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1. Basic definitions and statement of results

Throughout this paper, by a valuation v of a field K we mean a Krull valu-
ation, i.e., v is a mapping from K onto G U {oo}, where G is a totally ordered
additively written abelian group, such that for all z, y in K, the following prop-
erties are satisfied:

(i) v(z) = oo if and only if z = 0;

(i) v(zy) = v(z) + v(y);

(if) v(w + ) > min{v(z), v(y)}.

The pair (K, v) is called a valued field and G the value group of v. The subring
0, = {z € K| v(z) > 0} of K with unique maximal ideal M,, = {z € K| v(z) >
0} is called the valuation ring of v, and O,/M, its residue field. A valuation
v' is said to be an extension or prolongation of v to an overfield K’ of K if v/
coincides with v on K, in which case (K’,v') is said to be an extension of (K, v).
For a valued field extension (K',v")/(K,v), if G C G’ and O,/ M, C O,/ M,
denote respectively the value groups and the residue fields of v, v/, then the
index [G’ : G] and the degree of the field extension O, /M, over O,/ M, are
called respectively the index of ramification and the residual degree of v'/v. An
extension (K',v") of (K, v) is said to be immediate if the value groups and the
residue fields of v" and v coincide, i.e., the index of ramification and the residual
degree of v’ /v are both one. A valued field (K, v) is said to be henselian if v has
a unique prolongation to the algebraic closure of K. Henselian valued fields form
an important class of valued fields and have several equivalent characterizations
(cf. [3], [4, Theorem 4.1.3], [8] ). In this paper, we characterize some special
types of henselian valued fields.

In what follows, v is a henselian valuation of a field K and v is the unique
prolongation of v to the algebraic closure K of K. In this paper, we prove that
a valued field (K, v) is algebraically maximal, i.e., it has no proper immediate
algebraic extension if and only if the set {0(f — a) | a« € K} has a maximum
element for every 6 in K \ K. It is shown that the above characterization quickly
yields a result proved by Yu. L. Ershov which states that (K, v) is algebraically
maximal if and only if the set {v(f(a)) | @ € K} has a maximum element for
every polynomial f(z) belonging to K[z] (cf. [5, Prop. 1.5.4, p.54, p.259]).

Further it is also shown that for any fixed 6 in K which is algebraic over K of



degree n > 1, each of the sets M;(6), 1 < j < n — 1, defined by
M;(0) ={0(0 = 5) | B € K, [K(B) : K] < j} (1)

has a maximum if and only if K () is a defectless extension of (K, v). Recall that
a finite extension (K’,v’) of a henselian valued field (K, v) (or briefly K'/K) is
said to be defectless if [K' : K] = ef where e, f are the index of ramification and

the residual degree of v'/v. Precisely stated, we prove

Theorem 1.1. Let v be a henselian valuation of a field K and v be the unique
prolongation of v to the algebraic closure K of K. The following statements are
equivalent:

(i) (K,v) is algebraically maximal.

(ii) For every 0 in K \ K, the set {o(0 —a) | a € K} has a mazimum.

(i1i) For each monic irreducible polynomial f(x) € K|x], there exists an element
ay belonging to K such that v(f(ay)) > v(f(a)) for every a in K.

(iv) For each polynomial f(x) belonging to K|[z|, there exists ay belonging to K
such that v(f(ayr)) > v(f(a)) for every a in K.

The equivalence of (i) and (i7) above will be deduced from a slightly more
general result to be proved as Theorem 1.2.
Theorem 1.2. Let (K,v), (K,) be as in the above theorem and 6 be an element
of K\ K. Then the set {o(0 —a) | a € K} has no mazimum if and only if there
exists y belonging to K \ K with [K(7) : K] < [K(0) : K] such that K(v)/K is

an immediate extension and v(y — a) = (0 — a) for every a in K.

As regards defectless extensions, we prove
Theorem 1.3. Let (K,v),(K,0) be as in Theorem 1.1 and 6 be an element
of K \ K with the minimal polynomial g(z) over K of degree n. The following
statements are equivalent:
(i) K(0)/K is a defectless extension.
(ii) The set M;(0) = {6(0 — 0) | B € K, [K(B) : K] < j} has a mazimum
element for each number j not exceeding n — 1.
(i) For 1 < j < n—1, the set Ny(g) = {3(g()) | B € K, [K(8): K] < j} has

a maximum element.

Our proof in fact specifies the elements §; with [K(5;) : K] < j such that
max N;(g) = 0(g(5;)), 1 < j <n—1 (see Remark 3.6).



It may be pointed out that some other characterizations of finite separable

defectless extensions are given in [2] and [6].

2. Proof of Theorems 1.1, 1.2.

In what follows, (K, v) and (K,d) are as in Theorem 1.1. By the degree of
an element « in K, we shall mean the degree of the extension K (a)/K and shall
denote it by deg . For an element £ in the valuation ring of o, ¢ will stand for
its v-residue, i.e., the image of £ under the canonical homomorphism from the
valuation ring of © onto its residue field. When there is no chance of confusion,

we shall write #(a) as v(a) for o belonging to K.

Proposition 2.1. Suppose that the set My = {0(a —a) | a € K} does not
have a mazimum element for some o belonging to K \ K. Then either K(«)

is an immediate extension of (K,v) or there exists 3 belonging to K \ K with
deg B < deg a such that v(a —a) = (8 — a) for each a in K.

Proof. Let M denote the set {0(a— ) | B € [?, deg B < deg a} containing M,
and sup M its supremum. The proof is split into two cases.

Case I. sup My < sup M. Then there exists 3 belonging to K with deg B < deg
such that o(a — ) > sup M;. Since M; does not have a maximum element, the
above inequality shows that v(a — 3) > 0(a — a) for every a in K. Therefore by

the strong triangle law, for any element a of K, we have

(8 —a) = min{o(f — a),9(a —a)} = 0(a — a).

Case II. sup M, = sup M. Then M is a cofinal subset of M. In this case we
show that K(a)/K is an immediate extension. For this it is enough to prove

that for any polynomial h(x) belonging to K|x] with deg h(x) < deg «, there
exists ¢ € K such that
- (@)
— -1 . 2
(i 1) ¢ )

t
Write h(z) = H x —;). Since deg v; < deg h(z) < deg a and O(av—7;) € M,

there exists an element U(a — ag) of M; such that 0(a — 7;) < 9(a — as) for

1 < j <t; consequently by the strong triangle law, we have

b(as — ;) = min{o(a, — @), 5 — ;)} = d(a —7;) < oa - a,).
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t t
On writing :(((Z)) = H (a — VJ) as H (1 T as) and using the above
o \as = as —;

Jj=1

1
inequality, we see that © (:(((z)) — 1) > 0 which proves (2) with ¢ = as.

Proof of Theorem 1.2. Suppose first that {0(60 — a) | a € K} does not have a
maximum element. Then by Proposition 2.1, either K(#)/K is an immediate
extension or there exists n belonging to K \ K with deg n < deg 60 such that
v(f —a) = v(n — a) for every a in K. If K(0)/K is an immediate extension,
then we take v = 6, otherwise applying Proposition 2.1 to n, we see that there
exists [ belonging to K \ K with deg § < deg n such that either K(5)/K is an
immediate extension or v(f —a) = v(n — a) = v(f — a) for every a in K. The
above process must terminate after a finite number of steps giving us an element
~ belonging to K \ K with deg v < deg 6 such that K(v)/K is an immediate
extension and v(y — a) = v(0 — a) for every a belonging to K.

Conversely suppose that there exists y belonging to K \ K such that K (v)/K
is an immediate extension and v(y — a) = 9(f — a) for every a in K. We now
show that the set S = {0(y—a) | a € K} has no maximum element. Suppose to
the contrary that o(y — ¢), ¢ € K is the maximum element of S. Since K(v)/K
is an immediate extension, there exists b in K such that o(y — ¢) = v(b); also
we can find d € K such that the o-residue of 1 equals the v-residue of d,

b

le., v(H= — > which 1implies that v(v — ¢ — > v = v(vy — ¢). 1S
i.e., 9(13° —d) > 0, which implies that o(y bd) > v(b) = 0(y — ¢). Thi

contradicts the choice of 9(y — ¢).

Proof of Theorem 1.1. The equivalence of (i) and (ii) follows immediately from

Theorem 1.2.

(ii)=(iii). Let f(z) = H(x — o) be any monic irreducible polynomial over
i=1

K having a root « in K. There exists ¢ belonging to K such that v(a — ¢) =

max{v(a —a) | a € K}. Since (K, v) is henselian for any a in K, we have

v(f(a)) = nv(a —a) < nv(a =) = v(f(c)).

(iii)=-(iv). Let f(x) be any polynomial belonging to K [x] with the factorization
bfi(z)™ fo(x)™2 ... f.(x)™ into powers of distinct monic irreducible polynomials
over K. Let n; denote the degree of f;(z) and 0; be a root of f;(x). By (iii), there
exist ¢; belonging to K for 1 < i < rsuch that v(fi(¢;)) = max{ v(fi(a))|a € K},
e, v(0;—c;) = max{v(f;—a) | a € K}. It will be proved that for each d belonging
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to K, we have

v(f(d)) < max{v(f(c:)}- (3)

— 1<i<r

Fix any d in K. Choose an index j > 1 such that

v(e; —d) = max{v(¢; — d)}. (4)

1<i<r

We are going to prove that v(f(d)) < v(f(c;)), which is the same as showing

i=1 i=1
This would follow as soon as it is shown that
v(d—0;) <v(c;—0;), 1<i<r. (5)

Note that v(¢; — d) = min{v(¢; — 0;),v(0; — d)} = v(6; — d). In view of (4) and

the above inequality, we have
v(c; —d) =v(c; —d) > v(0; —d), 1<i<r,

which gives v(c; —6;) > min{v(c; —d),v(d—0;)} = v(d—¥6;). Thus (5) and hence
(3) is proved.

(iv)=(ii). Let 6 be an element of K \ K and f(z) be its minimal polynomial over
K of degree n. By hypothesis, there exists an element a; belonging to K such
that v(f(as)) = v(f(a)) for each a in K. Since (K, v) is henselian, the above
inequality is equivalent to saying that v(6 — ay) = max{v(d —a) | a € K}.

3. Proof of Theorem 1.3.

We retain the notations introduced in the opening lines of the second section.
For a subfield L of K, let v;, denote the valuation of L obtained by restricting
0. As usual, def(L/K) will stand for the defect of a finite extension L of (K, v)
defined by

defiL/K) = [L: K]/ef

where e, f are the index of ramification and the residual degree of vy, /v.
Asin [7], a pair (6, @) of elements of K is called a distinguished pair (more pre-

cisely a (K, v)-distinguished pair) if the following three conditions are satisfied:
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(i) deg 6 > deg «, (ii) (0 — B) < (0 — a) for every 8 in K with deg 8 < deg 6,
(i) whenever v € K with deg v < deg a, then 5(6 —~) < 5(6 — «).

Remark 3.1. If (0,a) is a distinguished pair and deg § = n, then the set
M,,_1(0) defined by (1) has a maximum element, viz. 9(6 — «). Conversely if «
is an element of smallest degree over K for which 9(f — «) is the maximum of

M,,_1(0), then clearly (6, «) is a distinguished pair.

The following already known result will be used in the sequel; its proof is
omitted (cf. [1, Section 3, p.223], [2, Theorem 1.1(iii)]).
Theorem A. Let (0,«a) be a (K,v)-distinguished pair. Then def(K(0)/K) =
defl K (0)/K).

We now prove
Lemma 3.2. Let (0,«) be a (K,v)-distinguished pair with deg o = ny. Then
M;(0) = M;(a) for 1 < j<ng—1.
Proof. Let v be any element of K with deg v < j < ny — 1. Then by the
definition of a distinguished pair 9(6 — ) < ©(6 — «); consequently by the strong
triangle law o(a — ) = min{o(a — 0),0(0 — v)} = ©(0 — ) which proves the
lemma.

The result stated below is proved implicitly in the fourth section of [1] and
explicitly in [2, Theorem 2.4]. Its proof is omitted.
Lemma 3.3. Suppose that K(0)/K is a defectless extension of degree n > 1.

Then the set M, _1(0) has a mazimum element.

Lemma 3.4. Let (0,«) be a (K,v)-distinguished pair. Let f(x), g(x) be the
minimal polynomials over K of «, 0 respectively of degree ny and n. Then for
any ~y belonging to K with deg v < ny — 1, one has o(g(y)) = nﬂlﬁ(f('y))

Proof. Let h(z) belonging to K[z] be the minimal polynomial of 7 of degree m.

Write g(x) = H(z — 09, h(z) = H(aj — 4®). Since g(x), h(x) are irreducible
j=1 i=1
over the henselian valued field (K, v), it follows that

W(g(y™)) = Blg(), o(h(OP)) =5(h(0), 1<i<m, 1<j<n.  (6)

Keeping in view (6) and the equality Hg('y(i)) ==+ H h(6W), it follows that
j=1

=1



ni
Writing f(x) = H(x — a®) and arguing as above, it can be seen that
k=1

ny .

0(f(7) = —o(h(e)). (8)

m

Since deg v < ny — 1, it follows from the definition of a distinguished pair that
9(0 — ) < ©(0 — «); consequently by the strong triangle law

b —~9) = min{i(a — 0), 50 ~ 1)} = (0 — 1),
On summing over ¢, we see that v(h(«)) = 9(h(#)), which combined with (7) and

(8) proves the lemma.

The following lemma needed for the proof of Theorem 1.3 is also of indepen-

dent interest as pointed out in Remark 3.6.

Lemma 3.5. Let (0,a) be a (K,v)-distinguished pair and g(x) be the minimal
polynomial of 0 over K of degree n. For any 3 belonging to K with deg 6 <n—1,

one has 5(g(f3)) < 0(g(a)).
Proof. Let (3 be as above. Since 9(g(3)) = v(g(f')) for every K-conjugate 3" of

0, it may be assumed without loss of generality that

0(0 — B) = max{0(§ — ') | B’ runs over all K-conjugates of 5}. (9)

n

Write g(z) = H(x — W), It will be shown that for 1 <i < n,
i=1

3(B —09) < v(a — 09). (10)
Since (0, ) is a distinguished pair and deg § < n — 1, we have
(e = 3) 2 min{0(a — ), 0(0 — B)} = (6 — 3). (11)

Fix any 4, 1 < i < n. Since (K,v) is henselian, 9(® — 3) = 5(6 — ') for some
K-conjugate (3’ of 5. Therefore using (11) and (9), we obtain

oa—B) 200 - 0) =00 - ) =80 - 5). (12)
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It follows from (12) and the triangle law that
o(a = 0Y) > min{o(a - §),0(6 = 09)} = 5(5 - 0),
which proves (10) and hence the lemma.

Proof of Theorem 1.3. We prove the equivalence of (i) and (ii) and then of (ii)
and (iii) by induction on n.

(i)=(ii). If K(0)/K is a defectless extension of degree 2, then the set M;(0) =
{v(0 —a) | a € K} has a maximum element in view of Proposition 2.1. Assume
that the result holds for all elements of degree not exceeding n — 1 and that
K(0)/K is a defectless extension of degree n > 3. Now by Lemma 3.3 and
Remark 3.1, there exists an element ¢; belonging to K such that (0,0y) is a
distinguished pair. Let n; denote the degree of #;. Applying Theorem A, we
see that K (6,)/K is a defectless extension. By Lemma 3.2, M;(0) = M;(6,) for
1 < j < ny — 1. Therefore by induction hypothesis, M;(6;) and hence M;(0)
has a maximum element for 1 < 7 < ny — 1. Also it is clear from the definition
of a distinguished pair that v(6 — 6;) is the maximum element of M;(#) when
ny < j < n — 1 which completes the proof of (i) implies (ii).

(ii)=-(i). When n = 2, then using the hypothesis that the set {v(0 —a) | a € K}
has a maximum element and arguing as in the last lines of the proof of Theorem
1.2, we conclude that K(6)/K is not an immediate extension and hence it is a
defectless extension of degree 2. Suppose that 6 has degree n and the result is
true for all elements of degree < n — 1. Since M,,_1(f) has a maximum element,
there exists an element 6; of degree n; (say) such that (0, 6,) is a distinguished
pair. By Lemma 3.2, M;(0) = M;(6;) for 1 < j < ny; —1 and hence M;(6;) has a
maximum element. Therefore by induction hypothesis, K (0,)/K is a defectless
extension and hence so is K (0)/K in view of Theorem A.

(ii)=-(iii). Let ¢ be an element of K such that v(f —¢) = max{v(0 —a) | a € K}.
Then in the case n = 2, the set Ni(g) = {v(g(a)) | a € K} has 2v(0 — ¢) as
maximum. Suppose that 6 has degree n and the result is true for all elements of
smaller degree. In view of the hypothesis, there exists an element #; belonging
to K such that (0,01) is a distinguished pair with deg 6¢; = n; (say). Then
by Lemma 3.2, M;(6,) = M;(#) for 1 < j < ny — 1. Therefore by induction
hypothesis, if f(z) is the minimal polynomial of 6; over K, then the set N;(f) =
{v(f(8)) | B €K, deg 3 < j} will have a maximum element for 1 < j < ny — 1.
Recall that by virtue of Lemma 3.4, for # belonging to K with deg 8 < ny—1,

9



v(g(B)) = 7=v(f(B))- So it follows that the sets N;(g) will also have a maximum
element for 1 < j < n; — 1. Further by Lemma 3.5, v(g(#,)) is the maximum of
N,—1(g) and hence it is also the maximum of N;(g) when ny < j < n — 1 which
completes the proof of the desired assertion.

(iii)=-(ii). For n = 2, the set Ni(g) = {2v(f — a)|a € K} has a maximum by
(iii) and hence M;(f) has a maximum element. Suppose that deg § = n and
the result holds for elements of lower degree. Let v be an element of degree not
exceeding n — 1 such that v(g(«)) is the maximum of the set N,,_1(g). Replacing

a by its K-conjugate, we can assume that
v(0 — @) = max{v(d — &')| & runs over all K-conjugates of «}. (13)

Claim is that M,,_1(#) has v(f—«a) as maximum element. Suppose to the contrary

that there exists an element ~ belonging to K of degree < n — 1 such that
v(f —a) <v(d—7). (14)
We shall obtain the desired contradiction by showing that
v(g()) > v(g(e)). (15)
To verify (15), note that in view of (14) and the strong triangle law, we have
v(y —a) =min{v(y —0),v(0 —a)} =v(0 — ). (16)

Let 0@ be any K-conjugate of §. Keeping in mind (16), (13) and the fact that
v(a—09) = v(a — 0) < v(a —0), we have

v(y —09D) > min{v(y — a),v(a — D)} = v(a — 89).

Summing over all K-conjugates %) of 6 and using (14), we obtain (15). Hence
the claim is proved. So there exists 6; in K such that (0,6,) is a distinguished
pair. Let f(z) be the minimal polynomial of #; over K of degree n;. Then by
virtue of Lemma 3.4, for any [ belonging to K with deg B < n; — 1, we have

v(g(B)) = %vmm» (17)

By hypothesis, the sets N;(g) have a maximum element for 1 < j < n—1. It now
follows from (17) that N;(f) = {v(f(B)) | B € K, deg 3 < j} has a maximum
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element for 1 < j < ny—1. Therefore by induction hypothesis, M;(6;) and hence
M;(0) will have a maximum element for 1 < j < n; — 1. As v(f — 6,) is the

maximum element of M;(#) for ny < j < n — 1, we see that (iii)=-(ii).

Remark 3.6. Suppose that K(0)/K is a defectless extension. In view of
Lemma 3.3, there exists 6; such that (#,6;) is a distinguished pair. By suc-
cessive applications of Lemma 3.2, it follows that there exist distinguished pairs
(0,61), (01,62),...,(0,_1,0,) with 0, in K and deg 0; = n; (say). Using induction
on ng = deg 0 and applying Lemmas 3.5, 3.4, it can be quickly shown (as in the
proof of (ii)=-(iii) above) that

max N;(g) =v(g(6;)) when n; <j<n1—1, 1<i<r
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