193, 2],

[393, 194, 1], [396, 197, 1], [398, 199, 3], [400, 200, 1], [552, 271, 5], [553, 272, 1], [555, 272, 2],

[556, 273, 1], [554, 277, 3], [558, 277, 5], [556, 278, 1], [559, 278, 4], [560, 279, 3], [561, 280, 1],

[562, 281, 7], [564, 282, 5], [566, 283, 5], [576, 283, 1], [568, 284, 3], [570, 285, 1], [586, 293, 1].

With the above notations, we shall use the following theorem due to Laishram and

Shorey [5, Theorem 3].

Theorem 2.C. Let n > 2k > 6 and f1 < f2 < · · · < fµ be integers in [0, k). Assume that

the greatest prime factor of (n − f1) . . . (n − fµ) 6 k. Then µ 6 k − [
3
4
π(k)

]
+ 1 − δ(k)

unless (n, k) ∈ S ∪ T .

The following corollary is an immediate consequence of Theorem 2.C.

Corollary 2.D. Let n and k be positive integers with n > 2k > 38. Then there are at

least five distinct terms of the product n(n − 1) · · · (n − k + 1) each divisible by a prime

exceeding k except when (n, k) ∈ T .

For the proof of Theorem 1.3, we need the following propositions.
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Proposition 2.1. Let k > 6 and n > k2. Then there exist two distinct terms n + r and

n + s of the product n(n + 1) · · · (n + k − 1) which are divisible by primes > k exactly to

an odd power.

Proof. Suppose the proposition is false for some n and k with k > 6 and n > k2. Let

∆(n, k) = n(n + 1) · · · (n + k − 1). Thus either ordp(∆(n, k)) is even for all primes p > k

or there is exactly one term n + i and a prime p > k such that ordp(∆(n, k)) is odd. The

first possibility is excluded since for any positive integer b with P (b) 6 k, the equation

n(n + 1) · · · (n + k − 1) = by2

has no solution in positive integers n, k, y when n > k2 > 42 by [7, Theorem A]. We

now consider the case when there is exactly a term n + i and a prime p > k such that

ordp(∆(n, k)) is odd. Suppose first that 0 < i < k − 1. Removing the term n + i from

∆(n, k), we see that n(n+1) · · · (n+ i−1)(n+ i+1) · · · (n+k−1) = b1y
2
1 where P (b1) 6 k

which is impossible by virtue of [7, Theorem 22].

It remains to consider the case when i = 0 or k − 1. Let ∆′ denote the product

(n + 1) · · · (n + k − 1) or n(n + 1) · · · (n + k − 2) according as i = 0 or k − 1. Then ∆′ is

a product of k − 1 consecutive integers such that

∆′ = b2y
2
2 (3)

with P (b2) 6 k. This is impossible when P (b2) 6 k−1 by [7, Theorem A]. It only remains

to deal with the situation when P (b2) = k. Then k will be a prime dividing only one term

of the product ∆′, say k divides n + j, j 6= i. We remove the term n + j of the product

∆′ and it is clear from (3) that

∆′

n + j
= b3y

2
3 , P (b3) 6 k − 2. (4)

It is immediate from (4) and [7, Theorem 2] that n + j is the first or last term of the

product ∆′ as k−1 > 5. Thus we see that ∆′
n+j

is the product of k−2 consecutive integers.

This is impossible by [7, Theorem A].

Proposition 2.2. Let n, k be positive integers with n > k + 2 > 4 and Fn,k(x) be given

by (2). Suppose there exists a prime p > k such that pe||(n− l) for some l, 1 6 l 6 k− 1.

Let d =gcd(e, l) and d′ =gcd(e, k − l). Then the following hold.

(i) The edges of the Newton polygon of Fn,k(x) with respect to p have slopes −e
k−l

, e
l
.

2It states that for n > k2 > 52 the equation n(n + 1) · · · (n + i− 1)(n + i + 1) · · · (n + k− 1) = by2 has
no solution in positive integers n, k, b, y with P (b) 6 k and 0 < i < k − 1.
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(ii) Fn,k(x) has at least two distinct irreducible factors over Qp; one of them has degree a

multiple of l
d

and other has degree a multiple of k−l
d′ .

(iii) If d = d′ = 1, then Fn,k(x) factors over Qp as a product of two distinct irreducible

polynomials of degrees l and k − l.

Proof. We consider the Newton polygon of Fn,k(x) with respect to the prime p. In view

of (1), the vertices of the Newton polygon are (0, e), (k − l, 0), (k, e). Thus the Newton

polygon has two edges, one from (0, e) to (k− l, 0) and other from (k− l, 0) to (k, e) with

respective slopes −e
k−l

and e
l

proving (i).

Note that equations of the two edges are given by:

y − e =
−e

k − l
x and y =

e

l
(x− k + l).

On the first edge, the x-coordinates of the lattice points occur at multiples of k−l
d′ , i.e.,

when x = k−l
d′ .M where 0 6 M 6 d′; on the second edge the x-coordinates of lattice

points are given by k − l + l
d
.N where 0 6 N 6 d. By Theorem 2.B, all the roots of

an irreducible factor of Fn,k(x) over Qp have the same valuation. Since the slopes of the

two edges as shown in (i) are different, we see that the Newton polygon with respect to

p of any irreducible factor of Fn,k(x) over Qp must lie on the first edge or on the second

edge. Hence assertion (ii) now follows from Theorem 2.A. Assertion (iii) is an immediate

consequence of (ii). The last assertion quickly yields the following result.

Corollary 2.3. If for a pair (n, k), n > k + 2, there exist terms n− l′, n− l′′, 1 6 l′ <

l′′ < k, divisible respectively by primes p′, p′′ exceeding k exactly to the first power such

that l′ + l′′ 6= k, then Fn,k(x) is irreducible over Q.

The following proposition is already known (cf. [2, Lemma 1]). For the sake of reader’s

convenience, it is proved here.

Proposition 2.4. Let n, k and Fn,k(x) be as in Proposition 2.2. Let p be a prime > k

and e > 0 be such that pe||n. Then every irreducible factor of Fn,k(x) over Qp has degree

a multiple of k
D

, where D =gcd(e, k).

Proof. The vertices of the Newton polygon of Fn,k(x) with respect to p are (0, e), (k, 0).

Thus the Newton polygon has only one edge whose equation is given by y−e = −e
k

x. The

x-coordinates of the lattice points on this edge occur at multiples of k/D. So arguing as

in Proposition 2.2, any irreducible factor of Fn,k(x) must have degree a multiple of k/D.
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3. Proof of Theorem 1.3

As pointed out in the proof of Proposition 2.2 (with d, d′ atmost 2), if (x, y) is

a lattice point on the Newton polygon of Fn,k(x) with respect to p, then x ∈ X =

{0, k−l
2

, k − l, k − l
2
, k}. By Theorems 2.A, 2.B, each irreducible factor of Fn,k(x) over Q

must have degree equal to a sum of numbers (may be one of the numbers) from

l/2, l/2, (k − l)/2, (k − l)/2;

these correspond to possible differences xi − xi−1 in Theorem 2.B, with the actual differ-

ences possibly formed from sums of these possible differences. Thus an irreducible factor

of Fn,k(x) over Q must have degrees in the set

{
l

2
, l,

k

2
,
k − l

2
, k − l,

2k − l

2
,
k + l

2
, k

}
.

Given that l < k, the elements of this set that can be less than k/2 are l/2, l, (k − l)/2

and k− l. The conditions in Theorem 1.3 imply that l1 is not among l/2, l, (k− l)/2 and

k − l, so the theorem follows.

4. Proof of Theorem 1.2

With S and T as in Theorem 2.C, we first prove

Lemma 4.1. For (n, k) ∈ S ∪ T, k > 4, Fn,k(x) is irreducible over Q except possibly

when (n, k) belongs to the subset S ′ of S given by S ′ = {(10, 5), (12, 6), (16, 8)}.
Proof. Let S ′′ denote the subset of S given by S ′′ = {(9, 4), (12, 5), (16, 5), (18, 5), (27, 5)}.
Observe that if n is divisible by a prime p > k with ordp(n) = 1, then xkFn,k(1/x) is an

Eisenstein polynomial with respect to p and so Fn,k(x) is irreducible over Q. Further if

two distinct terms n − l1, n − l2 of the product n(n − 1) · · · (n − k + 1) are divisible by

primes p1 and p2 exceeding k such that ordpi
(n − li) = 1 and l1 + l2 6= k, then in view

of the above observation and Corollary 2.3, Fn,k(x) is irreducible over Q. For each (n, k)

belonging to T ∪ (S \S ′∪S ′′) with n not divisible by any prime > k up to the first power,

Table 1 at the end of this section indicates two primes p1 and p2 satisfying the above

property. It can be easily seen that for (n, k) ∈ S ′′, F9,4(x) is an Eisenstein polynomial

with respect to the prime 5, F12,5(x) is Eisenstein with respect to 7, F16,5(x), F27,5(x) are

Eisenstein with respect to 11 and F18,5(x) is Eisenstein with respect to 13. Hence the

lemma is proved.
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Lemma 4.2. For 8 6 n < 53, the polynomial Fn,4(x) is irreducible over Q except when n

belongs to the set U = {8, 50, 98, 100}.
Proof. As pointed out in the proof of Lemma 4.1, we need to verify the irreducibility of

Fn,4(x) when n is not divisible by any prime more than 4 exactly with the first power. For

such n not exceeding 124 and n not belonging to the set {8, 9, 18, 27, 50, 98, 100}, Table 2

at the end of this section indicates two terms n− l′, n− l′′, 1 6 l′, l′′ 6 3, l′ + l′′ 6= 4 such

that n − l′, n − l′′ are divisible by primes p′, p′′ (respectively) up to the first power only.

So the lemma is proved in view of Corollary 2.3 and the fact that F9,4(x), F18,4(x) and

F27,4(x) are Eisenstein polynomials with respect to the primes 5, 7 and 23 respectively.

Proof of Theorem 1.2. We divide the proof into two cases.

Case I. 8 6 2k 6 n < (k + 1)2. Note that the theorem is already proved in the present

case for k = 4 by virtue of Lemma 4.2, so it may be assumed that k > 5 here. Applying

Theorem 2.C, we see that there exist at least three terms n − li, i ∈ {1, 2, 3} which are

divisible by primes exceeding k exactly up to the first power unless (n, k) ∈ S ∪ T. Using

Proposition 2.2 (iii), Fn,k(x) factors over Qpi
as a product of two non-associate irreducible

polynomials of degree li and k − li for 1 6 i 6 3. If Fn,k(x) were reducible over Q, then

Fn,k(x) will have a factorization of the type Fn,k(x) = akckGi(x)Hi(x) where Gi(x), Hi(x)

are monic irreducible polynomials belonging to Q[x] with degrees k − li, li respectively.

This is impossible as l1, l2 and l3 are distinct. So the theorem is proved in the present

case when (n, k) does not belong to S ∪ T. When (n, k) ∈ (S \ S ′) ∪ T with k > 4, the

irreducibility of Fn,k(x) follows from Lemma 4.1.

Case II. k > 4, (k + 1)2 6 n < (k + 1)3. In this case, we first show that Fn,k(x) cannot

factor over Q as a product of two irreducible polynomials of degree k
2

each. For this it is

enough to show that there exists l′ 6= k/2, 0 6 l′ 6 k − 1 such that n− l′ is divisible by

a prime p′ > k exactly with the first power. If l′ = 0, then as pointed out in the opening

lines of the proof of Lemma 4.1, Fn,k(x) is irreducible over Q. If l′ > 1 then by Proposition

2.2 (iii), Fn,k(x) has two irreducible factors of degree l′ and k − l′ over Qp′ . This leads

to a contradiction as l′ 6= k/2 thereby proving the irreducibility of Fn,k(x) over Q. The

existence of a term n− l′ 6= n− k
2
, 0 6 l′ 6 k− 1, which is divisible by some prime p′ > k

with ordp′(n− l′) = 1 is guaranteed for k > 6 by Proposition 2.1 as (k+1)2 6 n < (k+1)3

in the present situation. This proves the assertion stated in the opening lines of Case II.

It only remains to be shown that Fn,k(x) cannot have a factor of degree less than k/2

over Q. Suppose to the contrary that it has a factor of degree l1 < k/2 over Q. We make

some claims.
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Claim 1: P (n) 6 k.

Suppose not. Let p be a prime > k dividing n with exact power e > 1. Then e 6 2 since

n < (k +1)3. So by Proposition 2.4, every irreducible factor of Fn,k(x) over Qp has degree

a multiple of k or k
2

according as e = 1 or 2 respectively. This is not possible in view of

our supposition.

Claim 2: There are at most four distinct terms in the product n(n − 1) · · · (n − k + 1)

each of which is divisible by some prime > k.

Assume the contrary. Then there is a term n− l with 0 6 l < k and a prime p > k with

p dividing (n− l) such that l /∈ {l1, 2l1, k − l1, k − 2l1} where l1 is as in the paragraph

preceeding Claim I. Note that l > 0 in view of Claim 1. Further e =ordp(n − l) 6 2

implying that Fn,k(x) cannot have a factor of degree l1 over Q by Theorem 1.3, which

contradicts our assumption.

Claim 3: There are at most two distinct terms in the product n(n − 1) · · · (n − k + 1)

which are divisible by a prime >
√

n.

Suppose not. Let 1 6 l′1 < l′2 < l′3 be such that there exist primes pi >
√

n dividing n− l′i.

Note that ordpi
(n− l′i) = 1 for i ∈ {1, 2, 3}. Since (k + 1)2 6 n, in view of Proposition 2.2

(iii), it follows that Fn,k(x) factors over Qpi
as a product of two non-associate irreducible

polynomials of degree l′i and k− l′i, 1 6 i 6 3. Arguing as in Case I, we get a contradiction

because l′1, l
′
2 and l′3 are distinct.

From Claim 2, Corollary 2.D and Lemma 4.1, it follows that k 6 18. Note that for

k = 4, in view of Lemma 4.2, we have only to consider n = 50, 98, 100 as 52 6 n < 125.

For each of these values of n, Fn,k(x) must be irreducible over Q by virtue of Claim 1,

as P (n) is more than 4. For k > 5, by virtue of Claim 1, we may first restrict to those

n for which P (n) 6 k. Further by Claims 2 and 3, those n can be excluded for which

n(n−1) · · · (n−k+1) has either five terms divisible by a prime > k or three terms divisible

by a prime >
√

n. We use Sage mathematics software for the above computations. Then

we are left with the following pairs (n, k) given by

(50, 5), (64, 5), (100, 5), (128, 5), (200, 5), (50, 6).

All these pairs satisfy the hypothesis of Corollary 2.3 as is clear from Table 3. This

completes the proof of the theorem.
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Table 1.

(n, k) ∈ [n, k, h] → Primes (n, k) ∈ [n, k, h] → Primes (n, k) ∈ [n, k, h] → Primes
[20, 5, 1] 17, 19 [162, 79, 1] 131, 139 [346, 173, 1] 293, 307
[20, 6, 1] 17, 19 [166, 83, 1] 131, 139 [378, 181, 1] 293, 307
[14, 7, 3] 11, 13 [172, 83, 1] 137, 139 [380, 181, 2] 293, 307
[18, 7, 1] 13, 17 [190, 83, 1] 131, 139 [381, 182, 1] 293, 307
[20, 7, 1] 17, 19 [192, 83, 1] 131, 139 [392, 193, 2] 293, 307
[21, 7, 1] 17, 19 [178, 89, 1] 131, 139 [393, 194, 1] 293, 307
[30, 7, 1] 13, 29 [190, 89, 1] 131, 139 [396, 197, 1] 293, 307
[21, 8, 1] 17, 19 [192, 89, 1] 139, 149 [398, 199, 3] 293, 307
[26, 13, 3] 19, 23 [210, 103, 1] 139, 149 [400, 200, 1] 283, 307
[30, 13, 1] 19, 23 [212, 103, 2] 139, 149 [552, 271, 5] 421, 431
[32, 13, 2] 29, 31 [216, 103, 2] 139, 149 [553, 272, 1] 421, 431
[36, 13, 1] 29, 31 [213, 104, 1] 139, 149 [555, 272, 2] 421, 431
[28, 14, 1] 17, 19 [217, 104, 1] 139, 149 [556, 273, 1] 421, 431
[33, 14, 1] 29, 31 [214, 107, 12] 139, 149 [554, 277, 3] 421, 431
[36, 17, 1] 29, 31 [216, 108, 10] 139, 149 [558, 277, 5] 421, 431
[38, 19, 3] 23, 29 [218, 109, 9] 139, 149 [556, 278, 1] 421, 431
[42, 19, 1] 37, 41 [220, 110, 7] 139, 149 [559, 278, 4] 421, 431
[40, 20, 1] 31, 37 [222, 111, 5] 139, 149 [560, 279, 3] 421, 431
[94, 47, 3] 89, 83 [224, 112, 3] 139, 149 [561, 280, 1] 421, 431
[100, 47, 1] 83, 89 [226, 113, 7] 139, 149 [562, 281, 7] 409, 431
[96, 48, 1] 79, 83 [250, 113, 1] 139, 149 [564, 282, 5] 409, 431
[144, 71, 2] 101, 103 [252, 113, 2] 139, 149 [566, 283, 5] 421, 431
[145, 72, 1] 101, 103 [228, 114, 5] 139, 149 [576, 283, 1] 421, 431
[146, 73, 3] 101, 103 [253, 114, 1] 139, 149 [568, 284, 3] 419, 431
[156, 73, 1] 109, 113 [230, 115, 3] 139, 149 [570, 285, 1] 421, 431
[148, 74, 1] 107, 113 [232, 116, 1] 139, 149 [586, 293, 1] 421, 431

Table 2.

n → n− l′, n− l′′, p′, p′′ n → n− l′, n− l′′, p′, p′′ n → n− l′, n− l′′, p′, p′′

12 10, 11, 5, 11 48 46, 47, 23, 47 81 79, 80, 79, 5
16 14, 15, 7, 5 49 46, 47, 23, 47 96 94, 95, 47, 19
24 22, 23, 11, 23 54 52, 53, 13, 53 108 106, 107, 53, 107
25 22, 23, 11, 23 64 62, 63, 31, 7 121 119, 120, 17, 5
32 30, 31, 5, 31 72 70, 71, 5, 71
36 34, 35, 17, 5 75 73, 74, 73, 37
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Table 3.

(n, k) → n− l′, n− l′′ (n, k) → n− l′, n− l′′ (n, k) → n− l′, n− l′′

(50, 5) 46, 47 (100, 5) 97, 99 (200, 5) 197, 199
(64, 5) 61, 63 (128, 5) 126, 127 (50, 6) 46, 47

5. Proof of Theorem 1.1

In view of Theorem 1.2., we need to prove the irreducibility of Pn,k(x) only when

1 6 k 6 3 with 2k 6 n < (k + 1)3 or (n, k) belongs to {(8, 4), (10, 5), (12, 6), (16, 8)}.
Using Maple, we have verified the irreducibility of Pn,k(x) for these values of (n, k).
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