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1. Basic definitions and statement of results

Throughout this paper, by a valuation v of a field K we mean a Krull valu-

ation, i.e., v is a mapping from K onto G ∪ {∞}, where G is a totally ordered

additively written abelian group, such that for all x, y in K, the following prop-

erties are satisfied:

(i) v(x) = ∞ if and only if x = 0;

(ii) v(xy) = v(x) + v(y);

(iii) v(x + y) > min{v(x), v(y)}.
The pair (K, v) is called a valued field and G the value group of v. The subring

Ov = {x ∈ K| v(x) > 0} of K with unique maximal ideal Mv = {x ∈ K| v(x) >

0} is called the valuation ring of v, and Ov/Mv its residue field. A valuation

v′ is said to be an extension or prolongation of v to an overfield K ′ of K if v′

coincides with v on K, in which case (K ′, v′) is said to be an extension of (K, v).

For a valued field extension (K ′, v′)/(K, v), if G ⊆ G′ and Ov/Mv ⊆ Ov′/Mv′ ,

denote respectively the value groups and the residue fields of v, v′, then the

index [G′ : G] and the degree of the field extension Ov′/Mv′ over Ov/Mv are

called respectively the index of ramification and the residual degree of v′/v. An

extension (K ′, v′) of (K, v) is said to be immediate if the value groups and the

residue fields of v′ and v coincide, i.e., the index of ramification and the residual

degree of v′/v are both one. A valued field (K, v) is said to be henselian if v has

a unique prolongation to the algebraic closure of K. Henselian valued fields form

an important class of valued fields and have several equivalent characterizations

(cf. [3], [4, Theorem 4.1.3], [8] ). In this paper, we characterize some special

types of henselian valued fields.

In what follows, v is a henselian valuation of a field K and ṽ is the unique

prolongation of v to the algebraic closure K̃ of K. In this paper, we prove that

a valued field (K, v) is algebraically maximal, i.e., it has no proper immediate

algebraic extension if and only if the set {ṽ(θ − a) | a ∈ K} has a maximum

element for every θ in K̃ \K. It is shown that the above characterization quickly

yields a result proved by Yu. L. Ershov which states that (K, v) is algebraically

maximal if and only if the set {v(f(a)) | a ∈ K} has a maximum element for

every polynomial f(x) belonging to K[x] (cf. [5, Prop. 1.5.4, p.54, p.259]).

Further it is also shown that for any fixed θ in K̃ which is algebraic over K of
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degree n > 1, each of the sets Mj(θ), 1 6 j 6 n− 1, defined by

Mj(θ) = {ṽ(θ − β) | β ∈ K̃, [K(β) : K] 6 j} (1)

has a maximum if and only if K(θ) is a defectless extension of (K, v). Recall that

a finite extension (K ′, v′) of a henselian valued field (K, v) (or briefly K ′/K) is

said to be defectless if [K ′ : K] = ef where e, f are the index of ramification and

the residual degree of v′/v. Precisely stated, we prove

Theorem 1.1. Let v be a henselian valuation of a field K and ṽ be the unique

prolongation of v to the algebraic closure K̃ of K. The following statements are

equivalent:

(i) (K, v) is algebraically maximal.

(ii) For every θ in K̃ \K, the set {ṽ(θ − a) | a ∈ K} has a maximum.

(iii) For each monic irreducible polynomial f(x) ∈ K[x], there exists an element

af belonging to K such that v(f(af )) ≥ v(f(a)) for every a in K.

(iv) For each polynomial f(x) belonging to K[x], there exists af belonging to K

such that v(f(af )) ≥ v(f(a)) for every a in K.

The equivalence of (i) and (ii) above will be deduced from a slightly more

general result to be proved as Theorem 1.2.

Theorem 1.2. Let (K, v), (K̃, ṽ) be as in the above theorem and θ be an element

of K̃ \K. Then the set {ṽ(θ− a) | a ∈ K} has no maximum if and only if there

exists γ belonging to K̃ \K with [K(γ) : K] 6 [K(θ) : K] such that K(γ)/K is

an immediate extension and ṽ(γ − a) = ṽ(θ − a) for every a in K.

As regards defectless extensions, we prove

Theorem 1.3. Let (K, v), (K̃, ṽ) be as in Theorem 1.1 and θ be an element

of K̃ \K with the minimal polynomial g(x) over K of degree n. The following

statements are equivalent:

(i) K(θ)/K is a defectless extension.

(ii) The set Mj(θ) = {ṽ(θ − β) | β ∈ K̃, [K(β) : K] ≤ j} has a maximum

element for each number j not exceeding n− 1.

(iii) For 1 ≤ j ≤ n− 1, the set Nj(g) = {ṽ(g(β)) | β ∈ K̃, [K(β) : K] ≤ j} has

a maximum element.

Our proof in fact specifies the elements βj with [K(βj) : K] 6 j such that

max Nj(g) = ṽ(g(βj)), 1 6 j 6 n− 1 (see Remark 3.6).
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It may be pointed out that some other characterizations of finite separable

defectless extensions are given in [2] and [6].

2. Proof of Theorems 1.1, 1.2.

In what follows, (K, v) and (K̃, ṽ) are as in Theorem 1.1. By the degree of

an element α in K̃, we shall mean the degree of the extension K(α)/K and shall

denote it by deg α. For an element ξ in the valuation ring of ṽ, ξ̄ will stand for

its ṽ-residue, i.e., the image of ξ under the canonical homomorphism from the

valuation ring of ṽ onto its residue field. When there is no chance of confusion,

we shall write ṽ(α) as v(α) for α belonging to K̃.

Proposition 2.1. Suppose that the set M1 = {ṽ(α − a) | a ∈ K} does not

have a maximum element for some α belonging to K̃ \ K. Then either K(α)

is an immediate extension of (K, v) or there exists β belonging to K̃ \ K with

deg β < deg α such that ṽ(α− a) = ṽ(β − a) for each a in K.

Proof. Let M denote the set {ṽ(α− β) | β ∈ K̃, deg β < deg α} containing M1

and sup M its supremum. The proof is split into two cases.

Case I. sup M1 < sup M . Then there exists β belonging to K̃ with deg β < deg α

such that ṽ(α− β) ≥ sup M1. Since M1 does not have a maximum element, the

above inequality shows that ṽ(α− β) > ṽ(α− a) for every a in K. Therefore by

the strong triangle law, for any element a of K, we have

ṽ(β − a) = min{ṽ(β − α), ṽ(α− a)} = ṽ(α− a).

Case II. sup M1 = sup M . Then M1 is a cofinal subset of M . In this case we

show that K(α)/K is an immediate extension. For this it is enough to prove

that for any polynomial h(x) belonging to K[x] with deg h(x) < deg α, there

exists c ∈ K such that

ṽ

(
h(α)

h(c)
− 1

)
> 0. (2)

Write h(x) = a

t∏
j=1

(x−γj). Since deg γj 6 deg h(x) < deg α and ṽ(α−γj) ∈ M ,

there exists an element ṽ(α − as) of M1 such that ṽ(α − γj) < ṽ(α − as) for

1 ≤ j ≤ t; consequently by the strong triangle law, we have

ṽ(as − γj) = min{ṽ(as − α), ṽ(α− γj)} = ṽ(α− γj) < ṽ(α− as).
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On writing h(α)
h(as)

=
t∏

j=1

(
α− γj

as − γj

)
as

t∏
j=1

(
1 +

α− as

as − γj

)
and using the above

inequality, we see that ṽ
(

h(α)
h(as)

− 1
)

> 0 which proves (2) with c = as.

Proof of Theorem 1.2. Suppose first that {ṽ(θ − a) | a ∈ K} does not have a

maximum element. Then by Proposition 2.1, either K(θ)/K is an immediate

extension or there exists η belonging to K̃ \ K with deg η < deg θ such that

v(θ − a) = v(η − a) for every a in K. If K(θ)/K is an immediate extension,

then we take γ = θ, otherwise applying Proposition 2.1 to η, we see that there

exists β belonging to K̃ \K with deg β < deg η such that either K(β)/K is an

immediate extension or v(β − a) = v(η − a) = v(θ − a) for every a in K. The

above process must terminate after a finite number of steps giving us an element

γ belonging to K̃ \ K with deg γ 6 deg θ such that K(γ)/K is an immediate

extension and v(γ − a) = v(θ − a) for every a belonging to K.

Conversely suppose that there exists γ belonging to K̃ \K such that K(γ)/K

is an immediate extension and ṽ(γ − a) = ṽ(θ − a) for every a in K. We now

show that the set S = {ṽ(γ− a) | a ∈ K} has no maximum element. Suppose to

the contrary that ṽ(γ − c), c ∈ K is the maximum element of S. Since K(γ)/K

is an immediate extension, there exists b in K such that ṽ(γ − c) = v(b); also

we can find d ∈ K such that the ṽ-residue of γ−c
b

equals the ṽ-residue of d,

i.e., ṽ(γ−c
b
− d) > 0, which implies that ṽ(γ − c − bd) > v(b) = ṽ(γ − c). This

contradicts the choice of ṽ(γ − c).

Proof of Theorem 1.1. The equivalence of (i) and (ii) follows immediately from

Theorem 1.2.

(ii)⇒(iii). Let f(x) =
n∏

i=1

(x − α(i)) be any monic irreducible polynomial over

K having a root α in K̃. There exists c belonging to K such that v(α − c) =

max{v(α− a) | a ∈ K}. Since (K, v) is henselian for any a in K, we have

v(f(a)) = nv(α− a) ≤ nv(α− c) = v(f(c)).

(iii)⇒(iv). Let f(x) be any polynomial belonging to K[x] with the factorization

bf1(x)m1f2(x)m2 . . . fr(x)mr into powers of distinct monic irreducible polynomials

over K. Let ni denote the degree of fi(x) and θi be a root of fi(x). By (iii), there

exist ci belonging to K for 1 ≤ i ≤ r such that v(fi(ci)) = max{ v(fi(a)) | a ∈ K},
i.e., v(θi−ci) = max{v(θi−a) | a ∈ K}. It will be proved that for each d belonging
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to K, we have

v(f(d)) ≤ max
1≤i≤r

{v(f(ci))}. (3)

Fix any d in K. Choose an index j ≥ 1 such that

v(cj − d) = max
1≤i≤r

{v(ci − d)}. (4)

We are going to prove that v(f(d)) 6 v(f(cj)), which is the same as showing

r∑
i=1

miniv(d− θi) 6
r∑

i=1

miniv(cj − θi).

This would follow as soon as it is shown that

v(d− θi) 6 v(cj − θi), 1 6 i 6 r. (5)

Note that v(ci − d) > min{v(ci − θi), v(θi − d)} = v(θi − d). In view of (4) and

the above inequality, we have

v(cj − d) > v(ci − d) > v(θi − d), 1 6 i 6 r,

which gives v(cj−θi) > min{v(cj−d), v(d−θi)} = v(d−θi). Thus (5) and hence

(3) is proved.

(iv)⇒(ii). Let θ be an element of K̃ \K and f(x) be its minimal polynomial over

K of degree n. By hypothesis, there exists an element af belonging to K such

that v(f(af )) > v(f(a)) for each a in K. Since (K, v) is henselian, the above

inequality is equivalent to saying that v(θ − af ) = max{v(θ − a) | a ∈ K}.

3. Proof of Theorem 1.3.

We retain the notations introduced in the opening lines of the second section.

For a subfield L of K̃, let vL denote the valuation of L obtained by restricting

ṽ. As usual, def(L/K) will stand for the defect of a finite extension L of (K, v)

defined by

def(L/K) = [L : K]/ef

where e, f are the index of ramification and the residual degree of vL/v.

As in [7], a pair (θ, α) of elements of K̃ is called a distinguished pair (more pre-

cisely a (K, v)-distinguished pair) if the following three conditions are satisfied:
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(i) deg θ > deg α, (ii) ṽ(θ− β) 6 ṽ(θ− α) for every β in K̃ with deg β < deg θ,

(iii) whenever γ ∈ K̃ with deg γ < deg α, then ṽ(θ − γ) < ṽ(θ − α).

Remark 3.1. If (θ, α) is a distinguished pair and deg θ = n, then the set

Mn−1(θ) defined by (1) has a maximum element, viz. ṽ(θ − α). Conversely if α

is an element of smallest degree over K for which ṽ(θ − α) is the maximum of

Mn−1(θ), then clearly (θ, α) is a distinguished pair.

The following already known result will be used in the sequel; its proof is

omitted (cf. [1, Section 3, p.223], [2, Theorem 1.1(iii)]).

Theorem A. Let (θ, α) be a (K, v)-distinguished pair. Then def(K(θ)/K) =

def(K(α)/K).

We now prove

Lemma 3.2. Let (θ, α) be a (K, v)-distinguished pair with deg α = n1. Then

Mj(θ) = Mj(α) for 1 6 j 6 n1 − 1.

Proof. Let γ be any element of K̃ with deg γ 6 j 6 n1 − 1. Then by the

definition of a distinguished pair ṽ(θ−γ) < ṽ(θ−α); consequently by the strong

triangle law ṽ(α − γ) = min{ṽ(α − θ), ṽ(θ − γ)} = ṽ(θ − γ) which proves the

lemma.

The result stated below is proved implicitly in the fourth section of [1] and

explicitly in [2, Theorem 2.4]. Its proof is omitted.

Lemma 3.3. Suppose that K(θ)/K is a defectless extension of degree n > 1.

Then the set Mn−1(θ) has a maximum element.

Lemma 3.4. Let (θ, α) be a (K, v)-distinguished pair. Let f(x), g(x) be the

minimal polynomials over K of α, θ respectively of degree n1 and n. Then for

any γ belonging to K̃ with deg γ 6 n1 − 1, one has ṽ(g(γ)) = n
n1

ṽ(f(γ)).

Proof. Let h(x) belonging to K[x] be the minimal polynomial of γ of degree m.

Write g(x) =
n∏

j=1

(x− θ(j)), h(x) =
m∏

i=1

(x− γ(i)). Since g(x), h(x) are irreducible

over the henselian valued field (K, v), it follows that

ṽ(g(γ(i))) = ṽ(g(γ)), ṽ(h(θ(j))) = ṽ(h(θ)), 1 6 i 6 m, 1 6 j 6 n. (6)

Keeping in view (6) and the equality
m∏

i=1

g(γ(i)) = ±
n∏

j=1

h(θ(j)), it follows that
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mṽ(g(γ)) = nṽ(h(θ)), i.e.,

ṽ(g(γ)) =
n

m
ṽ(h(θ)). (7)

Writing f(x) =

n1∏

k=1

(x− α(k)) and arguing as above, it can be seen that

ṽ(f(γ)) =
n1

m
ṽ(h(α)). (8)

Since deg γ 6 n1 − 1, it follows from the definition of a distinguished pair that

ṽ(θ − γ(i)) < ṽ(θ − α); consequently by the strong triangle law

ṽ(α− γ(i)) = min{ṽ(α− θ), ṽ(θ − γ(i))} = ṽ(θ − γ(i)).

On summing over i, we see that ṽ(h(α)) = ṽ(h(θ)), which combined with (7) and

(8) proves the lemma.

The following lemma needed for the proof of Theorem 1.3 is also of indepen-

dent interest as pointed out in Remark 3.6.

Lemma 3.5. Let (θ, α) be a (K, v)-distinguished pair and g(x) be the minimal

polynomial of θ over K of degree n. For any β belonging to K̃ with deg β 6 n−1,

one has ṽ(g(β)) 6 ṽ(g(α)).

Proof. Let β be as above. Since ṽ(g(β)) = ṽ(g(β′)) for every K-conjugate β′ of

β, it may be assumed without loss of generality that

ṽ(θ − β) = max{ṽ(θ − β′) | β′ runs over all K-conjugates of β}. (9)

Write g(x) =
n∏

i=1

(x− θ(i)). It will be shown that for 1 6 i 6 n,

ṽ(β − θ(i)) 6 ṽ(α− θ(i)). (10)

Since (θ, α) is a distinguished pair and deg β 6 n− 1, we have

ṽ(α− β) > min{ṽ(α− θ), ṽ(θ − β)} = ṽ(θ − β). (11)

Fix any i, 1 6 i 6 n. Since (K, v) is henselian, ṽ(θ(i) − β) = ṽ(θ − β′) for some

K-conjugate β′ of β. Therefore using (11) and (9), we obtain

ṽ(α− β) > ṽ(θ − β) > ṽ(θ − β′) = ṽ(θ(i) − β). (12)
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It follows from (12) and the triangle law that

ṽ(α− θ(i)) > min{ṽ(α− β), ṽ(β − θ(i))} = ṽ(β − θ(i)),

which proves (10) and hence the lemma.

Proof of Theorem 1.3. We prove the equivalence of (i) and (ii) and then of (ii)

and (iii) by induction on n.

(i)⇒(ii). If K(θ)/K is a defectless extension of degree 2, then the set M1(θ) =

{v(θ − a) | a ∈ K} has a maximum element in view of Proposition 2.1. Assume

that the result holds for all elements of degree not exceeding n − 1 and that

K(θ)/K is a defectless extension of degree n > 3. Now by Lemma 3.3 and

Remark 3.1, there exists an element θ1 belonging to K̃ such that (θ, θ1) is a

distinguished pair. Let n1 denote the degree of θ1. Applying Theorem A, we

see that K(θ1)/K is a defectless extension. By Lemma 3.2, Mj(θ) = Mj(θ1) for

1 6 j 6 n1 − 1. Therefore by induction hypothesis, Mj(θ1) and hence Mj(θ)

has a maximum element for 1 6 j 6 n1 − 1. Also it is clear from the definition

of a distinguished pair that v(θ − θ1) is the maximum element of Mj(θ) when

n1 6 j 6 n− 1 which completes the proof of (i) implies (ii).

(ii)⇒(i). When n = 2, then using the hypothesis that the set {v(θ− a) | a ∈ K}
has a maximum element and arguing as in the last lines of the proof of Theorem

1.2, we conclude that K(θ)/K is not an immediate extension and hence it is a

defectless extension of degree 2. Suppose that θ has degree n and the result is

true for all elements of degree 6 n− 1. Since Mn−1(θ) has a maximum element,

there exists an element θ1 of degree n1 (say) such that (θ, θ1) is a distinguished

pair. By Lemma 3.2, Mj(θ) = Mj(θ1) for 1 6 j 6 n1− 1 and hence Mj(θ1) has a

maximum element. Therefore by induction hypothesis, K(θ1)/K is a defectless

extension and hence so is K(θ)/K in view of Theorem A.

(ii)⇒(iii). Let c be an element of K such that v(θ− c) = max{v(θ−a) | a ∈ K}.
Then in the case n = 2, the set N1(g) = {v(g(a)) | a ∈ K} has 2v(θ − c) as

maximum. Suppose that θ has degree n and the result is true for all elements of

smaller degree. In view of the hypothesis, there exists an element θ1 belonging

to K̃ such that (θ, θ1) is a distinguished pair with deg θ1 = n1 (say). Then

by Lemma 3.2, Mj(θ1) = Mj(θ) for 1 6 j 6 n1 − 1. Therefore by induction

hypothesis, if f(x) is the minimal polynomial of θ1 over K, then the set Nj(f) =

{v(f(β)) | β ∈ K̃, deg β 6 j} will have a maximum element for 1 6 j 6 n1− 1.

Recall that by virtue of Lemma 3.4, for β belonging to K̃ with deg β 6 n1 − 1,
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v(g(β)) = n
n1

v(f(β)). So it follows that the sets Nj(g) will also have a maximum

element for 1 6 j 6 n1 − 1. Further by Lemma 3.5, v(g(θ1)) is the maximum of

Nn−1(g) and hence it is also the maximum of Nj(g) when n1 6 j 6 n− 1 which

completes the proof of the desired assertion.

(iii)⇒(ii). For n = 2, the set N1(g) = {2v(θ − a)|a ∈ K} has a maximum by

(iii) and hence M1(θ) has a maximum element. Suppose that deg θ = n and

the result holds for elements of lower degree. Let α be an element of degree not

exceeding n−1 such that v(g(α)) is the maximum of the set Nn−1(g). Replacing

α by its K-conjugate, we can assume that

v(θ − α) = max{v(θ − α′)| α′ runs over all K-conjugates of α}. (13)

Claim is that Mn−1(θ) has v(θ−α) as maximum element. Suppose to the contrary

that there exists an element γ belonging to K̃ of degree 6 n− 1 such that

v(θ − α) < v(θ − γ). (14)

We shall obtain the desired contradiction by showing that

v(g(γ)) > v(g(α)). (15)

To verify (15), note that in view of (14) and the strong triangle law, we have

v(γ − α) = min{v(γ − θ), v(θ − α)} = v(θ − α). (16)

Let θ(i) be any K-conjugate of θ. Keeping in mind (16), (13) and the fact that

v(α− θ(i)) = v(α′ − θ) 6 v(α− θ), we have

v(γ − θ(i)) > min{v(γ − α), v(α− θ(i))} = v(α− θ(i)).

Summing over all K-conjugates θ(i) of θ and using (14), we obtain (15). Hence

the claim is proved. So there exists θ1 in K̃ such that (θ, θ1) is a distinguished

pair. Let f(x) be the minimal polynomial of θ1 over K of degree n1. Then by

virtue of Lemma 3.4, for any β belonging to K̃ with deg β 6 n1 − 1, we have

v(g(β)) =
n

n1

v(f(β)). (17)

By hypothesis, the sets Nj(g) have a maximum element for 1 6 j 6 n−1. It now

follows from (17) that Nj(f) = {v(f(β)) | β ∈ K̃, deg β 6 j} has a maximum
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element for 1 6 j 6 n1−1. Therefore by induction hypothesis, Mj(θ1) and hence

Mj(θ) will have a maximum element for 1 6 j 6 n1 − 1. As v(θ − θ1) is the

maximum element of Mj(θ) for n1 6 j 6 n− 1, we see that (iii)⇒(ii).

Remark 3.6. Suppose that K(θ)/K is a defectless extension. In view of

Lemma 3.3, there exists θ1 such that (θ, θ1) is a distinguished pair. By suc-

cessive applications of Lemma 3.2, it follows that there exist distinguished pairs

(θ, θ1), (θ1, θ2), . . . , (θr−1, θr) with θr in K and deg θi = ni (say). Using induction

on n0 = deg θ and applying Lemmas 3.5, 3.4, it can be quickly shown (as in the

proof of (ii)⇒(iii) above) that

max Nj(g) = v(g(θi)) when ni 6 j 6 ni−1 − 1, 1 6 i 6 r.
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