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1. INTRODUCTION

Throughout v is a henselian valuation of arbitrary rank of a field K and ṽ is

the unique prolongation of v to the algebraic closure K̃ of K. For a subfield L of

K̃, G(L), R(L) will stand respectively for the value group and the residue field

of the valuation of L obtained by restricting ṽ. A finite extension (K ′, v′)/(K, v)

(or briefly K ′/K) is called defectless if [K ′ : K] = ef , where e, f are the index

of ramification and the residual degree of v′/v. An irreducible polynomial h(x)

in K[x] will be referred to as defectless if K(α) is a defectless extension of (K, v)

for any root α of h(x). Popescu, Zaharescu (Popescu and Zaharescu, 1995), Ota

(Ota, 1999), Aghigh and Khanduja (Aghigh and Khanduja, 2002, 2005) have

shown that one can associate several invariants to a defectless polynomial by

means of complete distinguished chains defined below.

Recall that a pair (θ, α) of elements of K̃ is called a distinguished pair (more

precisely a (K, v)-distinguished pair) if the following three conditions are satis-

fied: (i) [K(θ) : K] > [K(α) : K]; (ii) ṽ(θ − β) 6 ṽ(θ − α) for every β in K̃

with [K(β) : K] < [K(θ) : K]; (iii) whenever β belonging to K̃ is such that

[K(β) : K] < [K(α) : K], then ṽ(θ − β) < ṽ(θ − α).

Distinguished pairs give rise to distinguished chains in a natural manner. A

chain θ = θ0, θ1, . . . , θn of elements of K̃ will be called a complete distinguished

chain for θ (with respect to (K, v)) if (θi, θi+1) is a (K, v)-distinguished pair for

0 6 i 6 n− 1 and θn belongs to K. In 2005, Aghigh and Khanduja (Aghigh and

Khanduja, 2005) characterized those elements θ of K̃ \K for which there exists

a complete distinguished chain with θ as the first element. Indeed they proved

Theorem 1.A. An element θ belonging to K̃ \K has a complete distinguished

chain with respect to a henselian valued field (K, v) if and only if K(θ) is a de-

fectless extension of (K, v).

Two complete distinguished chains θ = θ0, θ1, . . . , θn and θ = θ′0, θ
′
1, . . . , θ

′
n

for θ are said to lie in the same conjugacy class if θ′i is a K-conjugate of θi for

1 6 i 6 n. Note that the invariants given by the following theorem proved in

(Aghigh and Khanduja, 2005) are the same for all complete distinguished chains

of θ which lie in the same conjugacy class and hence are invariants of the minimal

polynomial of θ over K.
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Theorem 1.B. Let (K, v) and (K̃, ṽ) be as above. Let θ = θ0, θ1, . . . , θn and

θ = η0, η1, . . . , ηm be two complete distinguished chains with respect to (K, v) for

an element θ belonging to K̃ \ K. Then n = m, [K(θi) : K] = [K(ηi) : K],

G(K(θi)) = G(K(ηi)), R(K(θi)) = R(K(ηi)) for 1 6 i 6 n. If fi(x) and Fi(x)

denote respectively the minimal polynomials of θi, ηi over K, then ṽ(fi(θi−1)) =

ṽ(Fi(ηi−1)), 1 6 i 6 n.

In 2008, Ron Brown (Brown, 2009) introduced the notion of a strict system

of polynomial extensions. Recently he and J. Merzel studied invariants of defect-

less polynomials using these strict systems defined below. They also developed

some connections between the two approaches and gave several applications of

strict systems (cf. Brown and Merzel). In this paper, our aim is to complete the

work begun by Brown and Merzel towards establishing the equivalence of the two

approaches and to use the results about chains for studying properties of strict

systems and vice versa. With the help of this equivalence, we determine explic-

itly (see Theorem 1.3, Corollary 1.4) the best possible constant λg associated to

any defectless polynomial g(x) over a henselian valued field (K, v) satisfying the

property that whenever ṽ(g(β)) > λg, β in K̃, then some root of g(x) comes

sufficiently close to β; in the particular case when g(x) is a tame polynomial, i.e.,

K(θ) is a tamely ramified extension of (K, v) for a root θ of g(x), then the above

result implies that K(β) contains a root of g(x) which yields a result of Brown

proved in (Brown, 2009). This invariant λg turns out to be equal to the invariant

γg defined in (Brown, 1972; 2009) and hence gives a new characterization of the

invariant. Recall that a finite defectless extension (K ′, v′)/(K, v) is said to be

tamely ramified if the residue field of v′ is a separable extension of the residue

field of v and the ramification index of v′/v is not divisible by the characteristic

of the residue field of v.

We shall denote by QG a fixed divisible hull of the value group G of v. By

an extension w of v to K[x], we mean a mapping

w : K[x] → QG ∪ {∞}
satisfying w(f +g) > min{w(f), w(g)}, w(fg) = w(f)+w(g) for all f, g in K[x],

with w−1(∞) not necessarily the zero ideal. If w−1(∞) is a non-zero (prime) ideal

I, then w gives rise to a Krull valuation wI of the field K[x]/I. We shall denote

by Kw the residue field of wI and by τw : K[x] → Kw∪{∞} the associated place.

Definition. Suppose that n > 0. A strict system of polynomial extensions over
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(K, v) of length n+1 is a finite sequence (g0, w0, γ0), (g1, w1, γ1), . . . , (gn+1, wn+1, γn+1)

where each wi is an extension of v to K[x] and γi ∈ QG ∪ {−∞} such that the

following properties are satisfied:

(A) g0 = x− a, a ∈ K, γ0 = −∞, w0(h) = v(h(a)) for every h ∈ K[x],

and for 0 6 i 6 n,

(B) deg gi+1 > deg gi, deg gi divides deg gi+1,

(C) γi+1 = wi(gi+1),

(D) wi+1(gi+1) = ∞,

(E) the gi-expansion of gi+1 given by gi+1 = gdi
i +

∑

r<di

Arg
r
i (deg Ar < deg gi)

satisfies wi(Ar)
di−r

> wi(A0)
di

> γi for all r < di,

(F) If ei is the least positive integer such that eiwi(A0) ∈ diwi(K[x]) and

li = di/ei, then the polynomial

Y li +
∑

r<li

τwi
(sli−rAeir)Y

r

is irreducible over Kwi
for all s in K[x] with wi(A0s

li) = 0.

In 2009, R. Brown and J. Merzel raised the following problem:

Given a strict system (g0, w0, γ0), (g1, w1, γ1), . . . , (gn+1, wn+1, γn+1) over (K, v),

does there exist a root θi of gn+1−i such that θ0, θ1, . . . , θn+1 is a complete distin-

guished chain with respect to (K, v)?

They proved that the answer to the above question is “yes” when n = 1 or

when each gi is a tame polynomial (cf. Brown and Merzel). In this paper, we

prove that the answer to the above question is always in the affirmative. Indeed

our key result is the following.

Theorem 1.1. Let (g0, w0, γ0), (g1, w1, γ1), . . . , (gn+1, wn+1, γn+1) be a strict sys-

tem of polynomial extensions over a henselian valued field (K, v) of arbitrary

rank. Then for each i, one can choose a root θn+1−i of gi such that θ0, θ1, . . . , θn+1

is a complete distinguished chain with respect to (K, v).

The corollary stated below which is already proved in (Brown and Merzel)

as Theorem 9.3 is an immediate consequence of the above theorem in view of

Theorem 1.A.

Corollary 1.2. If an irreducible polynomial g(x) with coefficients in a henselian

valued field (K, v) belongs to a strict system of polynomial extensions (i.e., g(x) =
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gi(x) for some i), then g(x) is a defectless polynomial.

The converse of Theorem 1.1 is given by the following result which is proved

in (Brown and Merzel, Theorem 9.1). We omit its proof.

Theorem 1.C. Let θ0, θ1, . . . , θn+1 be a complete distinguished chain with respect

to (K, v) and gi be the minimal polynomial of θn+1−i over K, 0 6 i 6 n + 1. If

wi denotes the extension of v to K[x] defined for any q(x) in K[x] by wi(q(x)) =

ṽ(q(θn+1−i)) and γ0 = −∞, γi+1 = wi(gi+1), then (g0, w0, γ0), (g1, w1, γ1), . . .,

(gn+1, wn+1, γn+1) is a strict system of polynomial extensions over (K, v).

The one-to-one correspondence between strict systems of polynomial exten-

sions and conjugacy classes of chains follows immediately from Theorems 1.1

and 1.C. As an application of this correspondence, we shall prove the following

theorem which in turn yields Corollaries 1.4, 1.5 proved respectively in (Brown,

2009, Theorem 1; Brown and Merzel, Theorem 7.1) by different methods.

For any θ ∈ K̃ \K, δK(θ) will stand for the main invariant associated with θ

defined by

δK(θ) = sup{ṽ(θ − α) | α ∈ K̃, deg α < deg θ}. (1)

Theorem 1.3. Let K(θ) be a defectless extension of (K, v) and g(x) be the

minimal polynomial of θ over K. If θ = θ0, θ1, . . . , θn is a complete distinguished

chain for θ, then given any β in K̃ with ṽ(g(β)) > ṽ(g(θ1)), there exists a K-

conjugate θ′ of θ such that ṽ(θ′−β) > δK(θ). Moreover the constant λg = ṽ(g(θ1))

depends only on g(x) and is the least element λ of G(K̃) such that for any β in K̃

with ṽ(g(β)) > λ, there exists a K-conjugate θ′ of θ satisfying ṽ(θ′−β) > δK(θ).

It may be pointed out that the above theorem gives a new characterization

of the invariant (denoted here by λg) introduced by Brown which is denoted by

γg in (Brown, 1972; 2009). Observe that for any monic defectless polynomial

g(x) = gn+1(x) ∈ K[x], with notations as in Theorems 1.1 and 1.C, in view of

part (C) of definition of strict systems, we have

γn+1 = wn(gn+1) = ṽ(gn+1(θ1)) = λg,

which gives λg in terms of strict systems as well as complete distinguished chains.

Corollary 1.4. Let the hypothesis be as in Theorem 1.3. Assume in addition

that either K(θ) or K(β) is a tamely ramified extension of (K, v). Then K(β)

contains a root of g(x).
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Corollary 1.5. If (g0, w0, γ0), (g1, w1, γ1), . . . , (gn, wn, γn) and (h0, w
′
0, γ

′
0),

(h1, w
′
1, γ

′
1),. . . , (hm, w′

m, γ′m) are two strict systems of polynomial extensions over

a henselian valued field (K, v) with gn = hm, then n = m and for 0 6 i 6 n,

deg gi = deg hi, wi(K[x]) = w′
i(K[x]), the residue field of wi is equal to the

residue field of w′
i and γi = γ′i.

2. SOME PRELIMINARY RESULTS

We retain the notations of the previous section. For an element α of K̃, deg α

will stand for the degree of the extension K(α)/K. For any ξ in the valuation

ring of ṽ, ξ̄ will denote the ṽ-residue of ξ, i.e., the image of ξ under the canonical

homomorphism from the valuation ring of ṽ onto its residue field. When there

is no chance of confusion, we shall write ṽ(α) as v(α) for α in K̃.

Lemma 2.D. Let η, α be elements of K̃ such that ṽ(α−η) > ṽ(α−β) for every

β in K̃ with deg β < deg α. Then for any polynomial h(x) ∈ K[x] of degree less

than deg α, one has
(

h(η)
h(α)

)
= 1̄.

Proof. Write h(x) = c
∏

j

(x−βj). Then h(η)
h(α)

=
∏

j

(
η − βj

α− βj

)
=

∏
j

(
1 +

η − α

α− βj

)
.

By hypothesis, ṽ( η−α
α−βj

) > 0. Therefore ṽ( h(η)
h(α)

− 1) > 0 and so
(

h(η)
h(α)

)
= 1̄.

The following corollary is an immediate consequence of the above lemma.

Corollary. Let η, α be as in Lemma 2.D. Then G(K(α)) ⊆ G(K(η)), R(K(α)) ⊆
R(K(η)).

The following already known results will be used in the sequel (see (Aghigh

and Khanduja, 2005) for Lemma 2.E and (Brown, 2009, Proposition 5) for Propo-

sition 2.F). Their proofs are omitted.

Lemma 2.E. Let f(x) and g(x) be two monic irreducible polynomials over a

henselian valued field (K, v) of degree m and n respectively such that f(α) =

g(β) = 0. Then nṽ(f(β)) = mṽ(g(α)).

Remark. With notations as in Theorem 1.B, the last assertion of this theorem

in view of the above lemma and the fact that deg fi = deg Fi for every i, can be

rewritten as ṽ(fi−1(θi)) = ṽ(Fi−1(ηi)).

Proposition 2.F. Let (g0, w0, γ0), (g1, w1, γ1), . . . , (gn+1, wn+1, γn+1) be a strict

system of polynomial extensions over (K, v). Suppose that w is an extension of
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v to K[x] with w(gn+1) > γn+1. Then for all i with 0 6 i 6 n,

(i) w(gi) = wi+1(gi),

(ii) gi+1 is irreducible over K and wi+1 is the unique extension of v to K[x] with

wi+1(gi+1) = ∞.

3. PROOF OF THEOREM 1.1

The following lemma is a consequence of Theorem 10.1 of (Brown and Merzel).

For reader’s convenience, we give a simple proof of this lemma here.

Lemma 3.1. Let (g0, w0, γ0), (g1, w1, γ1) be a strict system of polynomial exten-

sions over a henselian valued field (K, v). If θ and a are roots of g1(x), g0(x)

respectively, then (θ, a) is a (K, v)-distinguished pair.

Proof. Write g1(x) = (x − a)d + ad−1(x − a)d−1 + . . . + a0. By Proposition 2.F,

g1(x) is irreducible over K. As (K, v) is henselian, we have

v(θ − a) = v(a0)/d ,
v(ai)

d− i
> v(a0)

d
, 1 6 i 6 d− 1. (2)

We are required to show that v(θ− a) = sup{v(θ−β)| β ∈ K̃ , deg β < deg θ}.
For this it is enough to prove that if η belongs to K̃ and v(θ − η) > v(θ − a),

then deg η > deg θ. Let η be such that v(θ− η) > v(θ− a). Then by the strong

triangle law, we have

v(η − a) = min{v(η − θ), v(θ − a)} = v(θ − a), (3)

(
θ − a

η − a

)
=

(
1 +

θ − η

η − a

)
= 1̄. (4)

Let e be the smallest positive integer such that ev(θ − a) belongs to the value

group G of v, say ev(θ − a) = v(h), h ∈ K. Denote d/e by l. Keeping in mind

(2), we have v
(

(θ−a)iai

hl

)
> 0; clearly this inequality is strict if e - i. So taking

the image in the residue field of the equation g1(θ)
hl = 0, we see that

(
(θ−a)e

h

)

satisfies the polynomial Y l + (ad−e

h
)Y l−1 + . . . + (a0

hl ) over the residue field R(K)

of v which is an irreducible polynomial by the property (F) of the strict sys-

tem. Therefore
(

(θ−a)e

h

)
is algebraic of degree l over R(K). By virtue of (4),

(
(θ−a)e

h

)
=

(
(η−a)e

h

)
. Therefore if e(v′/v), f(v′/v) denote the ramification index

and the residual degree of the valuation v′ obtained by restricting ṽ to K(η), then

f(v′/v) > l; also e(v′/v) > e in view of (3). It now follows from the fundamental
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inequality (Engler and Prestel, 2005, Theorem 3.3.4) that deg η > el = d = deg θ

as desired.

Lemma 3.2. Let (g0, w0, γ0), (g1, w1, γ1), . . . , (gn, wn, γn) be a strict system of

polynomial extensions over a henselian valued field (K, v) and α, α1 be roots of

gn, gn−1 respectively such that v(α − α1) = δK(α), with δK(α) defined by (1). If

v(gn(β)) > v(gn(α1)) for some β in K̃, then there exists a K-conjugate β′ of β

such that v(α− β′) > δK(α).

Proof. Let h(x) denote the minimal polynomial of β over K and w the valua-

tion of K[x] defined for any q(x) belonging to K[x] by w(q(x)) = v(q(β)). Set

v(gn−1(α)) = λ. By hypothesis, v(gn(β)) > v(gn(α1)), which in view of Lemma

2.E can be rewritten as

v(gn(β)) > v(gn(α1)) =
deg gn

deg gn−1

v(gn−1(α)) =
deg gn

deg gn−1

λ . (5)

Now suppose to the contrary that v(β′ − α) 6 δK(α) = v(α − α1) for every

K-conjugate β′ of β; then v(α1 − β′) > min{v(α1 − α), v(α − β′)} = v(α − β′);

consequently on summing over β′, we have

v(h(α1)) > v(h(α)). (6)

Note that an application of Lemma 2.E to gn and h, gives

v(gn(β)) =
deg gn

deg h
v(h(α)).

In view of (6), the above equation implies that

v(gn(β)) 6 deg gn

deg h
v(h(α1)).

By Lemma 2.E, v(h(α1)) = deg h
deg gn−1

v(gn−1(β)). Therefore the last inequality now

becomes

v(gn(β)) 6 deg gn

deg gn−1

v(gn−1(β)). (7)

Recall that α is a root of gn. In view of Proposition 2.F (ii), wn(q(x)) = v(q(α))

for all q(x) belonging to K[x]. Applying this proposition with i = n−1, we have

w(gn−1) = wn(gn−1), i.e., v(gn−1(β)) = v(gn−1(α)) = λ. Now (7) can be rewritten

as

v(gn(β)) 6 deg gn

deg gn−1

λ

which contradicts (5) and proves the lemma.
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Proof of Theorem 1.1. The result will be proved by induction on the length of

the strict system of polynomial extensions. If we have a strict system of length

1, then by Lemma 3.1, we have a corresponding complete distinguished chain (of

the type (θ, a), a ∈ K) associated with it. Assume that the result is true for

any strict system of length n. Let (g0, w0, γ0), (g1, w1, γ1), . . . , (gn+1, wn+1, γn+1)

be a strict system of length n + 1 over (K, v). By induction hypothesis, there

exists a root αn−i of gi, 0 6 i 6 n such that α = α0, α1, . . . , αn is a complete

distinguished chain with respect to (K, v). Note that in view of Proposition

2.F(ii), we have

wn(q(x)) = v(q(α)), wn−1(q(x)) = v(q(α1)), q(x) ∈ K[x]. (8)

Choose a root θ of gn+1 such that

v(θ − α) = max{v(θ′ − α) | θ′ runs over all roots of gn+1} = δ(say).

We prove that (θ, α) is a distinguished pair. Firstly it will be shown that

δ > δK(α). (9)

For convenience of notation, denote gn+1, gn by g, f respectively. Let g(x) =

f(x)d +
∑

i<d

Ai(x)f(x)i be the f(x)-expansion of g(x). By virtue of properties

(E), (C) of strict systems and (8), we have

wn(A0)

d
> γn = wn−1(f) = v(f(α1)). (10)

Using (8) and the facts that g(α) = A0(α), d = deg g/deg f together with

Lemma 2.E, we see that

wn(A0)

d
=

v(A0(α))

d
=

deg f

deg g
v(g(α)) = v(f(θ)). (11)

From (10) and (11), it follows that v(f(θ)) > v(f(α1)). Applying Lemma 3.2

(with β replaced by θ), it is immediate that there exists a K-conjugate θ′ of θ

such that v(θ′ − α) > δK(α). This proves (9) in view of the choice of θ.

Note that if deg β < deg α, then keeping in mind (9), one can verify

that v(θ − β) = v(α− β) 6 δK(α) < v(θ − α). So to show that (θ, α) is a dis-

tinguished pair, it remains to show that whenever η belonging to K̃ satisfies

v(θ − η) > δ, then deg η > deg θ. Let η ∈ K̃ be such that v(θ − η) > δ,
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then by the strong triangle law, v(α − η) = δ. If β is any element of K̃ with

deg β < deg α, then v(α− η) > v(α − β) in view of (9). Therefore by corollary

to Lemma 2.D, we have

G(K(α)) ⊆ G(K(η)) , R(K(α)) ⊆ R(K(η)). (12)

Let e be the smallest positive integer such that ev(f(θ)) belongs to G(K(α)),

say ev(f(θ)) = v(h(α)), h(x) ∈ K[x], deg h(x) < deg α. In view of (11),

v(f(θ)) = wn(A0)/d = v(A0(α))/d. So e divides d by virtue of property (F) of

the strict system. Set ξ = f(θ)e/h(α) and l = d/e. We show that ξ̄ belongs to

R(K(η)) and that ξ̄ is algebraic of degree l over R(K(α)).

Write f(η)
f(θ)

=
∏

α′

(
η − α′

θ − α′

)
=

∏

α′

(
1 +

η − θ

θ − α′

)
, where α′ runs over all roots of f.

Since v(θ−η) > δ and by our choice v(θ−α′) 6 δ, it follows that (f(η)/f(θ)) = 1̄

and so

v(f(η)) = v(f(θ)),

(
f(η)e

h(α)

)
=

(
f(θ)e

h(α)

)
= ξ̄. (13)

We now show that

v(Ai(θ)f(θ)i/h(α)l) > 0 for each i. (14)

Since deg Ai(x) < deg α, it follows from (9) that for each root β of Ai(x), we

have v(α− β) 6 δK(α) < δ = v(θ− α). So by Lemma 2.D, v(Ai(θ)) = v(Ai(α)).

It now follows from Property (E) of the strict system and (8) that

v(Ai(θ))

d− i
=

v(Ai(α))

d− i
=

wn(Ai)

d− i
> wn(A0)

d
=

v(A0(α))

d
,

which in view of (11) shows that

v(Ai(θ)) + iv(f(θ)) > d− i

d
v(A0(α)) + iv(f(θ)) = dv(f(θ)) = lv(h(α)),

proving (14). Note that in view of the fact v(Ai(θ)) = v(Ai(α)), the inequality

in (14) will be strict when i is not divisible by e. Therefore taking the image in

the residue field of the equation

0 =
g(θ)

h(α)l
=

f(θ)d

h(α)l
+

∑
i

Ai(θ)f(θ)i

h(α)l
,

we see that ξ̄ is a root of the polynomial Y l +
∑

j<l

(
Aej(α)

h(α)l−j

)
Y j which is

irreducible over R(K(α)) by property (F) of the strict system. Recall that by
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(13), ξ̄ belongs to R(K(η)) which contains R(K(α)) in view of (12). So l divides

[R(K(η)) : R(K(α))]. Also in view of (13), v(f(η)) = v(f(θ)) and hence by

Lagrange’s theorem for finite groups, e divides [G(K(η)) : G(K(α))]. Since

K(α)/K is defectless by Theorem 1.A, it follows that el deg α divides deg η and

hence deg η > el deg α = deg θ. This completes the proof of the assertion that

(θ, α) is a distinguished pair and hence the theorem.

4. PROOF OF THEOREM 1.3 AND COROLLARIES 1.4, 1.5

Proof of Theorem 1.3. Let gn−i denote the minimal polynomial of θi over K

so that gn = g. If wi is defined by wi(q(x)) = v(q(θn−i)), q(x) ∈ K[x] and

γi+1 = wi(gi+1), γ0 = −∞, then by Theorem 1.C, {(gi, wi, γi) , 0 6 i 6 n}
is a strict system of polynomial extensions over (K, v). Applying Lemma 3.2

(with α replaced by θ), we see that there exists a K-conjugate β′ of β such that

v(θ − β′) > δK(θ). Since (K, v) is henselian, v(θ′ − β) > δK(θ) for some K-

conjugate θ′ of θ. In view of the remark preceding Proposition 2.F, v(g(θ1)) is

independent of the complete distinguished chain for θ. Note that λg = v(g(θ1)) is

the smallest constant satisfying the property of the theorem because there does

not exist any K-conjugate θ′ of θ for which v(θ′ − θ1) > δK(θ).

Proof of Corollary 1.4. We first show that if K(β)/K is a tamely ramified

extension, then so is K(θ)/K. By Theorem 1.3, there exists a K-conjugate θ′ of

θ such that

v(θ′ − β) > δK(θ). (15)

Since δK(θ′) = δK(θ), it follows from (15) and corollary to Lemma 2.D that

G(K(θ′)) ⊆ G(K(β)) , R(K(θ′)) ⊆ R(K(β)). Thus K(θ)/K being defectless is

tamely ramified.

Let ωK(θ) denote the Krasner’s constant defined by

ωK(θ) = max{v(θ − θ′)| θ′ 6= θ runs over all K-conjugates of θ}.
Since K(θ)/K is tamely ramified, by virtue of (Khanduja, 1999, Lemma 2.2),

δK(θ) > ωK(θ). Using Krasner’s Lemma (Engler and Prestel, 2005, Theorem

4.1.7) it now follows from (15) that K(θ′) ⊆ K(β).

Proof of Corollary 1.5. Let θ be a root of gn = hm. By virtue of Theorem

1.1, there exist roots θi of gn−i and ηi of hm−i such that θ = θ0, θ1, . . . , θn and

θ = η0, η1, . . . , ηm are complete distinguished chains, so by Theorem 1.B, n = m.

Recall that by Proposition 2.F, all gi, hi are irreducible over K and wi(q(x)) =

11



v(q(θn−i)), w′
i(q(x)) = v(q(ηn−i)) for all q(x) in K[x], 0 6 i 6 n. Therefore in

view of Theorem 1.B, wi, w′
i have the same value group and residue field. By

the remark preceding Proposition 2.F, we have v(gn−i+1(θi)) = v(hn−i+1(ηi)),

i.e., γn−i+1 = γ′n−i+1.
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