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ABSTRACT. Let v be a valuation of a field K having value group Z. It is

known that a polynomial xn + an−1x
n−1 + . . . + a0 satisfying v(ai)

n−i
> v(a0)

n
> 0

with v(a0) coprime to n, is irreducible over K. Such a polynomial is referred

to as an Eisenstein-Dumas polynomial with respect to v. In this paper, we give

necessary and sufficient conditions so that some translate g(x+a) of a given poly-

nomial g(x) belonging to K[x] is an Eisenstein-Dumas polynomial with respect

to v. In fact an analogous problem is dealt with for a wider class of polynomials,

viz. Generalized Schönemann polynomials with coefficients over valued fields of

arbitrary rank.
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1. INTRODUCTION

The classical Schönemann Irreducibility Criterion states that if f(x) is a

monic polynomial with coefficients from the ring Z of integers which is irreducible

modulo a prime number p and if g(x) belonging to Z[x] is a polynomial of the

form g(x) = f(x)e + pM(x) where M(x) belonging to Z[x] is relatively prime to

f(x) modulo p and the degree of M(x) is less than the degree of g(x), then g(x)

is irreducible over the field Q of rational numbers. Such a polynomial is referred

to as a Schönemann polynomial with respect to p and f(x). It can be easily seen

that if g(x) is as above, then the f(x)-expansion of g(x) obtained on dividing it

by successive powers of f(x) given by

g(x) =
e∑

i=0

gi(x)f(x)i, deg gi(x) < degf(x),

satisfies (i) ge(x) = 1, (ii) p divides the content of each polynomial gi(x) for

0 6 i 6 e− 1 and (iii) p2 does not divide the content of g0(x). Clearly any poly-

nomial g(x) belonging to Z[x] whose f(x)-expansion satisfies the above three

properties is a Schönemann polynomial with respect to p and f(x). Note that a

monic polynomial is an Eisenstein polynomial with respect to a prime p if and

only if it is a Schönemann polynomial with respect to p and f(x) = x.

The Schönemann Irreducibility Criterion has been extended to polynomials

with coefficients over valued fields in several ways (cf. Khanduja and Saha,

1997; Ribenboim, 1999, Chapter 4, D; Brown, 2008). In 2008, Ron Brown gave

a generalization of the Schönemann Irreducibility Criterion for polynomials with

coefficients in a valued field (K, v) of arbitrary rank, which will be stated after

introducing some notations.

We shall denote by vx the Gaussian valuation of the field K(x) of rational

functions in an indeterminate x which extends the valuation v of K and is de-

fined on K[x] by

vx(
∑

i

aix
i) = min

i
{v(ai)| ai ∈ K}.

For an element ξ in the valuation ring Rv of v with maximal ideal Mv, ξ̄ will

denote its v-residue, i.e., the image of ξ under the canonical homomorphism from

Rv onto Rv/Mv. For f(x) belonging to Rv[x], f̄(x) will stand for the polynomial

over Rv/Mv obtained by replacing each coefficient of f(x) by its v-residue. The

following result of Ron Brown which generalizes the Schönemann Irreducibility

Criterion is proved in section 3 (see Lemma 3.1).
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Theorem A. Let v be a valuation of arbitrary rank of a field K with value

group G and valuation ring Rv having maximal ideal Mv. Let f(x) belonging

to Rv[x] be a monic polynomial of degree m such that f̄(x) is irreducible over

Rv/Mv. Assume that g(x) ∈ Rv[x] is a monic polynomial whose f(x)-expansion

f(x)e +
e−1∑
i=0

gi(x)f(x)i satisfies vx(gi(x))
e−i

> vx(g0(x))
e

> 0 for 0 6 i 6 e − 1 and

vx(g0(x)) /∈ dG for any number d > 1 dividing e. Then g(x) is irreducible over

K.

A polynomial satisfying the hypothesis of Theorem A will be referred to as

a Generalized Schönemann polynomial with respect to v and f(x). In the par-

ticular case when f(x) = x, it will be called an Eisenstein-Dumas polynomial

with respect to v. When v is a discrete valuation with value group Z, then a

monic polynomial
e∑

i=0

aix
i is an Eisenstein-Dumas polynomial with respect to v

if v(ai)
e−i

> v(a0)
e

and v(a0) is coprime to e. Thus Theorem A extends the usual

Eisenstein-Dumas Irreducibility Criterion1.

In this paper, we first investigate when a translate g(x+a) of a given polyno-

mial g(x) belonging to K[x] having a root θ is an Eisenstein-Dumas polynomial

with respect to an arbitrary henselian valuation v of a field K. It is shown that

g(x + a) is such a polynomial if and only if K(θ)/K is a totally ramified exten-

sion and (θ, a) is a (K, v)-distinguished pair as defined below. In particular, it is

deduced that if some translate of a polynomial g(x) = xe + ae−1x
e−1 + . . . + a0

is an Eisenstein-Dumas polynomial with respect to v with e not divisible by the

characteristic of the residue field of v, then the polynomial g(x − ae−1

e
) is an

Eisenstein-Dumas polynomial with respect to v. This generalizes a result of M.

Juras proved in 2006 (cf. Juras, 2006).

We also deal with the following more general problem related to Theorem A.

Let g(x) belonging to Rv[x] be a monic polynomial over a henselian valued

field (K, v) of arbitrary rank with ḡ(x) = φ(x)e where φ(x) is an irreducible poly-

nomial over Rv/Mv and θ is a root of g(x). What are necessary and sufficient

conditions so that g(x) is a Generalized Schönemann polynomial with respect to

v and some polynomial f(x) ∈ Rv[x] with f̄(x) = φ(x)?

1Eisenstein-Dumas Irreducibility Criterion. Let g(x) = anxn + an−1x
n−1 + . . . + ao

be a polynomial with coefficients in Z. Suppose there exists a prime p whose exact power pri

dividing ai (where ri = ∞ if ai = 0), satisfy rn = 0, (ri/n− i) > (r0/n) for 0 6 i 6 n− 1 and
r0, n are coprime. Then g(x) is irreducible over Q.
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Our results are proved using saturated distinguished chains which will be de-

fined after introducing some notations.

In what follows, v is a henselian valuation of arbitrary rank of a field K and ṽ

is the unique prolongation of v to the algebraic closure K̃ of K with value group

G̃. By the degree of an element α in K̃, we shall mean the degree of the extension

K(α)/K and shall denote it by deg α. For an element ξ in the valuation ring of

ṽ, ξ̄ will stand for its ṽ-residue and for a subfield L of K̃, L and G(L) will denote

respectively the residue field and the value group of the valuation of L obtained

by restricting ṽ. When there is no chance of confusion, we shall write ṽ(α) as

v(α) for α belonging to K̃.

A finite extension (K ′, v′)/(K, v) is called defectless if [K ′ : K] = ef , where

e and f are the index of ramification and the residual degree of v′/v.

Recall that a pair (θ, α) of elements of K̃ is called a distinguished pair (more

precisely (K, v)-distinguished pair) if the following three conditions are satisfied:

(i) deg θ > deg α, (ii) ṽ(θ− β) 6 ṽ(θ− α) for every β in K̃ with deg β < deg θ,

(iii) if γ ∈ K̃ and deg γ < deg α, then ṽ(θ − γ) < ṽ(θ − α).

Distinguished pairs give rise to distinguished chains in a natural manner. A

chain θ = θ0, θ1, . . . , θr of elements of K̃ will be called a saturated distinguished

chain for θ if (θi, θi+1) is a distinguished pair for 0 6 i 6 r − 1 and θr ∈ K.

Popescu and Zaharescu (cf. Popescu and Zaharescu, 1995) were the first to in-

troduce the notion of distinguished chains. In 1995, they proved the existence

of a saturated distinguished chain for each θ belonging to K̃ \K in case (K, v)

is a complete discrete rank one valued field. In 2005, Aghigh and Khanduja

(cf. Aghigh and Khanduja, 2005) proved that if (K, v) is a henselian valued

field of arbitrary rank, then an element θ belonging to K̃ \ K has a saturated

distinguished chain with respect to v if and only if K(θ) is a defectless extension

of (K, v). A saturated distinguished chain for θ gives rise to several invariants

associated with θ, some of which are given by Theorem B stated below which is

proved in (cf. Aghigh and Khanduja, 2005).

Theorem B. Let (K, v) and (K̃, ṽ) be as above. Let θ = θ0, θ1, . . . , θr and

θ = η0, η1, . . . , ηs be two saturated distinguished chains for an element θ belong-

ing to K̃ \K, then r = s and [K(θi) : K] = [K(ηi) : K], G(K(θi)) = G(K(ηi)),

K(θi) = K(ηi) for 1 6 i 6 r. Further G(K(θi+1)) ⊆ G(K(θi)), K(θi+1) ⊆ K(θi)

for 0 6 i 6 r − 1.
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In this paper, we prove

Theorem 1.1. Let v be a henselian valuation of arbitrary rank of a field K

with value group G. Let g(x) belonging to Rv[x] be a monic polynomial of degree

e having a root θ. Then for an element a of K, g(x + a) is an Eisenstein-

Dumas polynomial with respect to v if and only if (θ, a) is a distinguished pair

and K(θ)/K is a totally ramified extension of degree e.

The following result which generalizes a result of M. Juras will be quickly

deduced from the above theorem.

Theorem 1.2. Let g(x) =
e∑

i=0

aix
i be a monic polynomial with coefficients in

a henselian valued field (K, v). Suppose that the characteristic of the residue

field of v does not divide e. If there exists an element b belonging to K such

that g(x + b) is an Eisenstein-Dumas polynomial with respect to v, then so is

g(x− ae−1

e
).

Note that if g(x) belonging to Rv[x] is a monic polynomial such that ḡ(x) is

irreducible over Rv/Mv, then for any non-zero α in Mv, g(x) is a Generalized

Schönemann polynomial with respect to f(x) = g(x) − α and v. Therefore to

deal with the second problem mentioned after Theorem A, we may assume that

ḡ(x) = φ(x)e with φ(x) irreducible over Rv/Mv and e > 1. When deg φ(x) = 1

then the problem referred to above is already solved in Theorem 1.1 because

g(x + a) is an Eisenstein-Dumas polynomial with respect to v if and only if g(x)

is a Generalized Schönemann polynomial with respect to v and x − a. Setting

aside these two cases, we shall prove

Theorem 1.3. Let v be a henselian valuation of arbitrary rank of a field K

with value group G and f(x) belonging to Rv[x] be a monic polynomial of degree

m > 1 with f̄(x) irreducible over the residue field of v. Let g(x) ∈ K[x] be

a Generalized Schönemann polynomial with respect to v and f(x) having f(x)-

expansion f(x)e +
e−1∑
i=0

gi(x)f(x)i with e > 1. Let θ be a root of g(x). Then for

some suitable root θ1 of f(x), θ has a saturated distinguished chain θ = θ0, θ1, θ2

of length 2 with G(K(θ1)) = G, K(θ) = K(θ̄) and [G(K(θ)) : G] = e.

The converse of the above result is also true as asserted by the following

theorem.
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Theorem 1.4. Let (K, v) be as in the above theorem. Let g(x) belonging to Rv[x]

be a monic polynomial such that ḡ(x) = φ(x)e, e > 1 where φ(x) is an irreducible

polynomial over Rv/Mv of degree m > 1. Suppose that a root θ of g(x) has

a saturated distinguished chain θ = θ0, θ1, θ2 of length 2 with G(K(θ1)) = G,

K(θ) = K(θ̄) and [G(K(θ)) : G] = e. Then g(x) is a Generalized Schönemann

polynomial with respect to v and f(x), where f(x) is the minimal polynomial of

θ1 over K.

2. PROOF OF THEOREMS 1.1, 1.2

Proof of Theorem 1.1. Write g(x + a) = xe + ae−1x
e−1 + . . . + a0, a, ai ∈ K.

Suppose first that g(x+a) is an Eisenstein-Dumas polynomial with respect to v.

Then it is irreducible over K in view of Theorem A. Since (K, v) is henselian, all

roots of g(x + a) have the same v-valuation and hence v(θ − a) = v(a0)
e

. In view

of the hypothesis that g(x + a) is an Eisenstein-Dumas polynomial, we have

e = [G + Z
v(a0)

e
: G] = [G + Zv(θ − a) : G]. (1)

To prove that (θ, a) is a distinguished pair, it is to be shown that

max{v(θ − β)| β ∈ K̃, deg β < deg θ} = v(θ − a) =
v(a0)

e
. (2)

If β is as in (2) and if v(θ − β) > v(θ − a), then by the strong triangle law,

v(β − a) = min{v(β − θ), v(θ − a)} = v(θ − a)

which in view of the fundamental inequality (cf. Engler and Prestel, 2005, The-

orem 3.3.4) and (1) implies that deg (β − a) > e, a contradiction. Therefore (2)

holds and (θ, a) is a distinguished pair with K(θ)/K totally ramified in view of

(1).

Conversely suppose that (θ, a) is a distinguished pair and K(θ)/K is a totally

ramified extension of degree e. Note that v(θ − a) > v(θ) > 0. Keeping in mind

that (K, v) is henselian and the relation between the roots and coefficients of the

the K-irreducible polynomial g(x + a) = xe + ae−1x
e−1 + . . . + a0, we see that

v(ai) > (e − i)v(θ − a) = ( e−i
e

)v(a0) > 0. So g(x + a) is an Eisenstein-Dumas

polynomial with respect to v once we show that sv(a0)
e

/∈ G for any positive num-

ber s < e.

Suppose to the contrary there exists a positive number s < e such that
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sv(a0)
e

= sv(θ − a) ∈ G, say sv(θ − a) = v(b), b ∈ K. Since K(θ)/K is totally

ramified, there exists c in K with v(c) = 0 such that ((θ − a)s/b) = c̄, which

implies that

v((θ − a)s − bc) > v(b). (3)

Set v(θ − a) = δ and h(x) = (x − a)s − bc. Let w denote the valuation of K̃(x)

defined on K̃[x] by

w(
∑

i

ci(x− a)i) = min
i
{ṽ(ci) + iδ}, ci ∈ K̃.

Note that w(h(x)) = min{sδ, v(bc)} = v(b). This equality will contradict (3)

thereby completing the proof of the theorem once we show that

v(h(θ)) = w(h(x)). (4)

To verify (4), write h(x) =
s∏

i=1

(x−β(i)). Keeping in mind that h(x) belonging to

K[x] is a polynomial of degree s < e and the fact that (θ, a) is a distinguished

pair, we have v(θ− β(i)) 6 v(θ− a) for 1 6 i 6 s and hence it can be easily seen

that

v(θ − β(i)) = min{v(θ − a), v(a− β(i))} = w(x− β(i)).

On summing over i, the above equation gives (4).

Proof of Theorem 1.2. In view of Theorem 1.1, it is enough to prove that if (θ, b)

is a distinguished pair, then so is (θ, −ae−1

e
). In fact it suffices to show that

v(θ +
ae−1

e
) > v(θ − b). (5)

Let θ = θ(1), θ(2), . . . , θ(e) denote the K-conjugates of θ. Using the hypothesis

v(e) = 0, we have

v(θ +
ae−1

e
) = v(eθ + ae−1) = v(eθ −

e∑
i=1

θ(i)) = v(
e∑

i=2

(θ − θ(i)));

consequently

v(θ +
ae−1

e
) > min

i>2
{v(θ − θ(i))} = v(θ − θ(2)) (say). (6)

Since b ∈ K, v(θ−b) = v(θ(2)−b) and hence v(θ−θ(2)) > v(θ−b) which together

with (6) proves (5) and hence the theorem.
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We use Theorem 1.1 to construct examples of totally ramified extensions

K(θ)/K such that no translate of the minimal polynomial of θ over K is an

Eisenstein-Dumas polynomial with respect to v.

Notation. For α separable over K of degree > 1, ωK(α) will stand for the

Krasner’s constant defined by

ωK(α) = max{ṽ(α− α′) | α′ 6= α runs over K-conjugates of α}.
Example 2.1. Let K be the field of 2-adic numbers with the usual valuation v2

given by v2(2) = 1. The prolongation of v2 to the algebraic closure of K will be

denoted by v2 again. Consider θ = 2+2(2−1/2)+22(2−1/22
) and θ1 = 2+2(2−1/2).

It will be shown that K(θ) = K(21/4) and (θ, θ1) is a distinguished pair. Note

that the Krasner’s constant ωK(θ1) = 3/2 and v2(θ − θ1) = 7/4 > ωK(θ1).

Therefore by Krasner’s Lemma (cf. Engler and Prestel, 2005, Theorem 4.1.7),

K(θ1) ⊆ K(θ) and hence 22(2−1/4) = θ−θ1 belongs to K(θ) as asserted. To show

that (θ, θ1) is a distinguished pair, we first verify that whenever γ belonging to

K̃ satisfies v2(θ − γ) > v2(θ − θ1) = 7/4, then deg γ > 4. If γ is as above, we

have by the strong triangle law

v2(θ1 − γ) = min{v2(θ1 − θ), v2(θ − γ)} = 7/4 > ωK(θ1) = 3/2.

So by Krasner’s Lemma, K(θ1) ⊆ K(γ) and hence G(K(γ)) contains v2(θ1−γ) =

7/4 which implies that deg γ > 4. Therefore

7/4 = v2(θ − θ1) = max{v2(θ − β)| β ∈ K̃, deg β < 4}.
Also for any b ∈ K̃ with deg b < deg θ1, we have b ∈ K and clearly v2(θ1 − b) 6
1/2 < v2(θ− θ1). So (θ, θ1) is a distinguished pair. As can be easily checked, θ is

a root of g(x) = x4− 8x3 +20x2− 80x+4 which must be irreducible over K. By

Theorem 1.1 no translate of g(x) can be an Eisenstein-Dumas polynomial with

respect to v2 because (θ, θ1) is a distinguished pair with θ1 /∈ K and consequently

(θ, a) cannot be a distinguished pair for any a in K in view of Theorem B.

Moreover, if p be a prime number different from 2, then no translate of g(x) can

be an Eisenstein-Dumas polynomial with respect to the p-adic valuation vp, for

otherwise in view of Theorem 1.2, g(x + 2) = x4 − 4x2 − 64x− 124 would be an

Eisenstein-Dumas polynomial with respect to vp, which is clearly impossible.

3. PROOF OF THEOREM 1.3.

We need the following lemma which is proved in (cf. Brown, 2008, Lemma

4). Its proof is omitted.
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Lemma 3.1. Let v, G, f(x) and g(x) be as in Theorem A. Let θ be a root of

g(x) and v′ be a prolongation of v to K(θ) with value group G′. Then v′(f(θ)) =
vx(g0(x))

e
, G′ = G + Zvx(g0(x))

e
, the residue field of v′ is a simple extension of the

residue field of v generated by the v′-residue θ̄ of θ and g(x) is irreducible over

K. In particular the index of ramification and the residual degree of v′/v are e

and deg f(x) respectively.

Proof of Theorem 1.3. Since θ̄ is a root of ḡ(x) = f̄(x)e and f̄(x) is an irreducible

polynomial of degree m > 1, it follows that v(θ) = 0 and there exists a root α(i)

of f(x) such that v(θ − α(i)) > 0. Let α be a root of f(x) satisfying

0 < v(θ − α) = max{v(θ − α(i))| α(i) runs over roots of f(x)} = δ (say). (7)

We claim that (θ, α) is a distinguished pair. Observe that if γ belonging to K̃ is

such that deg γ < deg α, then v(θ− γ) < δ, for otherwise by the triangle law we

would have v(α− γ) > 0 and hence ᾱ = γ̄ which is impossible because

m = [K(ᾱ) : K] = [K(γ̄) : K] 6 [K(γ) : K] < m.

So to prove the claim, it suffices to show that whenever β belongs to K̃ with

v(θ − β) > δ, then deg β > deg θ. For proving this inequality, in view of the

fundamental inequality and the fact deg θ = [G(K(θ)) : G][K(θ) : K] derived

from Lemma 3.1, it is enough to show that

G(K(θ)) ⊆ G(K(β)), K(θ) ⊆ K(β). (8)

Let β be an element of K̃ with v(β − θ) > δ and α(1), α(2), . . . , α(m) be the roots

of f(x), counted with multiplicities, if any. Write

f(β)

f(θ)
=

m∏
i=1

(
β − α(i)

θ − α(i)

)
=

m∏
i=1

(
1 +

β − θ

θ − α(i)

)
.

Since v(θ−β) > δ and by (7) v(θ−α(i)) 6 δ for every i, it follows from the above

expression for f(β)/f(θ) that its ṽ-residue equals 1̄ and hence v(f(β)) = v(f(θ)).

Therefore in view of Lemma 3.1, G(K(θ)) = G + Zv(f(θ)) ⊆ G(K(β)). Also

keeping in mind that v(θ − β) > δ > 0, we have by Lemma 3.1, K(θ) = K(θ̄) =

K(β̄) which proves (8) and hence the claim.

Recall that ᾱ is a root of the irreducible polynomial f̄(x) of degree m > 1.

So v(α− 1) = 0. Also for any β in K̃ with deg β < deg α, we have v(α− β) 6 0,
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for otherwise ᾱ = β̄ and this in view of the fundamental inequality would imply

[K(β) : K] > [K(β̄) : K] = m. So (α, 1) is a distinguished pair. Thus we

have proved that θ has a saturated distinguished chain θ, α, 1 of length 2. Since

[K(α) : K] = [K(ᾱ) : K] = m, it follows from the fundamental inequality that

G(K(α)) = G. The other two equalities hold by virtue of Lemma 3.1.

4. PROOF OF THEOREM 1.4.

We retain the notations of the previous sections as well as the assumption that

v is a henselian valuation of arbitrary rank of a field K with unique prolongation

ṽ to the algebraic closure K̃ having value group G̃. Recall that a pair (α, δ)

belonging to K̃ × G̃ is said to be a minimal pair (more precisely (K, v)-minimal

pair) if whenever β belonging to K̃ satisfies ṽ(α − β) > δ, then deg β > deg α.

It can be easily seen that if (θ, α) is a distinguished pair and δ = ṽ(θ − α), then

(α, δ) is a minimal pair.

Let (α, δ) be a (K, v)-minimal pair. The valuation w̃α,δ of K̃(x) defined on

K̃[x] by

w̃α,δ(
∑

i

ci(x− α)i) = min
i
{ṽ(ci) + iδ}, ci ∈ K̃

will be referred to as the valuation defined by the pair (α, δ). The description of

w̃α,δ on K[x] is given by the already known theorem stated below (cf. Alexandru,

Popescu and Zaharescu, 1988; Khanduja, 1992).

Theorem C. Let w̃α,δ be the valuation of K̃(x) defined by a minimal pair (α, δ)

and wα,δ be the valuation of K(x) obtained by restricting w̃α,δ. Let f(x) be the

minimal polynomial of α over K. Then for any polynomial g(x) in K[x] with

f(x)-expansion
∑
i>0

gi(x)f(x)i, one has wα,δ(g(x)) = min
i
{ṽ(gi(α))+iwα,δ(f(x))}.

The following result proved in (cf. Aghigh and Khanduja, 2005, Theorem

1.1(i)) will be used in the sequel.

Lemma D. Let (θ, α) be a (K, v)-distinguished pair and f(x) be the minimal

polynomial of α over K. Then G(K(θ)) = G(K(α)) + Zv(f(θ)).

Proof of Theorem 1.4. We divide the proof into three steps.

Step I. Let f(x) be the minimal polynomial of θ1 over K. In this step, we prove

that f̄(x) is irreducible over K and f̄(x) = φ(x). In view of the hypothesis

[K(θ) : K] = m, [G(K(θ)) : G] = e and the fundamental inequality, it follows

that [K(θ) : K] > em. Since θ is a root of the polynomial g(x) having degree em,
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we have [K(θ) : K] = em. Note that v(θ − θ1) > 0, because if F (x) ∈ Rv[x] is a

monic polynomial with F (x) = φ(x), then there exists a root β of F (x) such that

β̄ = θ̄ which in view of the hypothesis e > 1 implies that v(θ−θ1) > v(θ−β) > 0.

So the assertion of Step I is proved once we show that

[K(θ1) : K] = [K(θ̄1) : K] = m. (9)

Recall that K(θ1) ⊆ K(θ) by Theorem B. Therefore using the hypothesis K(θ) =

K(θ̄) and the fact θ̄1 = θ̄, it follows that K(θ1) = K(θ̄); in particular

[K(θ1) : K] = [K(θ̄1) : K] = m. (10)

Since K(θ1)/K is a defectless extension in view of (Aghigh and Khanduja, 2005,

Theorem 1.2) and it is given that G(K(θ1)) = G, we now obtain (9) using (10).

Step II. For simplicity of notation, we shall henceforth denote θ1 by α. Set

v(θ − α) = δ and v(f(θ)) = λ. Let g(x) = f(x)e +
e−1∑
i=0

gi(x)f(x)i be the f(x)-

expansion of g(x). Let w̃α,δ be the valuation of K̃(x) defined by the minimal pair

(α, δ). In this step, we prove that

w̃α,δ(f(x)) = λ (11)

and

w̃α,δ(g(x)) = vx(g0(x)) = eλ. (12)

Write f(x) =
m∏

i=1

(x−α(i)), g(x) =
em∏
j=1

(x−θ(j)). Using the fact that v(θ−α(i)) 6 δ

and hence v(θ − α(i)) = min{δ, v(α− α(i))}, we have

w̃α,δ(f(x)) = w̃α,δ(
m∏

i=1

(x− α(i))) =
m∑

i=1

min{δ, v(α− α(i))} =
m∑

i=1

v(θ − α(i)) = λ

which proves (11). Since (K, v) is henselian, for any K-conjugate θ(j) of θ, there

exists a K-conjugate α(i) of α such that v(θ(j)−α) = v(θ−α(i)) 6 δ; consequently

w̃α,δ(x− θ(j)) = min{δ, v(α− θ(j))} = v(α− θ(j)),

which on summing over j gives

w̃α,δ(g(x)) = v(g(α)). (13)

11



Recall that in view of Step I, f̄(x) is irreducible over K of degree m having θ̄

as a root. So for any polynomial A(x)=
∑

aix
i belonging to K[x] of degree less

than m, we have

v(A(θ)) = vx(A(x)) = min
i
{v(ai)}, (14)

for if the above equality does not hold, then m > 1, v(θ) = 0 and hence

the triangle law would imply v(A(θ)) > min
i
{v(aiθ

i)} = v(aj) (say) and thus

m−1∑
i=0

(ai/aj)θ̄
i = 0̄, which is impossible. Keeping in mind the f(x)-expansion of

g(x) and that f(α) = 0, we see that g(α) = g0(α) and consequently it follows

from (14) that v(g(α)) = v(g0(α)) = vx(g0(x)) which together with (13) proves

the first equality of (12). As f(x), g(x) are irreducible over the henselian valued

field (K, v), we have

v(f(θ(j))) = v(f(θ)), 1 6 j 6 em, v(g(α(i))) = v(g(α)), 1 6 i 6 m. (15)

Keeping in mind that
m∏

i=1

g(α(i)) = ±
em∏
j=1

f(θ(j)), it is clear from (15) that

v(g(α)) = ev(f(θ)) = eλ, which proves the second equality of (12) in view

of (13).

Step III. In this step, we prove that g(x) is a Generalized Schönemann polyno-

mial with respect to v and f(x). By Theorem C, (11) and (12), we have

w̃α,δ(g(x)) = min
06i6e

{v(gi(α)) + iλ} = vx(g0(x)) = eλ. (16)

As v(gi(α)) = vx(gi(x)), (16) shows that vx(gi(x)) + iλ > eλ for 0 6 i 6 e − 1,

i.e.,
vx(gi(x))

e− i
> λ =

vx(g0(x))

e
> 0.

Recall that λ = v(f(θ)). Since (θ, α) is a distinguished pair, in view of Lemma

D and the hypothesis G(K(α)) = G, we have

G(K(θ)) = G + Zλ. (17)

By hypothesis [G(K(θ)) : G] = e, so it follows from (17) that e is the smallest

positive integer for which eλ ∈ G. This completes the proof of the theorem.

Example 4.1. Let K be the field of 3-adic numbers with the usual valua-

tion v3 whose extension to the algebraic closure K̃ of K will be denoted by ṽ3.
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Consider the polynomial g(x) = x4 + 14x2 + 1 with ḡ(x) = (x2 + 1)2. It can

be easily seen that θ = i(2 +
√

3) is a root of g(x) where i =
√−1. Since

θ̄ = 2i /∈ K and ṽ3(θ
2 − 2) = 1/2, it follows in view of the fundamental in-

equality that [K(θ) : K] = 4. A simple calculation shows that the Krasner’s

constant ωK(θ) = ṽ3(θ − 2i) = 1/2. So by Krasner’s Lemma, ṽ3(θ − β) 6 1
2

for

every β ∈ K̃ with deg β < 4. Further if for some γ in K̃, ṽ3(θ − γ) = 1
2
, then

θ̄ = γ̄ = 2i. Since 2i /∈ K, we see that [K(γ) : K] > 2. Therefore (θ, 2i) is a

distinguished pair. It can be easily seen that (2i, 0) is a distinguished pair and

hence θ, 2i, 0 is a saturated distinguished chain for θ satisfying the hypothesis of

Theorem 1.4. So g(x) is a Generalized Schönemann polynomial with respect to

v3 and f(x) = x2 + 4.
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