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Abstract. We study and characterize the class of valuations on
rational functions fields that are invariant under permutation of
the variables and can be extended to valuations with the same
property whenever a finite number of new variables is adjoined.
The Gauß valuation is in this class, which constitutes a natural
generalization of the concept of Gauß valuation. Further, we ap-
ply our characterization to show that the most common ad hoc
generalization of the Gauß valuation is also in this class.

1. Introduction

In this paper, we will work with (Krull) valuations v and write them
in the classical additive way, that is, the value group of v on a field K,
denoted by vK, is an additively written ordered abelian group, and the
ultrametric triangle law reads as v(a+b) ≥ min{va, vb}. We denote by
Kv the residue field of v on K, by va the value of an element a ∈ K,
and by av its residue.

Take any field K and a rational function field K(X1, . . . , Xm). In
[6], the possible extensions of a valuation on K to K(X1, . . . , Xm) have
been studied. While a quite good description of all possible value
groups and residue fields of the extensions has been achieved, a detailed
description and characterization of the extensions themselves seems
rather out of reach. In this situation, restricting the problem to a
subset of extensions with additional properties may well be of help.

In situations where at least one extension of a nontrivial valua-
tion of K has to be constructed on K(X1, . . . , Xm), the Gauß val-
uation is often the canonical choice. Once we have a valuation on
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a polynomial ring, it extends in a unique way to the quotient field.
On K[X1, . . . , Xm], the Gauß valuation is defined as follows. Given
f ∈ K[X1, . . . , Xm], write

(1) f =
∑
i

diX
i1
1 · . . . ·X im

m

where the sum runs over multi-indices i = (i1, . . . , im) and each di is
an element of K. Then define

(2) vf := min
i
vdi .

This indeed defines a valuation on K[X1, . . . , Xm]; see Corollary 2.2
below.

We have occasionally witnessed ad hoc attempts to generalize the
concept of Gauß valuation, but these attempts did not consider its
particular properties in any systematic way. So let us take a closer
look at some of them.

First, we notice that definition (2) is invariant under permutation of
the variables. Second, the same definition can be used to extend the
valuation to K[X1, . . . , Xn] for each n > m, preserving the property of
being invariant. Third, it is well known (and follows from Lemma 2.4
below) that for the Gauß valuation v on K[X1, . . . , Xn], the residues
X1v, . . . , Xmv are algebraically independent over the residue field Kv.
This implies that v is an Abhyankar valuation on the function field
K(X1, . . . , Xn)|K; the definition of this notion will be given after The-
orem 1.3.

The property that the residues X1v, . . . , Xmv are algebraically inde-
pendent over Kv singles out the Gauß valuation. In order to obtain
a generalization of the notion of Gauß valuation, we have to drop this
property. Our goal therefore is to characterize the valuations that have
the first two properties. Thereafter we will clarify their relation to the
property of being Abhyankar valuations.

For each permutation π ∈ Sm we denote by τπ the automorphism of
K(X1, . . . , Xm) over K induced by the corresponding permutation

(X1, . . . , Xm) 7→ (Xπ(1), . . . , Xπ(m)) .

Its restriction to the polynomial ring K[X1, . . . , Xm] is an automor-
phism as well. A valuation v on K(X1, . . . , Xm) or K[X1, . . . , Xm] will
be called symmetric if vτπ = v for all π ∈ Sm , that is, if it is invari-
ant under permutation of the variables. Several classes of symmetric
valuations have been studied in [9, 10, 11, 12].
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The present paper revisits the content of [10] and presents it in a
concise form, with shorter and more accessible proofs. A symmet-
ric valuation v on K(X1, . . . , Xm) (or K[X1, . . . , Xm]) will be called
openly-symmetric if it can be extended to a symmetric valuation on
K(X1, . . . , Xn) (or K[X1, . . . , Xn], respectively) for every n > m. Note
that such valuations were called “symmetrically-open” in [10], but this
name appears to indicate a topological meaning, which is not intended.

As we have seen above, Gauß valuations are openly-symmetric.
A valuation is symmetric on K(X1, . . . , Xm) if and only if it is sym-

metric on K[X1, . . . , Xm], and the same holds for “openly-symmetric”.
Further, every valuation on the polynomial ring K[X1, . . . , Xm] defines
a valuation on the rational function field K(X1, . . . , Xm). Therefore,
as was done in [10], we will often work with the polynomial ring in
place of the rational function field.

In Section 3 we will prove the following useful result. By Kac we will
denote the algebraic closure of K.

Proposition 1.1. If v is an openly-symmetric valuation on the polyno-
mial ring K[X1, . . . , Xm], then each of its extensions to Kac[X1, . . . , Xm]
is again openly-symmetric.

Remark 1.2. Take a partition I∪̇J = {1, . . . ,m}. If v is symmetric
on K[X1, . . . , Xm], then it is also symmetric on the polynomial ring

K(Xi | i ∈ I)[Xj | j ∈ J ]

(with respect to permutations of the variables Xj, j ∈ J). If v is
openly-symmetric on K[X1, . . . , Xm], then it is also openly-symmetric
on K(Xi | i ∈ I)[Xj | j ∈ J ]. From Proposition 1.1, it follows that
each extension of v to the polynomial ring K(Xi | i ∈ I)ac[Xj | j ∈ J ]
is again openly-symmetric.

In Section 5 we will give an example which shows that the openness
condition in Proposition 1.1 is necessary. There we will construct a
valuation on Qac(X, Y ) which is not symmetric, but has a symmetric
restriction to Q(X, Y ). (This example shows that Proposition 3.5 of [9]
is in error; its attempted proof contains a gap that cannot be filled in
general. But it can be filled in the case of openly-symmetric valuations,
as Proposition 1.1 shows.)

As a consequence of Proposition 1.1, every openly-symmetric valua-
tion on K[X1, . . . , Xm] is the restriction of an openly-symmetric valua-
tion on Kac[X1, . . . , Xm]. This fact is a very useful tool in the descrip-
tion of the variety of openly-symmetric valuations on K[X1, . . . , Xm].
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The following theorem summarizes our main results; it will be proved
in Section 4. Note that K[X1, . . . , Xm] = K[X1, X2−X1 . . . , Xm−X1]
and that every polynomial f ∈ K[X1, . . . , Xm] can be written in the
form

(3) f =
∑
i

gi(X1)(X2 −X1)
i2 · . . . · (Xm −X1)

im

where the sum runs over multi-indices i = (i2, . . . , im) and each gi(X1)
is a polynomial in K[X1],

Theorem 1.3.
Take an arbitrary field K and a valuation v on the rational function
field Kac(X1, . . . , Xm).

a) The valuation v is openly-symmetric on K[X1, . . . , Xm] if and only
if for each polynomial f ∈ Kac[X1, . . . , Xm] written in the form (3), we
have that

(4) vf = min
i

(vgi(X1) + (i2 + . . .+ im)δ) ,

where δ is any value in some ordered abelian group extension of the
value group vK(X1) that satisfies

(5) δ ≥ v(X1 − a) for all a ∈ Kac .

b) If v is openly-symmetric on K[X1, . . . , Xm] and m ≥ 3, then the
elements

X3 −X1

X2 −X1

, . . . ,
Xm −X1

X2 −X1

are units in the valuation ring and their residues are algebraically in-
dependent over the residue field K(X1, X2)v.

c) With

r := dimQ vK(X1, . . . , Xm)/vK and t := trdegK(X1, . . . , Xm)v|Kv,
exactly the following cases are possible:

(a) r = 0 and t = m,
(b) r = 0 and t = m− 1,
(c) r = 1 and t = m− 1,
(d) r = 1 and t = m− 2,
(e) r = 2 and t = m− 2.

Therefore, we always have that

m− 1 ≤ r + t ≤ m .

Cases (a), (c) and (e) always appear for arbitrary valuations on K, and
cases (b) and (d) always appear when the valuation v on Kac admits
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an extension to Kac(X1) that does not enlarge value group and residue
field.

Note that once a valuation v on Kac(X1) is given, the formula (4) de-
fines a valuation onKac[X1, . . . , Xm] and thus also onKac(X1, . . . , Xm),
for any δ (see Corollary 2.2 below). As a consequence of our theorem,
arbitrary valuations on K(X1) can be extended to openly-symmetric
valuations on K(X1, . . . , Xm). In the paper [1] (see also [6] and [2]),
conditions are discussed under which for a given valued field K its al-
gebraic closure Kac admits extensions of the valuation to the rational
function field Kac(X1) that do not enlarge value group and residue
field.

In the cases (a), (c) and (e) we have that

r + t = trdegK(X1, . . . , Xm)|K ,

that is, v is an Abhyankar valuation of the rational function field
K(X1, . . . , Xm)|K. But the remaining cases show that an openly-
symmetric valuation of a rational function field is not necessarily an
Abhyankar valuation, so it may not share this particular property with
the Gauß valuation, which belongs to case (a). However, openly-
symmetric valuations can fail to have this property by a transcen-
dence degree of at most one. Our theorem shows that if v is openly-
symmetric, then for each i ∈ {1, . . . ,m}, v is an Abhyankar valuation
of K(X1, . . . , Xm)|K(Xi). The importance of Abhyankar valuations
can be seen from the results of the papers [5, 7], and they now play a
considerable role in algebraic geometry.

Finally, let us make a few more remarks about the characterization
of openly-symmetric valuations. If we are working over a field K that is
not algebraically closed and we only know that condition (4) is satisfied
for all polynomials f ∈ K[X1, . . . , Xm], can we still conclude that v is
openly-symmetric on K[X1, . . . , Xm]? The following corollary to the
proof of our main theorem shows that we can, if we strengthen condition
(5).

Corollary 1.4. Take K and v as in Theorem 1.3. Then v is openly-
symmetric on K[X1, . . . , Xm] if and only if (4) holds for each polyno-
mial f ∈ K[X1, . . . , Xm], where δ is any value in some ordered abelian
group extension of the value group vK(X1) that satisfies

(6) δ ≥ v(Xi − a) for all a ∈ Kac and 1 ≤ i ≤ m .

The Gauß valuation is an example of a valuation that satisfies condi-
tions (4) and (6). However, when we construct other openly-symmetric
valuations, checking condition (6) could be more work than we are
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ready to invest. In this case, the following result is helpful. Again, it
follows readily from the proof of Theorem 1.3.

Corollary 1.5. Take K and v as in Theorem 1.3. If (4) holds for each
polynomial f ∈ K[X1, . . . , Xm], where δ is any value in some ordered
abelian group extension of the value group vK(X1) that satisfies

(7) δ > v(X1 − a) for all a ∈ Kac ,

then v is openly-symmetric on K[X1, . . . , Xm].

It is not true that a symmetric valuation on K[X1, . . . , Xm] is openly-
symmetric already when it can be extended to a symmetric valuation
on K(X1, . . . , Xm+1). But the latter turns out to be sufficient when it
is combined with additional conditions in the spirit of Remark 1.2.

Corollary 1.6. Take a valuation v on K(X1, . . . , Xm+1)
ac and assume

that for 1 ≤ i ≤ m, v is symmetric on K(X1, . . . , Xi−1)
ac[Xi, . . . , Xm+1].

Then v is openly-symmetric on K[X1, . . . , Xm].

To conclude with, we will show how Theorem 1.3 can be applied
to analyze the most common ad hoc generalization of the Gauß val-
uation. Take a rational function field K(X1, . . . , Xm) over the valued
field (K, v) and an element δ in some ordered abelian group containing
vK. For every f ∈ K[X1, . . . , Xm] written in the form (1), set

(8) vδf := min
i

(vdi + (i1 + . . .+ im)δ) .

By Corollary 2.2 below, this defines a valuation vδ on K(X1, . . . , Xm)
which extends v.

Corollary 1.7. The valuation vδ on K(X1, . . . , Xm) is openly-symme-
tric.

2. Some preliminaries

For the easy proof of the following lemma, see [3], Chapter VI, §10.3,
Theorem 1.

Lemma 2.1. Let (L|K, v) be an extension of valued fields. Take ele-
ments xi, yj ∈ L, i ∈ I, j ∈ J , such that the values vxi , i ∈ I, are
rationally independent over vK, and the residues yjv, j ∈ J , are alge-
braically independent over Kv. Then the elements xi, yj, i ∈ I, j ∈ J ,
are algebraically independent over K.
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Moreover, write

(9) f =
∑
k

ck
∏
i∈I

x
µk,i
i

∏
j∈J

y
νk,j
j ∈ K[xi, yj | i ∈ I, j ∈ J ]

in such a way that whenever k 6= `, then there is some i s.t. µk,i 6= µ`,i
or some j s.t. νk,j 6= ν`,j . Then

(10) vf = min
k

v ck
∏
i∈I

x
µk,i
i

∏
j∈J

y
νk,j
j = min

k
vck +

∑
i∈I

µk,ivxi .

That is, the value of the polynomial f is equal to the least of the values
of its monomials. In particular, this implies:

vK(xi, yj | i ∈ I, j ∈ J) = vK ⊕
⊕
i∈I

Zvxi

K(xi, yj | i ∈ I, j ∈ J)v = Kv (yjv | j ∈ J) .

The valuation v on K(xi, yj | i ∈ I, j ∈ J) is uniquely determined by
its restriction to K, the values vxi and the fact that the residues yjv,
j ∈ J , are algebraically independent over Kv.

The residue map on K(xi, yj | i ∈ I, j ∈ J) is uniquely determined
by its restriction to K, the residues yjv, and the fact that values vxi ,
i ∈ I, are rationally independent over vK.

Conversely, if δi , i ∈ I, are elements of some ordered abelian group
containing vK and are rationally independent over vK, then

(11) vf := min
k

v ck
∏
i∈I

x
µk,i
i

∏
j∈J

y
νk,j
j = min

k
vck +

∑
i∈I

µk,iδi

defines a valuation that extends the valuation v from K to the rational
function field K(xi, yj | i ∈ I, j ∈ J).

Corollary 2.2. Take a rational function field K(X1, . . . , Xm) over the
valued field (K, v) and an element δ in some ordered abelian group
containing vK. Then the function vδ defined in (8) induces a valuation
on K(X1, . . . , Xm) which extends v.

Proof. We distinguish two cases.
First, suppose that δ is a torsion element over vK. Take any exten-

sion of v to Kac. Then δ = vb for some b ∈ Kac. In this case we set
yi := b−1Xi for 1 ≤ i ≤ m. By the second part of Lemma 2.1, setting

w
∑
i

ciy
i1
1 · . . . · yimm := min

i
vci
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induces a valuation on Kac(y1, . . . , ym) = Kac(X1, . . . , Xm) that ex-
tends v. For f written in the form (1) we have that

wf = w
∑
i

diX
i1
1 · . . . ·X im

m = w
∑
i

dib
i1+...+imyi11 · . . . · yimm

= min
i

(vdi + (i1 + . . .+ im)δ) = vδf ,

which proves that vδ is a valuation.
Now suppose that δ is rationally independent over vK. In this case

we set x := X1 and yi := x−1Xi for 2 ≤ i ≤ m. By the second part of
Lemma 2.1, setting

w
∑
i

cix
i1yi22 · . . . · yimm := min

i
(vci + i1δ)

induces a valuation on K(x, y2, . . . , ym) = K(X1, . . . , Xm) that extends
v. For f written in the form (1) we have that

wf = w
∑
i

diX
i1
1 · . . . ·X im

m = w
∑
i

dix
i1+...+imyi22 · . . . · yimm

= min
i

(vdi + (i1 + . . .+ im)δ) = vδf ,

which again proves that vδ is a valuation. �

Let (L|K, v) be an extension of valued fields of finite transcendence
degree. Then the following well known form of the “Abhyankar in-
equality” is a consequence of Lemma 2.1:

(12) trdegL|K ≥ rr vL/vK + trdegLv|Kv ,
where rr vL/vK := dimQ (vL/vK) ⊗ Q is the rational rank of the
abelian group vL/vK, i.e., the maximal number of rationally indepen-
dent elements in vL/vK.

The straightforward proof of the following lemma is left to the reader.

Lemma 2.3. The value group of an algebraically closed field is divisi-
ble, and its residue field is algebraically closed.

We will also need the following easy result:

Lemma 2.4. Take a valued field (K(x), v). If a ∈ K is such that

(13) v(x− a) = max{v(x− c) | c ∈ K} ,
then either v(x− a) /∈ vK, or for every d ∈ K with vd = v(x− a), we
have that x−a

d
v /∈ Kv.
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If in addition K is algebraically closed, then in the first case, v(x−a)
is rationally independent over vK, and in the second case, x−a

d
v is

transcendental over Kv.

Proof. Assume that v(x−a) ∈ vK and take d ∈ K with vd = v(x−a).
Assume further that x−a

d
v ∈ Kv. Then take c ∈ K such that x−a

d
v = cv,

so that

v

(
x− a
d
− c

)
> 0 .

Then v(x − a − cd) > vd = v(x − a), which contradicts (13) since
a+ cd ∈ K. This proves the first assertion of the lemma.

The second assertion of the lemma follows by Lemma 2.3 from what
we have already shown. �

3. Proof of Proposition 1.1

We will need the following auxiliary result.

Lemma 3.1. Let m,n, k be natural numbers such that n = m + 2k.
Assume that v is a valuation on K[X1, . . . , Xn] whose restriction to
K[X1, . . . , Xm] is not symmetric. Then the set

{vτπ | π ∈ Sn}
has at least k + 1 many elements.

Proof. Since v is not symmetric on K[X1, . . . , Xm], there is π ∈ Sm
such that vτπ 6= v on K[X1, . . . , Xm]. Since Sm is generated by trans-
positions, vτπ 6= v must already hold for some transposition π. W.l.o.g.
we may assume that π = (1 2). Pick some f ∈ K[X1, . . . , Xm] such
that vτπf 6= vf . Now using (1 2) as an element of Sn, we fix the auto-
morphism τ = τ(1 2) of K[X1, . . . , Xn]. Then we have that vτf 6= vf .

Pick i, j such that m < i < j ≤ n. Let τi j = τ(1 i)(2 j) be the
automorphism of K[X1, . . . , Xn] that exchanges X1 with Xi and X2

with Xj and leaves the other variables fixed. We have that

fi j := τi jf = f(Xi, Xj, X3, . . . , Xm) ∈ K[Xi, Xj, X3, . . . , Xm]

and that
vτi jfi j = vf 6= vτf = vττi jfi j .

It follows that the restrictions of vτi j and vττi j to the polynomial ring
K[Xi, Xj, X3, . . . , Xm] are distinct, so at least one of them is distinct
from the restriction of v to K[Xi, Xj, X3, . . . , Xm]. If it is vτi j, then
we set vi j := vτi j; otherwise, we set vi j := vττi j.
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Take i′, j′ such that m < i′ < j′ ≤ n and {i, j}∩{i′, j′} = ∅. Then the
restrictions of τi j and τ to K[Xi′ , Xj′ , X3, . . . , Xm] are the identity and
therefore, v and vi j coincide on K[Xi′ , Xj′ , X3, . . . , Xm], which shows
that vi j 6= vi′ j′ .

By what we have proved, it follows that the k + 1 many valuations

v, vm+1m+2 , vm+3m+4 , . . . , vn−1 n

are distinct on K[X1, . . . , Xn]. �

Now we are ready for the Proof of Proposition 1.1:

Take a valuation v on K[X1, . . . , Xm] which is openly-symmetric. Fur-
ther, choose some extension to Kac[X1, . . . , Xm] and call it again v.
Suppose that v is not symmetric on Kac[X1, . . . , Xm]. Then there is
already a finite normal extension L|K so that the restriction v0 of v
to L[X1, . . . , Xm] is not symmetric. Set k = [L : K] and n = m + 2k.
Then choose a symmetric extension w of v from K[X1, . . . , Xm] to
K[X1, . . . , Xn].

We show that there is an extension of v0 to L[X1, . . . , Xn] which
also extends w. Choose any extension w′ of w to L[X1, . . . , Xn]. The
restriction w0 of w′ to L[X1, . . . , Xm] is like v0 an extension of v from
K[X1, . . . , Xm] to L[X1, . . . , Xm]. As the extension

L[X1, . . . , Xm]|K[X1, . . . , Xm]

is algebraic and normal, v0 and w0 are conjugate over K[X1, . . . , Xm]
(cf. [4, Theorem 3.2.15]). Choose an automorphism σ0 of L[X1, . . . , Xm]
over K[X1, . . . , Xm] such that v0 = w0σ0.

The purely transcendental extension

K[X1, . . . , Xn]|K[X1, . . . , Xm]

is linearly disjoint from the algebraic extension

L[X1, . . . , Xm]|K[X1, . . . , Xm]

(cf. [8, Chapter X, $5, Prop. 3]). Therefore, σ0 can be extended to
an automorphism σ of L[X1, . . . , Xn] over K[X1, . . . , Xn]. The re-
striction of w′σ to L[X1, . . . , Xm] is w0σ0 = v0. Since σ is trivial on
K[X1, . . . , Xn], the restriction of w′σ to K[X1, . . . , Xn] coincides with
that of w′. Hence the valuation wσ on L[X1, . . . , Xn] extends both v0
and w; to simplify notation, we call it again v.

By assumption, v is not symmetric on L[X1, . . . , Xm]. From Lemma
3.1 it follows that the set {vτπ | π ∈ Sn} of valuations on L[X1, . . . , Xn]
has at least k + 1 = [L : K] + 1 many elements. But their restrictions



INVARIANT VALUATIONS ON RATIONAL FUNCTION FIELDS 11

to K[X1, . . . , Xn] are wτπ, where τπ is now understood to be an au-
tomorphism of K[X1, . . . , Xn]. As w was chosen to be symmetric on
K[X1, . . . , Xn], all of these restrictions coincide with w. Therefore,
we have at least [L : K] + 1 many extensions of w to L[X1, . . . , Xn].
On the other hand, as the extension L[X1, . . . , Xn]|K[X1, . . . , Xn] is
algebraic of degree [L : K], all of the extensions must be conjugate
over K[X1, . . . , Xn] and there can be no more than [L : K] many.
This contradiction shows that the valuation v must be symmetric on
Kac[X1, . . . , Xm]. �

4. Proof of Theorem 1.3 and its corollaries

Take an arbitrary field K and a valuation v on K(X1, . . . , Xm)ac.
For m = 1 there is nothing to show, so we assume that m ≥ 2.

Let us first show that if for every f ∈ Kac[X1, . . . , Xm] conditions (4)
and (5) hold, then v is openly-symmetric. The proof will not depend on
m; so if we just show that v is symmetric on K[X1, . . . , Xm] it will also
follow that an extension of v which satisfies conditions (4) and (5) on
K[X1, . . . , Xn] (with n in place of m), where n > m, is also symmetric.
Taking condition (4) for the definition of such an extension, we then
have proved that v is even openly-symmetric. Thus it actually suffices
to show that v is symmetric.

What we need for the proof of the symmetry are the following equa-
tions:

v(Xj −Xi) = δ for all distinct i, j ∈ {1, . . . ,m},(14)

v(Xj − a) = v(X1 − a) for all a ∈ Kac and 2 ≤ j ≤ m .(15)

In order to obtain (14), we only need that condition (4) holds for
polynomials in K[X1, . . . , Xm] because then, for every choice of distinct
i, j ∈ {2, . . . ,m},

v(Xj −Xi) = v(Xj −X1 +X1 −Xi)

= min{v(Xj −X1), v(X1 −Xi)} = δ .

There are various conditions that ensure the validity of (15). In
the case of the assumptions of our theorem, it works as follows: for
2 ≤ j ≤ m and every a ∈ Kac,

v(Xj − a) = v(Xj −X1 +X1 − a) = min{v(Xj −X1), v(X1 − a)}
= v(X1 − a)

where the second equality follows from (4) and the third equality follows
from (5).
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If we assume condition (4) only for polynomials in K[X1, . . . , Xm],
as is the case in Corollaries 1.4 and 1.5, then we can proceed as follows.
Suppose that condition (6) holds, but v(Xj − a) 6= v(X1 − a) for some
a ∈ Kac. If v(Xj − a) < v(X1 − a), then

δ = v(Xj−X1) = min{v(Xj−a), v(X1−a)} = v(Xj−a) < v(X1−a) ≤ δ,

where the first equality holds by (14). This is a contradiction. If on
the other hand v(Xj − a) > v(X1− a), then the same argument with 1
and j interchanged also leads to a contradiction. This proves that (15)
holds in this case.

Now suppose that condition (7) holds. Then we obtain (15) because
v(Xj −X1) = δ > v(X1 − a) implies that

v(Xj − a) = min{v(Xj −X1), v(X1 − a)} = v(X1 − a) .

Now we proceed to the proof of the symmetry. Take a polynomial
g ∈ K[X] and write it as

g = c

deg g∏
k=1

(X − ak)

with c, ak ∈ Kac. Then for 2 ≤ j ≤ m, using (15),

vg(X1) = vc+

deg g∑
k=1

v(X1 − ak)

= vc+

deg g∑
k=1

v(Xj − ak) = vg(Xj) .

Now take any polynomial f ∈ K[X1, . . . , Xm] and any π ∈ Sm .
Write f in the form (3). Using the equalities we have computed above
together with (14), we find:

vf = min
i

vgi(X1) + (i2 + . . .+ im)δ

= min
i

vgi(Xπ(1)) + i2v(Xπ(2) −Xπ(1)) + . . .+ imv(Xπ(m) −Xπ(1))

= min
i

vgi(Xπ(1))(Xπ(2) −Xπ(1))
i2 · . . . · (Xπ(m) −Xπ(1))

im

≤ v
∑
i

gi(Xπ(1))(Xπ(2) −Xπ(1))
i2 · . . . · (Xπ(m) −Xπ(1))

im

= vf(Xπ(1), . . . , Xπ(m)) = vτπf .

Since f and π were arbitrary, we also have that

vτπf ≤ vτπ−1(τπf) = v(τπ−1τπf) = vf .
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Altogether, this shows that vf = vτπf . We have thus shown that v
is symmetric. This proves the corresponding implications in part a) of
Theorem 1.3 and in Corollary 1.4, as well as Corollary 1.5.

Now we prove that if v is openly-symmetric on K[X1, . . . , Xm], then
v must be as described in Theorem 1.3 and Corollary 1.4. From Propo-
sition 1.1 we know that v is also openly-symmetric on Kac[X1, . . . , Xm].

First of all, because δ := v(X2−X1) is invariant under permutations
of the variables, all values v(Xj − Xi) are equal to δ, provided that
i 6= j. Suppose that δ < v(X1 − a) for some a ∈ Kac. Then

v(X2 − a) = min{v(X2 −X1), v(X1 − a)} = δ < v(X1 − a) ,

contradicting the symmetry. Hence, δ ≥ v(X1 − a) for all a ∈ Kac,
showing that (5) holds. Since v(Xi−a) = v(X1−a) by symmetry, also
(6) holds.

Choose any d ∈ K(X1, X2)
ac with vd = δ. For instance, d = X2−X1

is a possible choice, but later on we will also want to consider other
choices. Then all elements

Xj−X1

d
, 2 ≤ j ≤ m, are units in the valuation

ring.
Using that v is openly-symmetric onKac[X1, . . . , Xm], extend it to an

openly-symmetric valuation on Kac[X1, . . . , Xm+1]. Extend v further
to a valuation on K(X1, . . . , Xm+1)

ac. Remark 1.2 shows that v is
symmetric on K(X1, . . . , Xi−1)

ac[Xi, . . . , Xm+1] for 2 ≤ i ≤ m. Note
that we are now in the situation where the assumptions of Corollary 1.6
are satisfied.

The same arguments as before show that

(16) v(Xi −X1) = δ ≥ v(Xi − a) for all a ∈ K(X1, . . . , Xi−1)
ac.

For 3 ≤ i ≤ m we have that vXi−X1

d
= 0, hence Lemma 2.4, (16) implies

that the residue of Xi−X1

d
is transcendental over the algebraically closed

residue field

K(X1, . . . , Xi−1)
acv = (K(X1, . . . , Xi−1)v)ac .

This shows that the residues of the elements X3−X1

d
, . . . , Xm−X1

d
are alge-

braically independent over K(X1, X2)
acv, hence also over K(X1, X2)v.

Taking d = X2 −X1, this proves part b) of the theorem. We continue
with the proof of part a).

If δ ∈ vK(X1)
ac, then we can take the above arguments one step

further. In this case we can take d ∈ K(X1)
ac. Similarly as before,

we obtain that vX2−X1

d
= 0 and that X2−X1

d
v is transcendental over

K(X1)
acv, hence also over K(X1)v. We now have that the residues
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of the elements X2−X1

d
, . . . , Xm−X1

d
are algebraically independent over

K(X1)v.

Take any f ∈ Kac[X1, . . . , Xm]. If δ ∈ vK(X1)
ac, then we take

d ∈ K(X1)
ac and rewrite the representation (3) as follows:

f =

=
∑
i

gi(X1) · (X2 −X1)
i2 · . . . · (Xm −X1)

im

=
∑
i

gi(X1) · di2+...+im ·
(
X2 −X1

d

)i2
· . . . ·

(
Xm −X1

d

)im
.

Using Lemma 2.1, taking K(X1)
ac in place of K, I = ∅ and J =

{2, . . . , n} with yj =
Xj−X1

d
, we obtain that

vf =

= min
i

vgi(X1) · di2+...+im ·
(
X2 −X1

d

)i2
· . . . ·

(
Xm −X1

d

)im
= min

i
(vgi(X1) + (i2 + . . .+ im)δ) ,

which proves (4) in this case.

If δ /∈ vK(X1)
ac, then we take d = X2 − X1 and rewrite the repre-

sentation (3) as follows:

f =

=
∑
i

gi(X1)(X2 −X1)
i2 · · · (Xm −X1)

im

=
∑
i

gi(X1)(X2 −X1)
i2+...+im

(
X3 −X1

X2 −X1

)i3
· · ·
(
Xm −X1

X2 −X1

)im
.

Using Lemma 2.1, taking K(X1)
ac in place of K, I = {2} with x2 =

X2 −X1, and J = {3, . . . ,m} with yj =
Xj−X1

X2−X1
v, we obtain that

vf =

= min
i

vgi(X1)(X2 −X1)
i2+...+im

(
X3 −X1

X2 −X1

)i3
· · ·
(
Xm −X1

X2 −X1

)im
= min

i
(vgi(X1) + (i2 + . . .+ im)δ) ,

which proves (4) in this second case. This completes the proof of part
a) of Theorem 1.3, and of Corollary 1.4 and Corollary 1.6.
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We turn to the proof of part c) of Theorem 1.3. Lemma 2.1 shows
that in the first of the above cases,

rr vK(X1, . . . , Xm)/vK(X1) =

= rr vK(X1)
ac(X2, . . . , Xm)/vK(X1)

ac = 0 ,

trdegK(X1, . . . , Xm)v|K(X1)v =

= trdegK(X1)
ac(X2, . . . , Xm)v|K(X1)

acv = m− 1 ,

and in the second case,

rr vK(X1, . . . , Xm)/vK(X1) =

= rr vK(X1)
ac(X2, . . . , Xm)/vK(X1)

ac = 1 ,

trdegK(X1, . . . , Xm)v|K(X1)v

= trdegK(X1)
ac(X2, . . . , Xm)v|K(X1)

acv = m− 2 .

Both cases obviously appear as we are free to choose δ as long as it
satisfies condition (5).

We have seen that the valuation on K(X1) can be arbitrary. By
Lemma 2.1 there are always extensions of v from K to K(X1) such
that K(X1)v|Kv = 1, which by the Abhyankar inequality (12) forces
rr vK(X1)/vK = 0. Combining such a valuation with the two cases
above, we obtain openly-symmetric valuations on K(X1, . . . , Xm) such
that

rr vK(X1, . . . , Xm)/vK = 0 and trdegK(X1, . . . , Xm)v|Kv = m

in the first case, and

rr vK(X1, . . . , Xm)/vK = 1 and trdegK(X1, . . . , Xm)v|Kv = m− 1

in the second case. This shows that cases (a) and (c) of Theorem 1.3
can appear.

Likewise, Lemma 2.1 shows that there are always extensions of v from
K to K(X1) such that rr vK(X1)/vK = 1, which by the Abhyankar
inequality (12) forces K(X1)v|Kv = 0. Combining such a valuation
with the two cases above, we obtain openly-symmetric valuations on
K(X1, . . . , Xm) such that

rr vK(X1, . . . , Xm)/vK = 1 and trdegK(X1, . . . , Xm)v|Kv = m− 1

in the first case, and

rr vK(X1, . . . , Xm)/vK = 2 and trdegK(X1, . . . , Xm)v|Kv = m− 2

in the second case. This shows that, again, case (c) can appear, and
that case (e) can appear. Note that we have realized case (c) in two
different ways.
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If the valuation v on K admits an extension to K(X1) that does not
enlarge value group and residue field, then we get rr vK(X1)/vK = 0
and trdegK(X1)v|Kv = 0. Combining this with the two cases above,
we obtain openly-symmetric valuations on K(X1, . . . , Xm) such that

rr vK(X1, . . . , Xm)/vK = 0 and trdegK(X1, . . . , Xm)v|Kv = m− 1

in the first case, and

rr vK(X1, . . . , Xm)/vK = 1 and trdegK(X1, . . . , Xm)v|Kv = m− 2

in the second case. Thus cases (b) and (d) can appear. This completes
the proof of Theorem 1.3. �

It remains to prove Corollary 1.7. Assume that the valuation vδ
is defined on K(X1, . . . , Xm) by definition (8). We can extend vδ to
Kac(X1, . . . , Xm) by applying the same definition to all polynomials f ∈
Kac(X1, . . . , Xm). Now it suffices to prove that vδ is openly-symmetric
on Kac(X1, . . . , Xm).

From our definition of vδ on Kac(X1, . . . , Xm), we obtain that for all
a ∈ Kac,

(17) δ ≥ min{δ, va} = v(X1 − a) .

Furthermore, we obtain that for 2 ≤ i ≤ m,

(18) vδ(Xi −X1) = min{δ, δ} = δ .

We consider the valuation v defined by (4) on Kac(X1, . . . , Xm),
where we take v = vδ on Kac(X1). From (17) it follows that condi-
tion (5) is satisfied, so we know from Theorem 1.3 that v is openly-
symmetric. Therefore, we obtain that for 2 ≤ i ≤ m,

vXi = vX1 = vδX1 = δ .

We show that vδ coincides with v on Kac(X1, . . . , Xm). Indeed, for
every f ∈ Kac[X1, . . . , Xm] written in the form (1),

vδf = min
i

(vdi + (i1 + . . .+ im)δ) = min
i
v diX

i1
1 · . . . ·X im

m

≤ v
∑
i

diX
i1
1 · . . . ·X im

m = vf ,

and if we write f in the form (3), then by definition of v and by (18),

vf = min
i

(vgi(X1) + (i2 + . . .+ im)δ)

= min
i
vδ gi(X1)(X2 −X1)

i2 · . . . · (Xm −X1)
im

≤ vδ
∑
i

gi(X1)(X2 −X1)
i2 · . . . · (Xm −X1)

im = vδf .
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It follows that vδ = v on Kac(X1, . . . , Xm), which proves that vδ is
openly-symmetric. �

Finally, let us note that the comparison method of the above proof
can be adapted to show the following fact, which is of independent
interest.

Corollary 4.1. Take a valued field (K, v) and two valuations w,w′

extending v from K to a rational function field

K(X1, . . . , Xm) = K(Y1, . . . , Ym) ,

induced by the definitions

w
∑
i

diX
i1
1 · . . . ·X im

m := min
i

(vdi + i1δ1 + . . .+ imδm) ,

w′
∑
j

djY
j1
1 · . . . · Y jm

m := min
j

(vdj + j1δ1 + . . .+ jmδm) .

Then w = w′.

5. An example

We construct an example of a valuation v on the rational function
field Qac(X, Y ) over Qac which is not symmetric on Qac(X, Y ) but has
a symmetric restriction to Q(X, Y ). To this end, we write i =

√
−1

and extend the trivial valuation on Qac(X) to a valuation v on the
rational function field Qac(X, Y ) = Qac(X, Y − iX) by definition (8),
where we take K = Qac(X), δ = 1, m = 1 and X1 = Y − iX. So we
have

v(Y − iX) = 1 .

Note that

v(X + iY ) = vi+ v(Y − iX) = v(Y − iX) = 1 ,(19)

v(Y + iX) = min{v(Y − iX), v(2iX)} = 0 ,(20)

v(X2 + Y 2) = v(Y − iX) + v(Y + iX) = 1 .(21)

Equations (19) and (20) together show that v is not symmetric on
Qac(X, Y ), and even not on Q(i)(X, Y ).

We show that v is not only trivial on Qac(X), but also on Qac(Y ). It
suffices to show that v is trivial on Qac[Y ], and since it is trivial on Qac

and every polynomial in Qac[Y ] splits into linear factors, it even suffices
to show that v(Y − a) = 0 for every a ∈ Qac. Using that iX − a 6= 0
since iX /∈ Qac and that v is trivial on Qac(X), we compute:

v(Y − a) = min{v(Y − iX), v(iX − a)} = 0 .
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Now we show that the value of every nonzero f ∈ Q(X)[Y ] with
degY f ≤ 1 is 0. This is clear when the degree is 0 since then f ∈
Q(X) ⊂ Qac(X), on which v is trivial. For arbitrary g0, g1 ∈ Q(X)
with g1 6= 0, we compute:

v(g1Y + g0) = vg1 + v

(
Y +

g0
g1

)
= v

(
Y +

g0
g1

)
= min

{
v(Y − iX), v

(
iX +

g0
g1

)}
= 0 ,

where we use that iX + g0/g1 6= 0 since −iX /∈ Q(X). Similarly, we
show that the value of every f ∈ Q(Y )[X] with degX f ≤ 1 is 0. This
is clear when the degree is 0 since then f ∈ Q(Y ) ⊂ Qac(Y ), on which
v is trivial. For arbitrary h0, h1 ∈ Q(Y ) with h1 6= 0, we compute:

v(h1X + h0) = vh1 + v

(
X +

h0
h1

)
= v

(
X +

h0
h1

)
= min

{
v(X + iY ), v

(
−iY +

h0
h1

)}
= 0 ,

where we use (19) and that −iY + h0/h1 6= 0 since iY /∈ Q(Y ).

Set F (Y ) = X2 + Y 2 ∈ Q(X)[Y ]. Using the F -adic expansion in
Q(X)[Y ], every polynomial in f ∈ Q[X, Y ] can be written in the form

f(X, Y ) =
∑
i

fi(X, Y )(X2 + Y 2)i

with fi(X, Y ) ∈ Q(X)[Y ] such that degY fi(X, Y ) ≤ 1. Then also
degX fi(Y,X) ≤ 1, and by what we have shown before,

vfi(X, Y ) = 0 = vfi(Y,X)

for all i such that fi(X, Y ) 6= 0. In view of (21), we obtain:

vf(X, Y ) = v
∑
i

fi(X, Y )(X2 + Y 2)i =

= min{i | fi(X, Y ) 6= 0} = min{i | fi(Y,X) 6= 0}
= v

∑
i

fi(Y,X)(Y 2 +X2)i = vf(Y,X) ,

which shows that v is symmetric on Q(X, Y ).
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