ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS

Anuj Bishnoi and Sudesh K. Khanduja^{*}

Department of Mathematics, Panjab University, Chandigarh-160014, India. E-mail: anuj.bshn@gmail.com, skhand@pu.ac.in

ABSTRACT. Let v be a valuation of a field K having value group \mathbb{Z} . It is known that a polynomial $x^n + a_{n-1}x^{n-1} + \ldots + a_0$ satisfying $\frac{v(a_i)}{n-i} \ge \frac{v(a_0)}{n} > 0$ with $v(a_0)$ coprime to n, is irreducible over K. Such a polynomial is referred to as an Eisenstein-Dumas polynomial with respect to v. In this paper, we give necessary and sufficient conditions so that some translate g(x+a) of a given polynomial g(x) belonging to K[x] is an Eisenstein-Dumas polynomial with respect to v. In fact an analogous problem is dealt with for a wider class of polynomials, viz. Generalized Schönemann polynomials with coefficients over valued fields of arbitrary rank.

Keywords : Field Theory and polynomials; Valued fields; Non-Archimedean valued fields.

2000 Mathematics Subject Classification : 12E05; 12J10; 12J25.

^{*}All correspondence may be addressed to this author.

1. INTRODUCTION

The classical Schönemann Irreducibility Criterion states that if f(x) is a monic polynomial with coefficients from the ring \mathbb{Z} of integers which is irreducible modulo a prime number p and if g(x) belonging to $\mathbb{Z}[x]$ is a polynomial of the form $g(x) = f(x)^e + pM(x)$ where M(x) belonging to $\mathbb{Z}[x]$ is relatively prime to f(x) modulo p and the degree of M(x) is less than the degree of g(x), then g(x)is irreducible over the field \mathbb{Q} of rational numbers. Such a polynomial is referred to as a Schönemann polynomial with respect to p and f(x). It can be easily seen that if g(x) is as above, then the f(x)-expansion of g(x) obtained on dividing it by successive powers of f(x) given by

$$g(x) = \sum_{i=0}^{e} g_i(x) f(x)^i, \ deg \ g_i(x) < deg f(x),$$

satisfies (i) $g_e(x) = 1$, (ii) p divides the content of each polynomial $g_i(x)$ for $0 \leq i \leq e-1$ and (iii) p^2 does not divide the content of $g_0(x)$. Clearly any polynomial g(x) belonging to $\mathbb{Z}[x]$ whose f(x)-expansion satisfies the above three properties is a Schönemann polynomial with respect to p and f(x). Note that a monic polynomial is an Eisenstein polynomial with respect to a prime p if and only if it is a Schönemann polynomial with respect to p and f(x) = x.

The Schönemann Irreducibility Criterion has been extended to polynomials with coefficients over valued fields in several ways (cf. Khanduja and Saha, 1997; Ribenboim, 1999, Chapter 4, D; Brown, 2008). In 2008, Ron Brown gave a generalization of the Schönemann Irreducibility Criterion for polynomials with coefficients in a valued field (K, v) of arbitrary rank, which will be stated after introducing some notations.

We shall denote by v^x the Gaussian valuation of the field K(x) of rational functions in an indeterminate x which extends the valuation v of K and is defined on K[x] by

$$v^x(\sum_i a_i x^i) = \min_i \{v(a_i) | a_i \in K\}.$$

For an element ξ in the valuation ring R_v of v with maximal ideal $\mathcal{M}_v, \bar{\xi}$ will denote its v-residue, i.e., the image of ξ under the canonical homomorphism from R_v onto R_v/\mathcal{M}_v . For f(x) belonging to $R_v[x], \bar{f}(x)$ will stand for the polynomial over R_v/\mathcal{M}_v obtained by replacing each coefficient of f(x) by its v-residue. The following result of Ron Brown which generalizes the Schönemann Irreducibility Criterion is proved in section 3 (see Lemma 3.1). **Theorem A.** Let v be a valuation of arbitrary rank of a field K with value group G and valuation ring R_v having maximal ideal \mathcal{M}_v . Let f(x) belonging to $R_v[x]$ be a monic polynomial of degree m such that $\overline{f}(x)$ is irreducible over R_v/\mathcal{M}_v . Assume that $g(x) \in R_v[x]$ is a monic polynomial whose f(x)-expansion $f(x)^e + \sum_{i=0}^{e-1} g_i(x)f(x)^i$ satisfies $\frac{v^x(g_i(x))}{e-i} \ge \frac{v^x(g_0(x))}{e} \ge 0$ for $0 \le i \le e-1$ and $v^x(g_0(x)) \notin dG$ for any number d > 1 dividing e. Then g(x) is irreducible over K.

A polynomial satisfying the hypothesis of Theorem A will be referred to as a Generalized Schönemann polynomial with respect to v and f(x). In the particular case when f(x) = x, it will be called an Eisenstein-Dumas polynomial with respect to v. When v is a discrete valuation with value group \mathbb{Z} , then a monic polynomial $\sum_{i=0}^{e} a_i x^i$ is an Eisenstein-Dumas polynomial with respect to vif $\frac{v(a_i)}{e-i} \ge \frac{v(a_0)}{e}$ and $v(a_0)$ is coprime to e. Thus Theorem A extends the usual Eisenstein-Dumas Irreducibility Criterion¹.

In this paper, we first investigate when a translate g(x+a) of a given polynomial g(x) belonging to K[x] having a root θ is an Eisenstein-Dumas polynomial with respect to an arbitrary henselian valuation v of a field K. It is shown that g(x+a) is such a polynomial if and only if $K(\theta)/K$ is a totally ramified extension and (θ, a) is a (K, v)-distinguished pair as defined below. In particular, it is deduced that if some translate of a polynomial $g(x) = x^e + a_{e-1}x^{e-1} + \ldots + a_0$ is an Eisenstein-Dumas polynomial with respect to v with e not divisible by the characteristic of the residue field of v, then the polynomial $g(x - \frac{a_{e-1}}{e})$ is an Eisenstein-Dumas polynomial with respect to v. This generalizes a result of M. Juras proved in 2006 (cf. Juras, 2006).

We also deal with the following more general problem related to Theorem A.

Let g(x) belonging to $R_v[x]$ be a monic polynomial over a henselian valued field (K, v) of arbitrary rank with $\bar{g}(x) = \phi(x)^e$ where $\phi(x)$ is an irreducible polynomial over R_v/\mathcal{M}_v and θ is a root of g(x). What are necessary and sufficient conditions so that g(x) is a Generalized Schönemann polynomial with respect to v and some polynomial $f(x) \in R_v[x]$ with $\bar{f}(x) = \phi(x)$?

¹Eisenstein-Dumas Irreducibility Criterion. Let $g(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_o$ be a polynomial with coefficients in \mathbb{Z} . Suppose there exists a prime p whose exact power p^{r_i} dividing a_i (where $r_i = \infty$ if $a_i = 0$), satisfy $r_n = 0$, $(r_i/n - i) \ge (r_0/n)$ for $0 \le i \le n - 1$ and r_0 , n are coprime. Then g(x) is irreducible over \mathbb{Q} .

Our results are proved using saturated distinguished chains which will be defined after introducing some notations.

In what follows, v is a henselian valuation of arbitrary rank of a field K and \tilde{v} is the unique prolongation of v to the algebraic closure \tilde{K} of K with value group \tilde{G} . By the degree of an element α in \tilde{K} , we shall mean the degree of the extension $K(\alpha)/K$ and shall denote it by $deg \alpha$. For an element ξ in the valuation ring of $\tilde{v}, \bar{\xi}$ will stand for its \tilde{v} -residue and for a subfield L of \tilde{K}, \bar{L} and G(L) will denote respectively the residue field and the value group of the valuation of L obtained by restricting \tilde{v} . When there is no chance of confusion, we shall write $\tilde{v}(\alpha)$ as $v(\alpha)$ for α belonging to \tilde{K} .

A finite extension (K', v')/(K, v) is called defectless if [K' : K] = ef, where e and f are the index of ramification and the residual degree of v'/v.

Recall that a pair (θ, α) of elements of \widetilde{K} is called a distinguished pair (more precisely (K, v)-distinguished pair) if the following three conditions are satisfied: (i) $\deg \theta > \deg \alpha$, (ii) $\widetilde{v}(\theta - \beta) \leq \widetilde{v}(\theta - \alpha)$ for every β in \widetilde{K} with $\deg \beta < \deg \theta$, (iii) if $\gamma \in \widetilde{K}$ and $\deg \gamma < \deg \alpha$, then $\widetilde{v}(\theta - \gamma) < \widetilde{v}(\theta - \alpha)$.

Distinguished pairs give rise to distinguished chains in a natural manner. A chain $\theta = \theta_0, \theta_1, \ldots, \theta_r$ of elements of \widetilde{K} will be called a saturated distinguished chain for θ if (θ_i, θ_{i+1}) is a distinguished pair for $0 \leq i \leq r-1$ and $\theta_r \in K$. Popescu and Zaharescu (cf. Popescu and Zaharescu, 1995) were the first to introduce the notion of distinguished chains. In 1995, they proved the existence of a saturated distinguished chain for each θ belonging to $\widetilde{K} \setminus K$ in case (K, v) is a complete discrete rank one valued field. In 2005, Aghigh and Khanduja (cf. Aghigh and Khanduja, 2005) proved that if (K, v) is a henselian valued field of arbitrary rank, then an element θ belonging to $\widetilde{K} \setminus K$ has a saturated distinguished chain for θ gives rise to several invariants associated with θ , some of which are given by Theorem B stated below which is proved in (cf. Aghigh and Khanduja, 2005).

Theorem B. Let (K, v) and (\tilde{K}, \tilde{v}) be as above. Let $\theta = \theta_0, \theta_1, \ldots, \theta_r$ and $\theta = \eta_0, \eta_1, \ldots, \eta_s$ be two saturated distinguished chains for an element θ belonging to $\tilde{K} \setminus K$, then r = s and $[K(\theta_i) : K] = [K(\eta_i) : K]$, $G(K(\theta_i)) = G(K(\eta_i))$, $\overline{K(\theta_i)} = \overline{K(\eta_i)}$ for $1 \leq i \leq r$. Further $G(K(\theta_{i+1})) \subseteq G(K(\theta_i))$, $\overline{K(\theta_{i+1})} \subseteq \overline{K(\theta_i)}$ for $0 \leq i \leq r - 1$.

In this paper, we prove

Theorem 1.1. Let v be a henselian valuation of arbitrary rank of a field Kwith value group G. Let g(x) belonging to $R_v[x]$ be a monic polynomial of degree e having a root θ . Then for an element a of K, g(x + a) is an Eisenstein-Dumas polynomial with respect to v if and only if (θ, a) is a distinguished pair and $K(\theta)/K$ is a totally ramified extension of degree e.

The following result which generalizes a result of M. Juras will be quickly deduced from the above theorem.

Theorem 1.2. Let $g(x) = \sum_{i=0}^{e} a_i x^i$ be a monic polynomial with coefficients in a henselian valued field (K, v). Suppose that the characteristic of the residue field of v does not divide e. If there exists an element b belonging to K such that g(x + b) is an Eisenstein-Dumas polynomial with respect to v, then so is $g(x - \frac{a_{e-1}}{e})$.

Note that if g(x) belonging to $R_v[x]$ is a monic polynomial such that $\overline{g}(x)$ is irreducible over R_v/\mathcal{M}_v , then for any non-zero α in \mathcal{M}_v , g(x) is a Generalized Schönemann polynomial with respect to $f(x) = g(x) - \alpha$ and v. Therefore to deal with the second problem mentioned after Theorem A, we may assume that $\overline{g}(x) = \phi(x)^e$ with $\phi(x)$ irreducible over R_v/\mathcal{M}_v and e > 1. When $\deg \phi(x) = 1$ then the problem referred to above is already solved in Theorem 1.1 because g(x+a) is an Eisenstein-Dumas polynomial with respect to v if and only if g(x)is a Generalized Schönemann polynomial with respect to v and x - a. Setting aside these two cases, we shall prove

Theorem 1.3. Let v be a henselian valuation of arbitrary rank of a field Kwith value group G and f(x) belonging to $R_v[x]$ be a monic polynomial of degree m > 1 with $\overline{f}(x)$ irreducible over the residue field of v. Let $g(x) \in K[x]$ be a Generalized Schönemann polynomial with respect to v and f(x) having f(x)expansion $f(x)^e + \sum_{i=0}^{e-1} g_i(x)f(x)^i$ with e > 1. Let θ be a root of g(x). Then for some suitable root θ_1 of f(x), θ has a saturated distinguished chain $\theta = \theta_0, \theta_1, \theta_2$ of length 2 with $G(K(\theta_1)) = G, \overline{K(\theta)} = \overline{K(\theta)}$ and $[G(K(\theta)) : G] = e$.

The converse of the above result is also true as asserted by the following theorem.

Theorem 1.4. Let (K, v) be as in the above theorem. Let g(x) belonging to $R_v[x]$ be a monic polynomial such that $\overline{g}(x) = \phi(x)^e$, e > 1 where $\phi(x)$ is an irreducible polynomial over R_v/\mathcal{M}_v of degree m > 1. Suppose that a root θ of g(x) has a saturated distinguished chain $\theta = \theta_0$, θ_1 , θ_2 of length 2 with $G(K(\theta_1)) = G$, $\overline{K(\theta)} = \overline{K(\theta)}$ and $[G(K(\theta)) : G] = e$. Then g(x) is a Generalized Schönemann polynomial with respect to v and f(x), where f(x) is the minimal polynomial of θ_1 over K.

2. PROOF OF THEOREMS 1.1, 1.2

Proof of Theorem 1.1. Write $g(x + a) = x^e + a_{e-1}x^{e-1} + \ldots + a_0$, $a, a_i \in K$. Suppose first that g(x + a) is an Eisenstein-Dumas polynomial with respect to v. Then it is irreducible over K in view of Theorem A. Since (K, v) is henselian, all roots of g(x + a) have the same v-valuation and hence $v(\theta - a) = \frac{v(a_0)}{e}$. In view of the hypothesis that g(x + a) is an Eisenstein-Dumas polynomial, we have

$$e = [G + \mathbb{Z}\frac{v(a_0)}{e} : G] = [G + \mathbb{Z}v(\theta - a) : G].$$
 (1)

To prove that (θ, a) is a distinguished pair, it is to be shown that

$$\max\{v(\theta - \beta) \mid \beta \in \widetilde{K}, \ deg \ \beta < deg \ \theta\} = v(\theta - a) = \frac{v(a_0)}{e}.$$
 (2)

If β is as in (2) and if $v(\theta - \beta) > v(\theta - a)$, then by the strong triangle law,

$$v(\beta - a) = \min\{v(\beta - \theta), v(\theta - a)\} = v(\theta - a)$$

which in view of the fundamental inequality (cf. Engler and Prestel, 2005, Theorem 3.3.4) and (1) implies that $deg \ (\beta - a) \ge e$, a contradiction. Therefore (2) holds and (θ, a) is a distinguished pair with $K(\theta)/K$ totally ramified in view of (1).

Conversely suppose that (θ, a) is a distinguished pair and $K(\theta)/K$ is a totally ramified extension of degree e. Note that $v(\theta - a) \ge v(\theta) \ge 0$. Keeping in mind that (K, v) is henselian and the relation between the roots and coefficients of the the K-irreducible polynomial $g(x + a) = x^e + a_{e-1}x^{e-1} + \ldots + a_0$, we see that $v(a_i) \ge (e - i)v(\theta - a) = \left(\frac{e-i}{e}\right)v(a_0) \ge 0$. So g(x + a) is an Eisenstein-Dumas polynomial with respect to v once we show that $s\frac{v(a_0)}{e} \notin G$ for any positive number s < e.

Suppose to the contrary there exists a positive number s < e such that

 $s\frac{v(a_0)}{e} = sv(\theta - a) \in G$, say $sv(\theta - a) = v(b)$, $b \in K$. Since $K(\theta)/K$ is totally ramified, there exists c in K with v(c) = 0 such that $\overline{((\theta - a)^s/b)} = \overline{c}$, which implies that

$$v((\theta - a)^s - bc) > v(b).$$
(3)

Set $v(\theta - a) = \delta$ and $h(x) = (x - a)^s - bc$. Let w denote the valuation of $\widetilde{K}(x)$ defined on $\widetilde{K}[x]$ by

$$w(\sum_{i} c_i (x-a)^i) = \min_{i} \{ \tilde{v}(c_i) + i\delta \}, \ c_i \in \widetilde{K}.$$

Note that $w(h(x)) = \min\{s\delta, v(bc)\} = v(b)$. This equality will contradict (3) thereby completing the proof of the theorem once we show that

$$v(h(\theta)) = w(h(x)).$$
(4)

To verify (4), write $h(x) = \prod_{i=1}^{s} (x - \beta^{(i)})$. Keeping in mind that h(x) belonging to K[x] is a polynomial of degree s < e and the fact that (θ, a) is a distinguished pair, we have $v(\theta - \beta^{(i)}) \leq v(\theta - a)$ for $1 \leq i \leq s$ and hence it can be easily seen that

$$v(\theta - \beta^{(i)}) = \min\{v(\theta - a), v(a - \beta^{(i)})\} = w(x - \beta^{(i)}).$$

On summing over i, the above equation gives (4).

Proof of Theorem 1.2. In view of Theorem 1.1, it is enough to prove that if (θ, b) is a distinguished pair, then so is $(\theta, \frac{-a_{e-1}}{e})$. In fact it suffices to show that

$$v(\theta + \frac{a_{e-1}}{e}) \ge v(\theta - b).$$
(5)

Let $\theta = \theta^{(1)}, \theta^{(2)}, \dots, \theta^{(e)}$ denote the *K*-conjugates of θ . Using the hypothesis v(e) = 0, we have

$$v(\theta + \frac{a_{e-1}}{e}) = v(e\theta + a_{e-1}) = v(e\theta - \sum_{i=1}^{e} \theta^{(i)}) = v(\sum_{i=2}^{e} (\theta - \theta^{(i)}));$$

consequently

$$v(\theta + \frac{a_{e-1}}{e}) \ge \min_{i \ge 2} \{v(\theta - \theta^{(i)})\} = v(\theta - \theta^{(2)}) \ (say).$$

$$\tag{6}$$

Since $b \in K$, $v(\theta - b) = v(\theta^{(2)} - b)$ and hence $v(\theta - \theta^{(2)}) \ge v(\theta - b)$ which together with (6) proves (5) and hence the theorem.

We use Theorem 1.1 to construct examples of totally ramified extensions $K(\theta)/K$ such that no translate of the minimal polynomial of θ over K is an Eisenstein-Dumas polynomial with respect to v.

Notation. For α separable over K of degree > 1, $\omega_K(\alpha)$ will stand for the Krasner's constant defined by

 $\omega_K(\alpha) = \max\{\tilde{v}(\alpha - \alpha') \mid \alpha' \neq \alpha \text{ runs over } K \text{-conjugates of } \alpha\}.$

Example 2.1. Let K be the field of 2-adic numbers with the usual valuation v_2 given by $v_2(2) = 1$. The prolongation of v_2 to the algebraic closure of K will be denoted by v_2 again. Consider $\theta = 2 + 2(2^{-1/2}) + 2^2(2^{-1/2^2})$ and $\theta_1 = 2 + 2(2^{-1/2})$. It will be shown that $K(\theta) = K(2^{1/4})$ and (θ, θ_1) is a distinguished pair. Note that the Krasner's constant $\omega_K(\theta_1) = 3/2$ and $v_2(\theta - \theta_1) = 7/4 > \omega_K(\theta_1)$. Therefore by Krasner's Lemma (cf. Engler and Prestel, 2005, Theorem 4.1.7), $K(\theta_1) \subseteq K(\theta)$ and hence $2^2(2^{-1/4}) = \theta - \theta_1$ belongs to $K(\theta)$ as asserted. To show that (θ, θ_1) is a distinguished pair, we first verify that whenever γ belonging to \tilde{K} satisfies $v_2(\theta - \gamma) > v_2(\theta - \theta_1) = 7/4$, then $\deg \gamma \ge 4$. If γ is as above, we have by the strong triangle law

$$v_2(\theta_1 - \gamma) = \min\{v_2(\theta_1 - \theta), v_2(\theta - \gamma)\} = 7/4 > \omega_K(\theta_1) = 3/2.$$

So by Krasner's Lemma, $K(\theta_1) \subseteq K(\gamma)$ and hence $G(K(\gamma))$ contains $v_2(\theta_1 - \gamma) = 7/4$ which implies that $\deg \gamma \ge 4$. Therefore

 $7/4 = v_2(\theta - \theta_1) = \max\{v_2(\theta - \beta) | \beta \in \widetilde{K}, \ deg \ \beta < 4\}.$ Also for any $b \in \widetilde{K}$ with $deg \ b < deg \ \theta_1$, we have $b \in K$ and clearly $v_2(\theta_1 - b) \leq 1/2 < v_2(\theta - \theta_1)$. So (θ, θ_1) is a distinguished pair. As can be easily checked, θ is a root of $g(x) = x^4 - 8x^3 + 20x^2 - 80x + 4$ which must be irreducible over K. By Theorem 1.1 no translate of g(x) can be an Eisenstein-Dumas polynomial with respect to v_2 because (θ, θ_1) is a distinguished pair with $\theta_1 \notin K$ and consequently (θ, a) cannot be a distinguished pair for any a in K in view of Theorem B. Moreover, if p be a prime number different from 2, then no translate of g(x) can be an Eisenstein-Dumas polynomial with respect to the p-adic valuation v_p , for otherwise in view of Theorem 1.2, $g(x + 2) = x^4 - 4x^2 - 64x - 124$ would be an Eisenstein-Dumas polynomial with respect to v_p , which is clearly impossible.

3. PROOF OF THEOREM 1.3.

We need the following lemma which is proved in (cf. Brown, 2008, Lemma 4). Its proof is omitted.

Lemma 3.1. Let v, G, f(x) and g(x) be as in Theorem A. Let θ be a root of g(x) and v' be a prolongation of v to $K(\theta)$ with value group G'. Then $v'(f(\theta)) = \frac{v^x(g_0(x))}{e}$, $G' = G + \mathbb{Z}\frac{v^x(g_0(x))}{e}$, the residue field of v' is a simple extension of the residue field of v generated by the v'-residue $\overline{\theta}$ of θ and g(x) is irreducible over K. In particular the index of ramification and the residual degree of v'/v are e and deg f(x) respectively.

Proof of Theorem 1.3. Since $\bar{\theta}$ is a root of $\bar{g}(x) = \bar{f}(x)^e$ and $\bar{f}(x)$ is an irreducible polynomial of degree m > 1, it follows that $v(\theta) = 0$ and there exists a root $\alpha^{(i)}$ of f(x) such that $v(\theta - \alpha^{(i)}) > 0$. Let α be a root of f(x) satisfying

$$0 < v(\theta - \alpha) = \max\{v(\theta - \alpha^{(i)}) \mid \alpha^{(i)} \text{ runs over roots of } f(x)\} = \delta \text{ (say).}$$
(7)

We claim that (θ, α) is a distinguished pair. Observe that if γ belonging to \widetilde{K} is such that $\deg \gamma < \deg \alpha$, then $v(\theta - \gamma) < \delta$, for otherwise by the triangle law we would have $v(\alpha - \gamma) > 0$ and hence $\overline{\alpha} = \overline{\gamma}$ which is impossible because

$$m = [\overline{K}(\bar{\alpha}) : \overline{K}] = [\overline{K}(\bar{\gamma}) : \overline{K}] \leq [K(\gamma) : K] < m.$$

So to prove the claim, it suffices to show that whenever β belongs to \widetilde{K} with $v(\theta - \beta) > \delta$, then $\deg \beta \ge \deg \theta$. For proving this inequality, in view of the fundamental inequality and the fact $\deg \theta = [G(K(\theta)) : G][\overline{K(\theta)} : \overline{K}]$ derived from Lemma 3.1, it is enough to show that

$$G(K(\theta)) \subseteq G(K(\beta)), \ \overline{K(\theta)} \subseteq \overline{K(\beta)}.$$
 (8)

Let β be an element of \widetilde{K} with $v(\beta - \theta) > \delta$ and $\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(m)}$ be the roots of f(x), counted with multiplicities, if any. Write

$$\frac{f(\beta)}{f(\theta)} = \prod_{i=1}^{m} \left(\frac{\beta - \alpha^{(i)}}{\theta - \alpha^{(i)}} \right) = \prod_{i=1}^{m} \left(1 + \frac{\beta - \theta}{\theta - \alpha^{(i)}} \right).$$

Since $v(\theta - \beta) > \delta$ and by (7) $v(\theta - \alpha^{(i)}) \leq \delta$ for every *i*, it follows from the above expression for $f(\beta)/f(\theta)$ that its \tilde{v} -residue equals $\bar{1}$ and hence $v(f(\beta)) = v(f(\theta))$. Therefore in view of Lemma 3.1, $G(K(\theta)) = G + \mathbb{Z}v(f(\theta)) \subseteq G(K(\beta))$. Also keeping in mind that $v(\theta - \beta) > \delta > 0$, we have by Lemma 3.1, $\overline{K(\theta)} = \overline{K}(\bar{\theta}) = \overline{K}(\bar{\beta})$ which proves (8) and hence the claim.

Recall that $\bar{\alpha}$ is a root of the irreducible polynomial f(x) of degree m > 1. So $v(\alpha - 1) = 0$. Also for any β in \tilde{K} with $\deg \beta < \deg \alpha$, we have $v(\alpha - \beta) \leq 0$, for otherwise $\bar{\alpha} = \bar{\beta}$ and this in view of the fundamental inequality would imply $[K(\beta) : K] \ge [\overline{K}(\bar{\beta}) : \overline{K}] = m$. So $(\alpha, 1)$ is a distinguished pair. Thus we have proved that θ has a saturated distinguished chain $\theta, \alpha, 1$ of length 2. Since $[K(\alpha) : K] = [\overline{K}(\bar{\alpha}) : \overline{K}] = m$, it follows from the fundamental inequality that $G(K(\alpha)) = G$. The other two equalities hold by virtue of Lemma 3.1.

4. PROOF OF THEOREM 1.4.

We retain the notations of the previous sections as well as the assumption that v is a henselian valuation of arbitrary rank of a field K with unique prolongation \tilde{v} to the algebraic closure \tilde{K} having value group \tilde{G} . Recall that a pair (α, δ) belonging to $\tilde{K} \times \tilde{G}$ is said to be a minimal pair (more precisely (K, v)-minimal pair) if whenever β belonging to \tilde{K} satisfies $\tilde{v}(\alpha - \beta) \ge \delta$, then $\deg \beta \ge \deg \alpha$. It can be easily seen that if (θ, α) is a distinguished pair and $\delta = \tilde{v}(\theta - \alpha)$, then (α, δ) is a minimal pair.

Let (α, δ) be a (K, v)-minimal pair. The valuation $\tilde{w}_{\alpha,\delta}$ of $\tilde{K}(x)$ defined on $\tilde{K}[x]$ by

$$\tilde{w}_{\alpha,\delta}(\sum_{i} c_i (x-\alpha)^i) = \min_i \{\tilde{v}(c_i) + i\delta\}, \ c_i \in \widetilde{K}$$

will be referred to as the valuation defined by the pair (α, δ) . The description of $\tilde{w}_{\alpha,\delta}$ on K[x] is given by the already known theorem stated below (cf. Alexandru, Popescu and Zaharescu, 1988; Khanduja, 1992).

Theorem C. Let $\tilde{w}_{\alpha,\delta}$ be the valuation of $\widetilde{K}(x)$ defined by a minimal pair (α, δ) and $w_{\alpha,\delta}$ be the valuation of K(x) obtained by restricting $\tilde{w}_{\alpha,\delta}$. Let f(x) be the minimal polynomial of α over K. Then for any polynomial g(x) in K[x] with f(x)-expansion $\sum_{i \ge 0} g_i(x)f(x)^i$, one has $w_{\alpha,\delta}(g(x)) = \min_i \{\tilde{v}(g_i(\alpha)) + iw_{\alpha,\delta}(f(x))\}.$

The following result proved in (cf. Aghigh and Khanduja, 2005, Theorem 1.1(i)) will be used in the sequel.

Lemma D. Let (θ, α) be a (K, v)-distinguished pair and f(x) be the minimal polynomial of α over K. Then $G(K(\theta)) = G(K(\alpha)) + \mathbb{Z}v(f(\theta))$.

Proof of Theorem 1.4. We divide the proof into three steps.

Step I. Let f(x) be the minimal polynomial of θ_1 over K. In this step, we prove that $\overline{f}(x)$ is irreducible over \overline{K} and $\overline{f}(x) = \phi(x)$. In view of the hypothesis $[\overline{K(\theta)} : \overline{K}] = m$, $[G(K(\theta)) : G] = e$ and the fundamental inequality, it follows that $[K(\theta) : K] \ge em$. Since θ is a root of the polynomial g(x) having degree em, we have $[K(\theta) : K] = em$. Note that $v(\theta - \theta_1) > 0$, because if $F(x) \in R_v[x]$ is a monic polynomial with $\overline{F}(x) = \phi(x)$, then there exists a root β of F(x) such that $\overline{\beta} = \overline{\theta}$ which in view of the hypothesis e > 1 implies that $v(\theta - \theta_1) \ge v(\theta - \beta) > 0$. So the assertion of Step I is proved once we show that

$$[K(\theta_1):K] = [\overline{K}(\overline{\theta_1}):\overline{K}] = m.$$
(9)

Recall that $\overline{K(\theta_1)} \subseteq \overline{K(\theta)}$ by Theorem B. Therefore using the hypothesis $\overline{K(\theta)} = \overline{K(\bar{\theta})}$ and the fact $\bar{\theta_1} = \bar{\theta}$, it follows that $\overline{K(\theta_1)} = \overline{K(\bar{\theta})}$; in particular

$$[\overline{K(\theta_1)}:\overline{K}] = [\overline{K}(\overline{\theta_1}):\overline{K}] = m.$$
(10)

Since $K(\theta_1)/K$ is a defectless extension in view of (Aghigh and Khanduja, 2005, Theorem 1.2) and it is given that $G(K(\theta_1)) = G$, we now obtain (9) using (10). Step II. For simplicity of notation, we shall henceforth denote θ_1 by α . Set $v(\theta - \alpha) = \delta$ and $v(f(\theta)) = \lambda$. Let $g(x) = f(x)^e + \sum_{i=0}^{e-1} g_i(x)f(x)^i$ be the f(x)expansion of g(x). Let $\tilde{w}_{\alpha,\delta}$ be the valuation of $\tilde{K}(x)$ defined by the minimal pair (α, δ) . In this step, we prove that

$$\tilde{w}_{\alpha,\delta}(f(x)) = \lambda \tag{11}$$

and

$$\tilde{w}_{\alpha,\delta}(g(x)) = v^x(g_0(x)) = e\lambda.$$
(12)

Write $f(x) = \prod_{i=1}^{m} (x - \alpha^{(i)}), g(x) = \prod_{j=1}^{em} (x - \theta^{(j)})$. Using the fact that $v(\theta - \alpha^{(i)}) \leq \delta$ and hence $v(\theta - \alpha^{(i)}) = \min\{\delta, v(\alpha - \alpha^{(i)})\}$, we have

$$\tilde{w}_{\alpha,\delta}(f(x)) = \tilde{w}_{\alpha,\delta}(\prod_{i=1}^{m} (x - \alpha^{(i)})) = \sum_{i=1}^{m} \min\{\delta, v(\alpha - \alpha^{(i)})\} = \sum_{i=1}^{m} v(\theta - \alpha^{(i)}) = \lambda$$

which proves (11). Since (K, v) is henselian, for any K-conjugate $\theta^{(j)}$ of θ , there exists a K-conjugate $\alpha^{(i)}$ of α such that $v(\theta^{(j)} - \alpha) = v(\theta - \alpha^{(i)}) \leq \delta$; consequently

$$\tilde{w}_{\alpha,\delta}(x-\theta^{(j)}) = \min\{\delta, v(\alpha-\theta^{(j)})\} = v(\alpha-\theta^{(j)}).$$

which on summing over j gives

$$\tilde{w}_{\alpha,\delta}(g(x)) = v(g(\alpha)). \tag{13}$$

Recall that in view of Step I, $\overline{f}(x)$ is irreducible over \overline{K} of degree m having $\overline{\theta}$ as a root. So for any polynomial $A(x) = \sum a_i x^i$ belonging to K[x] of degree less than m, we have

$$v(A(\theta)) = v^{x}(A(x)) = \min_{i} \{v(a_{i})\},$$
 (14)

for if the above equality does not hold, then m > 1, $v(\theta) = 0$ and hence the triangle law would imply $v(A(\theta)) > \min_i \{v(a_i\theta^i)\} = v(a_j)$ (say) and thus $\sum_{i=0}^{m-1} \overline{(a_i/a_j)}\overline{\theta^i} = \overline{0}$, which is impossible. Keeping in mind the f(x)-expansion of g(x) and that $f(\alpha) = 0$, we see that $g(\alpha) = g_0(\alpha)$ and consequently it follows from (14) that $v(g(\alpha)) = v(g_0(\alpha)) = v^x(g_0(x))$ which together with (13) proves the first equality of (12). As f(x), g(x) are irreducible over the henselian valued field (K, v), we have

$$v(f(\theta^{(j)})) = v(f(\theta)), \ 1 \leq j \leq em, \ v(g(\alpha^{(i)})) = v(g(\alpha)), \ 1 \leq i \leq m.$$
(15)

Keeping in mind that $\prod_{i=1}^{m} g(\alpha^{(i)}) = \pm \prod_{j=1}^{em} f(\theta^{(j)})$, it is clear from (15) that $v(g(\alpha)) = ev(f(\theta)) = e\lambda$, which proves the second equality of (12) in view of (13).

Step III. In this step, we prove that g(x) is a Generalized Schönemann polynomial with respect to v and f(x). By Theorem C, (11) and (12), we have

$$\tilde{w}_{\alpha,\delta}(g(x)) = \min_{0 \le i \le e} \{ v(g_i(\alpha)) + i\lambda \} = v^x(g_0(x)) = e\lambda.$$
(16)

As $v(g_i(\alpha)) = v^x(g_i(x))$, (16) shows that $v^x(g_i(x)) + i\lambda \ge e\lambda$ for $0 \le i \le e-1$, i.e.,

$$\frac{v^x(g_i(x))}{e-i} \ge \lambda = \frac{v^x(g_0(x))}{e} > 0.$$

Recall that $\lambda = v(f(\theta))$. Since (θ, α) is a distinguished pair, in view of Lemma D and the hypothesis $G(K(\alpha)) = G$, we have

$$G(K(\theta)) = G + \mathbb{Z}\lambda.$$
(17)

By hypothesis $[G(K(\theta)) : G] = e$, so it follows from (17) that e is the smallest positive integer for which $e\lambda \in G$. This completes the proof of the theorem.

Example 4.1. Let K be the field of 3-adic numbers with the usual valuation v_3 whose extension to the algebraic closure \widetilde{K} of K will be denoted by \tilde{v}_3 . Consider the polynomial $g(x) = x^4 + 14x^2 + 1$ with $\bar{g}(x) = (x^2 + 1)^2$. It can be easily seen that $\theta = i(2 + \sqrt{3})$ is a root of g(x) where $i = \sqrt{-1}$. Since $\bar{\theta} = \overline{2i} \notin \overline{K}$ and $\tilde{v}_3(\theta^2 - 2) = 1/2$, it follows in view of the fundamental inequality that $[K(\theta) : K] = 4$. A simple calculation shows that the Krasner's constant $\omega_K(\theta) = \tilde{v}_3(\theta - 2i) = 1/2$. So by Krasner's Lemma, $\tilde{v}_3(\theta - \beta) \leq \frac{1}{2}$ for every $\beta \in \widetilde{K}$ with $\deg \beta < 4$. Further if for some γ in \widetilde{K} , $\tilde{v}_3(\theta - \gamma) = \frac{1}{2}$, then $\bar{\theta} = \bar{\gamma} = \overline{2i}$. Since $\overline{2i} \notin \overline{K}$, we see that $[K(\gamma) : K] \geq 2$. Therefore $(\theta, 2i)$ is a distinguished pair. It can be easily seen that (2i, 0) is a distinguished pair and hence $\theta, 2i, 0$ is a saturated distinguished chain for θ satisfying the hypothesis of Theorem 1.4. So g(x) is a Generalized Schönemann polynomial with respect to v_3 and $f(x) = x^2 + 4$.

ACKNOWLEDGEMENTS

The financial support by CSIR (grant no. 09/135(0539)/2008-EMR-I) and National Board for Higher Mathematics, Mumbai is gratefully acknowledged.

REFERENCES

Aghigh, K., Khanduja, S. K. (2005). On chains associated with elements algebraic over a henselian valued field. *Algebra Colloq.* 12(4):607-616.

Alexandru, V., Popescu, N., Zaharescu, A. (1988). A theorem of characterization of residual transcendental extensions of a valuation. *J. Math. Kyoto Univ* 28(4):579-592.

Brown, R. (2008). Roots of generalized Schönemann polynomials in henselian extension fields. *Indian J. Pure Appl. Math.* 39(5):403-410.

Engler, A. J., Prestel, A. (2005). Valued Fields. Berlin: Springer-Verlag.

Juráš, M. (2006). Eisenstein-Dumas criterion for irreducibility of polynomials and projective transformations of the independent variable. *JP J. Algebra, Number Theory and Applications* 6(2):221-236.

Khanduja, S. K. (1992). On valuations of K(x). Proc. Edinb. Math. Soc. 35:419-426.

Khanduja, S. K., Saha, J. (1997). On a generalization of Eisenstein's irreducibility criterion. *Mathematika* 44:37-41.

Popescu, N., Zaharescu, A. (1995). On the structure of the irreducible polynomials over local fields. *J. Number Theory* 52:98-118.

Ribenboim, P. (1999). *The Theory of Classical Valuations*. New York: Springer-Verlag.