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Abstract. We introduce a new method of constructing complete sequences of
key polynomials for simple extensions of tame fields. In our approach the key
polynomials are taken to be the minimal polynomials over the base field of suitably
constructed elements in its algebraic closure, with the extensions generated by
them forming an increasing chain. In the case of algebraic extensions, we generalize
the results to countably generated infinite tame extensions over henselian but not
necessarily tame fields. In the case of transcendental extensions, we demonstrate
the central role that is played by the implicit constant fields, which reveals the
tight connection with the algebraic case.

1. Introduction

In this paper we will work with (Krull) valuations on fields and their extensions
to rational function fields. Note that we always identify equivalent valuations. For
basic information on valued fields and for notation, see Section 2. The value group
v(L×) of a valued field (L, v) will be denoted by vL, and its residue field by Lv. The
value of an element a will be denoted by va, and its residue by av.

Take a valued field (K, v). It is an important task to describe, analyse and classify
all extensions of the valuation v from K to the rational function field K(x). In order
to be able to compute the value of every element of K(x) with respect to v, it suffices
to be able to compute the value of all polynomials in x, that is, we only have to deal
with the polynomial ring K[x]. Indeed, if f, g ∈ K[x], then necessarily, v f

g
= vf−vg.

We know the values of all elements in K. If in addition we know the value vx, then
everything would be easy if for every polynomial

(1) f(x) =
n∑
i=0

cix
i ∈ K[x]
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the following equation would hold:

(2) vf(x) = min
0≤i≤n

vci + ivx .

We can define valuations on K(x) in this way by choosing vx to be any element in
some ordered abelian group which contains vK. If we choose vx = 0, we obtain the
Gauß valuation.

But what if Equation (2) does not always hold? Then there are polynomials of
unexpected value, the value of which is larger than the minimum of the values of its
monomials. This observation has led to the theory of key polynomials, on which by
now an abundant number of articles are available. Several of them present complete
sequences of key polynomials in order to describe, or construct, all extensions.

In the present paper, we add a new aspect. When working over tame fields (K, v),
we are able to prove stronger results than those for the case of general valued base
fields. An algebraic extension (L|K, v) is called tame if it is unibranched, i.e., the
extension of v from K to L is unique, and every finite subextension E|K of L|K
satisfies the following conditions:

(TE1) the ramification index (vE : vK) is not divisible by charKv.
(TE2) the residue field extension Ev|Kv is separable.
(TE3) the extension (E|K, v) is defectless, i.e.,

[E : K] = (vE : vK)[Ev : Kv] .

A henselian field (K, v) is called a tame field if its algebraic closure K̃ with the
unique extension of the valuation is a tame extension. The Lemma of Ostrowski
(see [6, 12]) shows that every henselian valued field of residue characteristic 0 is a
tame field.

For the formulation of our main theorems we will need some more definitions. For
an arbitrary extension (K(x)|K, v), we set

v(x−K) := {v(x− c) | c ∈ K} .
A transcendental extension (K(x)|K, v) is valuation algebraic if vK(x)/vK is a

torsion group and the residue field extension K(x)v|Kv is algebraic; otherwise, it is
called valuation transcendental. In [9] we introduced the notion of an extension
(K(x)|K, v) being weakly pure; here we will give a simpler, but equivalent, definition
(for the equivalence, see Section 2.2). We say that the extension (K(x)|K, v) is

weakly pure (in x) if there is a ∈ K such that v(x − a) = max v(x − K̃), or x is
limit of a pseudo Cauchy sequence in (K, v) of transcendental type. For background
on pseudo Cauchy sequences, see [8].

Given an arbitrary simple extension (K(x)|K, v) and a polynomial f ∈ K[X],
then we define

(3) δ(f) := max{v(x− a) | a is a root of f} ,
with δ(f) = −∞ if f ∈ K. A root a of f such that δ(f) = v(x − a) is said to
be a maximal root of f . A monic polynomial Q(X) ∈ K[X] is said to be a key
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polynomial for (K(x)|K, v) if

deg f < degQ ⇒ δ(f) < δ(Q) for all f ∈ K[X] .

Further, a sequence (Qi)i∈S of key polynomials is said to be complete if for every
non-constant polynomial f ∈ K[X] there exists i ∈ S such that degQi ≤ deg f and
δ(f) ≤ δ(Qi).

Given any extension (F |K, v), we take IC (F |K, v) to be the relative algebraic
closure of K in a fixed henselization of (F, v) and call it the implicit constant
field of (F |K, v). Since the henselization F h of any valued field (F, v) is unique up
to valuation preserving isomorphism over F , the implicit constant field is unique up
to valuation preserving isomorphism over K. In [9] the notion of “weakly pure” is
instrumental in constructing an extension of v from K to the rational function field
K(x) such that IC (F |K, v) is equal to any given countably generated separable-
algebraic extension of K.

The following is our main theorem for the case of simple transcendental extensions:

Theorem 1. Let (K, v) be a tame valued field and (K(x)|K, v) a transcendental
extension. Then there exist monic irreducible polynomials {Qi}i∈S and {Qν}ν∈Ω

over K, where S is an initial segment of N, Ω = ∅ or Ω = {ν|ν < λ} for some limit
ordinal λ, having the following properties:

(i) {Qi}i∈S∪{Qν}ν∈Ω forms a complete sequence of key polynomials for (K(x)|K, v),

(ii) degQ1 = 1,

(iii) there exist unique maximal roots ai of Qi and zν of Qν ,

(iv) K(ai−1) ( K(ai) and degQi−1 < degQi for 1 < i ∈ S,

(v) v(x− ai) > v(x− ai−1) for 1 < i ∈ S,

(vi) v(x− ai) = max v(x−K(ai)) if i ∈ S is not its last element or Ω = ∅,
(vii) v(x− an) = max v(x− K̃) if S = {1, . . . , n} and Ω = ∅,
(viii) if Ω 6= ∅, then S is finite, and if n is its last element, then (zν)ν<λ is a pseudo
Cauchy sequence of transcendental type in (K(an), v) and we have that degQn =
degQν for all ν ∈ Ω,

(ix) IC (K(x)|K, v) = K(ai | i ∈ S), which is equal to K(an) if S = {1, . . . , n},
(x) for each k ∈ S, {Qi}1≤i≤k forms a complete sequence of key polynomials for
(K(ak)|K, v).

With L := IC (K(x)|K, v), the extension (L(x)|L, v) is weakly pure. The extension
(K(x)|K, v) is valuation algebraic if and only if S = N or Ω 6= ∅. In both cases,
the extension (L(x)|L, v) is immediate. In the case of S = N, (ai)i∈N is a pseudo
Cauchy sequence in (L, v) of transcendental type with x as its limit. The same holds
for (zν)ν<λ if Ω 6= ∅.

From assertion (ix) we conclude:
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Corollary 2. Let (K, v) be a tame field and (K(x)|K, v) a transcendental extension.
Then IC (K(x)|K, v) is a countably generated separable-algebraic extension of K.

Instead of Theorem 1, we will prove the following generalization:

Theorem 3. Let (K, v) be a henselian valued field and (K(x)|K, v) a transcendental
extension. Assume that there is a tame extension (L′|K, v) such that for some
extension of v from K(x) to L′(x), the extension (L′(x)|L′, v) is weakly pure. Then
the assertions of Theorem 1 hold, and IC (K(x)|K, v) ⊆ L′.

This theorem indeed implies Theorem 1 since if (K, v) is a tame field, then the

extension (K̃|K, v) is tame, and by [11, Proposition 5.2] the extension (K̃(x)|K̃, v)
is always weakly pure.

We will construct the key polynomials {Qi}i∈S by first constructing the sequence
{ai}i∈S and then taking Qi to be the minimal polynomial of ai over K. For this
purpose, we revisit the notion of homogeneous sequences that was introduced in
[9] (see also [2]). We develop a stronger version, which we call key sequences, in
Section 3. This will be done simultaneously for transcendental and algebraic simple
extensions. The latter leads to our main theorem for the algebraic case:

Theorem 4. Let (K, v) be a henselian valued field and (K(x)|K, v) a tame algebraic
extension. Then there exist monic irreducible polynomials {Qi}i∈S over K, where
S = {1, . . . , n} for some n ∈ N, having the following properties:

(i) {Qi}i∈S forms a complete sequence of key polynomials for (K(x)|K, v),

(ii) degQ1 = 1,

(iii) there exist unique maximal roots ai of Qi ,

(iv) K(ai−1) ( K(ai) and degQi−1 < degQi for 1 < i ∈ S,

(v) v(x− ai) > v(x− ai−1) for 1 < i ∈ S,

(vi) v(x− ai) = max v(x−K(ai)) for all i ∈ S,

(vii) an = x.

Further, also assertion (x) of Theorem 1 holds.

In the case of a transcendental extension (K(x)|K, v), the implicit constant field
L := IC (K(x)|K, v) can be an infinite extension of K (cf. [9, Proposition 3.16]).
In the situation of Theorem 1, it is generated by the elements ai , i ∈ N, and
assertion (x) shows that for every k ∈ N, {Qi}1≤i≤k forms a complete sequence of
key polynomials for (K(ak)|K, v). So we are tempted to state that {Qi}i∈S forms a
complete sequence of key polynomials for (L|K, v). However, so far our definition
of key polynomials does not cover cases of extensions that are not simple. In order
to address the case of implicit constant fields that are infinite extensions of the base
field, and more generally, countably generated algebraic extensions, we generalize
our definition in the following way. For the value defined in (3) we will now write
δx(f). A sequence (Qi)i∈S of monic irreducible polynomials Qi(X) ∈ K[X], where



TAME KEY POLYNOMIALS 5

S is an initial segment of N, will be said to be a strongly complete sequence of
key polynomials for (L|K, v) if the sequence (degQi)i∈S is strictly increasing and
there are roots ai of Qi such that the following conditions hold:

(SCKP1) L = K(ai | i ∈ S),

(SCKP2) for all k ∈ S, (Qi)i≤k is a complete sequence of key polynomials for
(K(ak)|K, v).

It is not a priori clear that in the settings we considered so far, every complete se-
quence of key polynomials for the corresponding algebraic extensions is also strongly
complete. However, assertion (x) of Theorems 1 and 4 implies:

Proposition 5. 1) If {Qi}i∈S is a sequence of key polynomials for (K(x)|K, v), then
for every k ∈ S, {Qi}1≤i≤k is a strongly complete sequence of key polynomials for
(K(ak)|K, v).

2) In the setting of Theorems 1 and 3, with L = IC (K(x)|K, v), we have that (Qi)i∈S
is a strongly complete sequence of key polynomials for (L|K, v).

3) In the setting of Theorem 4, (Qi)i∈S is a strongly complete sequence of key poly-
nomials for (K(x)|K, v).

The following is a generalization of Theorem 4 to the case of infinite algebraic
extensions:

Theorem 6. Take a henselian field (K, v). For every countably generated tame ex-
tension (L|K, v) there exists a strongly complete sequence of key polynomials (Qi)i∈S
such degQ1 = 1 and also the following holds: if ai , i ∈ S, are the roots of the poly-
nomials Qi that satisfy (SCKP1) and (SCKP2), then the following hold:

1) assertions (iv) and (x) of Theorem 4,

2) assertions (v) and (vi) of Theorem 4, with aj in place of x for any j ∈ S, j > i,

3) each ai is the unique maximal root of Qi in the following sense: if i ≤ k ∈ S and
a′i 6= ai is another root of Qi, then δak(Qi) = v(ak − ai) > v(ak − a′i).

2. Preliminaries

2.1. Tame and defectless extensions and fields, and the set v(x−K).

A valued field is called algebraically maximal if it does not admit nontrivial
immediate algebraic extensions.

Lemma 7. Take a valued field (K, v) and any extension of v to K̃.

1) Every algebraic extension of a tame field is again a tame field.

2) A unibranched extension (L|K, v) is tame if and only if (Lh|Kh, v) is tame.

3) If (K, v) is henselian and (Ki, v), i ∈ I, are tame extensions of (K, v), then so
is their compositum, i.e., the smallest extension that contains all Ki .
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4) Assume that (L1|L, v) and (L2|L1, v) are algebraic extensions. Then (L2|L, v) is
a tame extension if and only if (L2|L1, v) and (L1|L, v) are tame extensions.

5) Tame fields are algebraically maximal.

Proof. 1): This follows from [10, part (b) of Lemma 2.17].

2): Since the extension (L|K, v) is unibranched, L|K is linearly disjoint from the
extension Kh|K by [3, Lemma 2.1], and the same holds for every subextension E|K.
Since Eh = E.Kh and henselizations are immediate extensions, (TE1) and (TE2)
hold for E and K if and only they hold for Eh and Kh in place of E and K,
respectively. Since [E : K] = [E.Kh : Kh] = [Eh : Kh], the same is true for (TE3).

3): By [10, part (b) of Lemma 2.13], the absolute ramification field Kr of a henselian
field (K, v) is its unique maximal tame extension. Hence if (Ki, v), i ∈ I, are tame
extensions of (K, v), then they are all contained in Kr and so is their compositum,
which consequently is also a tame extension of (K, v).

4): For henselian fields, this is [10, part (a) of Lemma 2.13]. In the general case,
(L2|L, v) is unibranched if and only if (L2|L1, v) and (L1|L, v) are, so we can use
part 2) of our lemma to reduce to the henselian case.

5): This follows from [10, Theorem 3.2]. �

Lemma 8. Take any extension (K(x)|K, v).

1) If the extension (K(x)|K, v) is immediate, then v(x−K) has no largest element.

2) If v(x −K) has a largest element and v(x − y) > v(x −K), then the extension
(K(y)|K, v) is not immediate.

3) If v(x−K) has no largest element, then x is the limit of a pseudo Cauchy sequence
in (K, v) without a limit in K.

Proof. 1): This is [11, part 2) of Lemma 2.9].

2): By [11, part 4) of Lemma 2.9], v(y − K) = v(x − K), hence also v(y − K)
has no largest element. Now part 1) of our lemma shows that (K(y)|K, v) is not
immediate.

3): The proof is a straightforward adaptation of the proof of [8, Theorem 1]. �

Lemma 9. Suppose that in some valued field extension of (K, v), x is the pseudo
limit of a pseudo Cauchy sequence in (K, v) of transcendental type. Then (K(x)|K, v)
is immediate and x is transcendental over K.

Proof. Assume that (aν)ν<λ is a pseudo Cauchy sequence in (K, v) of transcendental
type. Then by [8, Theorem 2] there is an immediate extension w of v to the rational
function field K(y) such that y becomes a pseudo limit of (aν)ν<λ ; moreover, if also
x is a pseudo limit of (aν)ν<λ in (K(x), v), then x 7→ y induces a valuation preserving
isomorphism from K(x) onto K(y) over K. Hence, (K(x)|K, v) is immediate and x
is transcendental over K. �
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Lemma 10. 1) If (K(b)|K, v) is a unibranched defectless algebraic extension, then
v(b−K) has a maximal element.

2) Every pseudo Cauchy sequence in an algebraically maximal field without a limit
in that field is of transcendental type.

3) Assume that (K, v) is an algebraically maximal field and v(x−K) has no largest
element. Then x is the limit of a pseudo Cauchy sequence of transcendental type in
(K, v).

Proof. 1): This is [4, part a) of Lemma 7].

2): By [8, Theorem 3], a pseudo Cauchy sequence of algebraic type in a field (K, v)
without a limit in K gives rise to a nontrivial immediate algebraic extension of
(K, v), so (K, v) cannot be algebraically maximal.

3): This follows from part 2) together with part 3) of Lemma 8. �

Since tame extensions are unibranched and defectless by definition, and tame
fields are algebraically maximal by part 5) of Lemma 7, we obtain:

Corollary 11. 1) If (K(b)|K, v) is a tame extension, then v(b−K) has a maximal
element.

2) Every pseudo Cauchy sequence in a tame field without a limit in that field is of
transcendental type.

2.2. Weakly pure extensions.

The following shows that our definition of “weakly pure extension” given in the
Introduction coincides with the definition given in [9]:

Lemma 12. Take a valued field (K, v) and an extension of v from K to the rational
function field K(x). Then for a ∈ K, the following are equivalent:

a) v(x− a) = max v(x− K̃),

b) v(x − a) is non-torsion over vK or for some d ∈ K and e ∈ N, vd(x − a)e = 0
and d(x− a)ev is transcendental over Kv.

Proof. By [11, part 5) of Lemma 2.8], v(x−a) is the maximal element of v(x− K̃) if

and only if v(x−a) /∈ vK̃ or v(x−a) ∈ vK̃ and d̃(x−a)v /∈ K̃v for every d̃ ∈ K̃ such

that vd̃(x − a) = 0. Note that since vK̃ is the divisible hull of vK, v(x − a) /∈ vK̃
if and only if v(x− a) is non-torsion over vK.

Assume that a) holds. If v(x − a) is non-torsion over vK, then b) holds. If

v(x− a) ∈ vK̃, we proceed as follows. We choose e ∈ N such that ev(x− a) ∈ vK.
Then there is some d ∈ K such that vd = −ev(x − a) = v(x − a)e. We pick

d̃ ∈ K̃ such that d̃e = d. It follows that vd̃(x − a) = 0, and from what we said

above we know that d̃(x − a)v is transcendental over K̃v = K̃v. Therefore, also

(d̃(x − a))e = d(x − a)ev is transcendental over Kv, and we have shown that b)
holds.
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Now assume that b) holds. If v(x−a) is non-torsion over vK, then v(x−a) /∈ vK̃,
and by the equivalence stated above, a) holds. If for some d ∈ K and e ∈ N,
vd(x−a)e = 0 and d(x−a)ev is transcendental over Kv, then we proceed as follows.

Let d̃ ∈ K̃ be such that vd̃(x − a) = 0. Then vd̃e = −v(x − a)e = vd, so that

vd̃ed−1 = 0 and 0 6= d̃ed−1v ∈ K̃v. As d(x − a)ev is transcendental over Kv, so

are (d̃ed−1)v · d(x − a)ev = d̃e(x − a)ev = (d̃(x − a)v)e and d̃(x − a)v. That is,

d̃(x− a)v /∈ K̃v and again by the above equivalence, a) holds. �

The following is [9, Lemma 3.7]:

Lemma 13. Assume that the extension (L(x)|L, v) is weakly pure. If we take any

extension of v to L̃(x) and take Lh to be the henselization of L in (L̃(x), v), then Lh

is the implicit constant field of this extension:

Lh = IC (L(x)|L, v) .

Lemma 14. Assume that (L|K, v) is a tame extension, x is transcendental over L,
and we have an extension (L(x)|L, v) which is weakly pure in x.

1) If K ′|K is a subextension of L|K and v(x−K ′) has no maximal element, then
x is the limit of a pseudo Cauchy sequence of transcendental type in (K ′, v).

2) Assume that v is extended to K̃(x). Then every maximal element v(x − a) of

v(x− L) is also a maximal element of v(x− K̃).

3) We have that

IC (K(x)|K, v) ⊆ IC (L(x)|L, v) = Lh .

4) If (L′|L, v) is an algebraic extension, then for every extension of v from L(x) to
L′(x), also (L′(x)|L′, v) is weakly pure in x.

Proof. 1): If K ′|K is a subextension of L|K and v(x−K ′) has no maximal element,
then by part 3) of Lemma 8, x is the limit of a pseudo Cauchy sequence (cν)ν<λ in
(K ′, v) without a limit in K ′. Suppose that it is of algebraic type. As it is also a
pseudo Cauchy sequence in (L, v) with x as its limit, it must have a limit y in L.
Indeed, otherwise v(x − L) would not have a maximum, so by our assumption on
the extension (L(x)|L, v), x would have to be the limit of a pseudo Cauchy sequence
of transcendental type in (L, v). However, x cannot be simultaneously the limit
of a pseudo Cauchy sequence of transcendental type in (L, v) and a pseudo Cauchy
sequence of algebraic type in (L, v) without a limit in L (as follows from Theorems 3
and 4 of [8] or from the classification of immediate approximation types in [11]).

Now we have that v(y −K ′) has no maximum, which is a contradiction to part
1) of Corollary 11 since by part 4) of Lemma 7 the extension (L|K ′, v) is tame.

2): If v(x−L) has a maximal element v(x−a) with a ∈ L, then x is not the limit of
a pseudo Cauchy sequence in (L, v) without a limit in L. Hence by our assumption

on the extension (L(x)|L, v), the set v(x−K̃) must have a maximal element v(x−a′)
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with a′ ∈ L. Then v(x − a′) ≥ v(x − a) ≥ v(x − a′), so the values are equal. This
proves our assertion.

3): This holds since IC (K(x)|K, v) = K(x)h ∩ K̃ ⊆ L(x)h ∩ K̃ = L(x)h ∩ L̃, using
also Lemma 13.

4): If there is a ∈ L such that v(x−a) = max v(x−L̃), then our assertion is trivially

true since L ⊂ L′ and L̃ = L̃′. Now assume that x is the limit of a pseudo Cauchy
sequence (cν)ν<λ of transcendental type in (L, v). Then (cν)ν<λ is also a pseudo
Cauchy sequence in (L′, v). Suppose it were of algebraic type. Then by [8, Theorem
3] there would exist an algebraic extension (L′(y), v) of (L′, v) such that y is a limit
of (cν)ν<λ. However, y is also algebraic over L, which leads to a contradiction, as
follows from [8, Theorem 4]. �

2.3. Krasner constant and Krasner’s Lemma.

Take any valued field (K, v) and choose some extension of v from K to its algebraic

closure K̃. If a ∈ K̃ \ K is not purely inseparable over K, then the Krasner
constant of a over K is defined as:

Kras(a,K) := max{v(τa− σa) | σ, τ ∈ GalK and τa 6= σa} ∈ vK̃ .

If a ∈ K, then we set Kras(a,K) := va. We note:

Lemma 15. 1) The definition of Kras(a,K) does not depend on the chosen exten-

sion of v from K to K̃.

2) If the extension (K(a)|K, v) is unibranched, then

Kras(a,K) = max{v(a− σa) | σ ∈ GalK and a 6= σa}
and for all σ ∈ GalK such that a 6= σa,

va ≤ v(a− σa) ≤ Kras(a,K) .

Proof. 1): Every other extension of v from K to K̃ is of the form vρ for some
ρ ∈ GalK, and

Kras(a,K) = max{v(τa− σa) | σ, τ ∈ GalK and τa 6= σa}
= max{v(ρτa− ρσa) | σ, τ ∈ GalK and ρτa 6= ρσa}
= max{vρ(τa− σa) | σ, τ ∈ GalK and τa 6= σa} .

2): For a unibranched extension (K(a)|K, v) and every τ ∈ GalK we have that
v = vτ on K(a), whence

Kras(a,K) = max{v(τa− σa) | σ, τ ∈ GalK and τa 6= σa}
= max{vτ(a− τ−1σa) | σ, τ ∈ GalK and a 6= τ−1σa}
= max{v(a− σa) | σ ∈ GalK and a 6= σa} ,

and the inequality va ≤ v(a− σa) follows from the fact that va = vσa. �
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Lemma 16. If a ∈ K̃ and (L(a)|K(a), v) is any valued field extension, then

(4) Kras(a, L) ≤ Kras(a,K) .

Proof. Since a is separable-algebraic over K, it is also separable-algebraic over L. If
σ ∈ GalL, then σ|Ksep ∈ GalK; therefore,

{v(τa− σa) | σ, τ ∈ GalL and τa 6= σa}
⊆ {v(τa− σa) | σ, τ ∈ GalK and τa 6= σa} .

This implies inequality (4). �

We will employ the following variant of Krasner’s Lemma:

Proposition 17. Take K(a)|K to be a separable-algebraic extension, and (K(a, b), v)
to be any valued field extension of (K(a), v) such that

(5) v(b− a) > Kras(a,K) .

Then every henselization of (K(b), v) contains a.

Proof. Take any extension of v from K(a, b) to K̃(b), and take K(b)h to be the
henselization of (K(b), v) with respect to this extension. Then by Lemma 16 applied
to L = K(b)h, Kras(a,K(b)h) ≤ Kras(a,K). Hence by assumption, v(b − a) >
Kras(a,K(b)h). We will show that a is fixed by every automorphism ρ ∈ GalK(b)h;
since a is also separable-algebraic over K(b)h, this will yield that a ∈ K(b)h. Note
that ρb = b because of ρ ∈ GalK(b)h.

Since (K(b)h, v) is henselian, using the assumption we may compute:

v(b− ρa) = vρ(b− a) = v(b− a) > Kras(a,K) .

In view of Lemma 16, it follows that

v(a− ρa) ≥ min{v(b− a), v(b− ρa)} > Kras(a,K) ≥ Kras(a,K(b)h)

≥ max{v(a− σa) | σ ∈ GalK and a 6= σa} ,

which yields that a = ρa. �

3. Key sequences

3.1. Homogeneous approximations.

In this section we will lay out an improved version of the theory of homogeneous
elements and approximations that was introduced in [9] (cf. also [2]). In contrast
to those articles, we will work exclusively with what there was called strongly ho-
mogenous elements, and we will strengthen the definition of homogeneous approxi-
mations accordingly. However, in order to simplify notation, we will drop the word
“strongly”.
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We will say that an element a is homogeneous over (K, v) (or just over K
when it is clear which valuation we refer to) if a ∈ Ksep, the extension (K(a)|K, v)
is unibranched, and

va = Kras(a,K) .

Note that if a ∈ K, then Kras(a,K) = va by definition, so a is homogeneous over K.
Take a second element b in some algebraically closed valued field extension (L, v)

of (K, v). We will say that a is a homogeneous approximation of b over K if
a is homogeneous over K and v(b− a) > vb. From this it follows that va = vb and
v(b− a) > Kras(a,K).

Remark 18. We note that our present use of “homogeneous approximation” is
almost the same as in the definition of homogeneous sequences in [9, 2], except that
now all homogeneous approximations are taken over K; this is a stronger condition.

Lemma 19. 1) Assume that a is homogeneous over K. Then

(6) va = v(τa− σa) for all σ, τ ∈ GalK such that σa 6= τa ,

and if (L(a)|K(a), v) is any valued field extension, then a is also homogeneous
over L.

2) Take elements a, b, b′ in some algebraically closed valued field extension (L, v) of
(K, v). If a is a homogeneous approximation of b over K and if v(b− b′) ≥ v(b− a),
then a is also a homogeneous approximation of b′ over K.

Proof. 1): Assume that a is homogeneous over K. Then vτa = va = vσa since the
extension (K(a)|K, v) is unibranched, whence va ≤ v(τa − σa) ≤ Kras(a,K) = va
for all σ, τ ∈ GalK such that σa 6= τa. Hence equality holds everywhere, which
proves (6). If (L(a)|K(a), v) is any valued field extension, then a ∈ Lsep, vσa =
vσ|Ksepa = va for all σ ∈ GalL, and for every σ, τ ∈ GalL with τa 6= σa, we have
that

v(τa− σa) = v(τ |Ksep a− σ|Ksep a) = va ,

whence Kras(a, L) = va.

2): By assumption we have that v(b′ − a) ≥ min{v(b− b′), v(b− a)} = v(b− a) >
vb = vb′. This yields the assertion, since a is homogeneous over K. �

The following important property of homogeneous approximations is a conse-
quence of Proposition 17:

Lemma 20. If a is a homogeneous approximation of b over K, then a lies in the

henselization of K(b) w.r.t. every extension of the valuation v from K(a, b) to K̃(b).

The following gives a crucial criterion for an element to be homogeneous over K:

Lemma 21. Suppose that a ∈ K̃ and that there is some extension of v from K to
K(a) such that if e is the least positive integer for which eva ∈ vK, then

a) e is not divisible by charKv,
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b) there exists some c ∈ K such that vcae = 0, caev is separable-algebraic over Kv,
and the degree of cae over K is equal to the degree f of caev over Kv.

Then (K(a)|K, v) is a separable unibranched extension of degree e · f , and a is
homogeneous over K.

Proof. We have

e · f ≥ [K(a) : K(ae)] · [K(ae) : K] = [K(a) : K]

≥ (vK(a) : vK) · [K(a)v : Kv] ≥ e · f .
Hence equality holds everywhere, and we find that [K(a) : K] = e · f , (vK(a) :
vK) = e and [K(a)v : Kv] = f. By the fundamental inequality, this implies that the
extension (K(a)|K, v) is unibranched. By assumption a), the extension K(a)|K(ae)
is separable. By assumption b), the residue field extension K(ae)v|Kv is separable
of degree [K(ae) : K], which shows that K(ae)|K must be separable. Altogether,
we find that K(a)|K is separable.

In order to show that a is homogeneous over K, we may assume that a /∈ K. Take
σ ∈ GalK with σa 6= a and set η := σa/a 6= 1. If σae 6= ae, then σcae = cσae 6= cae

and by hypothesis, their residues are also distinct, so the residue of σae/ae = ηe is
not 1. It then follows that the residue of η is not 1. If σae = ae, then η is an e-th root
of unity. Since e is not divisible by the residue characteristic, it again follows that
the residue of η is not equal to 1. Hence in both cases, we obtain that v(η− 1) = 0,
which shows that v(σa− a) = va. We have now proved our lemma. �

Lemma 22. Assume that b is an element in some algebraically closed valued field
extension (L, v) of (K, v). Assume further that there are e ∈ N not divisible by
charKv and c ∈ K such that vcbe = 0 and cbev is separable-algebraic of degree f
over Kv. Then we can find a homogeneous approximation a ∈ K̃ of b over K, of
degree e · f over K.

If ã ∈ K̃ satisfies v(b − ã) > vb, then [K(ã) : K] ≥ e · f ; if in addition ã ∈
K(a), then ã is also a homogeneous approximation of b over K, K(ã) = K(a), and
Kras(ã, K) = Kras(a,K).

Proof. Take a monic polynomial g over K with v-integral coefficients whose reduc-

tion modulo v is the minimal polynomial of cbev over Kv. Then let a0 ∈ K̃ be the
root of g whose residue is cbev. The degree of a0 over K is the same as that of cbev

over Kv. We have that v( a0
cbe
− 1) > 0. So there exists a1 ∈ K̃ with residue 1 and

such that ae
1 = a0

cbe
. Then for a := a1b, we find that v(b−a) = vb+v(a1−1) > vb and

cae = a0 , hence a ∈ K̃. It follows that va = vb and caev = cbev. By the foregoing
lemma, this shows that a is homogeneous over K.

Now assume that also ã ∈ K̃ satisfies v(b − ã) > vb. Then vã = vb, whence
(vK(ã) : vK) ≥ e . Further, v(cbe − cãe) > 0 and thus, cãev = cbev and [K(ã)v :
Kv] ≥ f . Therefore, [K(ã) : K] ≥ e · f . We note that

v(ã− a) ≥ min{v(b− a), v(b− ã)} > vb = va = vã .
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Finally, assume in addition that ã ∈ K(a). Then

e · f ≤ [K(ã) : K] ≤ [K(a) : K] = e · f ,
showing that K(ã) = K(a). Thus for every σ ∈ GalK we have that σã 6= ã if and
only if σa 6= a. If this is the case, then

v(ã− σã) = v(ã− a+ a− σa+ σa− σã) .

As (K(a)|K, v) is unibranched and K(ã) = K(a), we know that

v(σa− σã) = vσ(a− ã) = v(a− ã) > va = Kras(a,K) ≥ v(a− σa) .

Consequently, v(ã − σã) = v(a − σa) and therefore, Kras(ã, K) = Kras(a,K) =
va = vã. This proves that also a is homogeneous over K. �

3.2. Key sequences.

We will work with a variant of the notion of “homogeneous sequence” which was
introduced in [9], and the stronger notion of “key sequence”. Let (K(x)|K, v) be

any extension of valued fields. We fix an extension of v to K̃(x).

Let S be an initial segment of N, that is, S = N or S = {1, . . . , n} for some n ∈ N.
A sequence

S := (ai)i∈S

of elements in K̃ will be called a key sequence for (K(x)|K, v) if

(KS1) a1 ∈ K,

(KS2) if 1 < i ∈ S, then K(ai) = K(ãi) and v(x − ai) ≥ v(x − ãi) for some ãi
such that ãi − ai−1 is a homogeneous approximation of x− ai−1 over K,

(KS3) v(x− ai) = max v(x−K(ai)), unless v(x−K(ai)) has no largest element,
in which case i is the last element of S.

Further, S will be called a pre-complete key sequence if in addition to the
above, S = N or the following conditions are satisfied:

(CKS1) if x ∈ K̃, then S is finite, and if n is its last element, then an = x,

(CKS2) if x is transcendental over K and S = {1, . . . , n}, then either v(x−an) =

max v(x− K̃), or x is limit of a pseudo Cauchy sequence of transcendental type in
(K(an), v),

and it will be called complete if the second case in (CKS2) does not appear.

We call S the support of the sequence S. We set

KS := K(ai | i ∈ S) .

If S is the empty sequence, then KS = K.
From the above definitions, the following is obvious:

Lemma 23. Assume that S ′ ⊆ S are initial segments of N. If (ai)i∈S is a key
sequence for (K(x)|K, v), then so is (ai)i∈S′.
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From the definition of the key sequence (ai)i∈S, we obtain:

Lemma 24. Take a key sequence (ai)i∈S. Then the following statements hold:
1) For every i ∈ S, ai ∈ Ksep.

2) For every i ∈ S,

(7) v(x− ai) > v(x− ai−1) if 1 < i ∈ S

and

(8) ai /∈ K(ai−1) .

3) If i, j ∈ S with i < j, then

(9) v(x− aj) > v(x− ai) = v(ai+1 − ai) .

If S = N, then (ai)i∈S is a pseudo Cauchy sequence in KS with pseudo limit x.

Proof. 1): We proceed by induction on i ∈ S. By (KS1), a1 ∈ K ⊆ Ksep. Assume
that 1 < i ∈ S and we have already shown that ai−1 ∈ Ksep. By (KS2), ãi − ai−1 ∈
Ksep, whence ãi ∈ Ksep and ai ∈ K(ãi) ⊆ Ksep.

2): By (KS2), for 1 < i ∈ S we have:

v(x− ai) ≥ v(x− ãi) = v(x− ai−1 − (ãi − ai−1)) > v(x− ai−1) .

This proves (7). Assertion (8) follows from (KS3) since v(x − ai) > v(x − ai−1) =
max v(x−K(ai−1)).

3): Take i, j ∈ S with 1 ≤ i < j. Then (9) follows by induction from (7). Now
assume that S = N. Then for all k > j > i ≥ 1,

v(x− ak) > v(x− aj) > v(x− ai)

and therefore,

v(ak − aj) = min{v(x− ak), v(x− aj)} = v(x− aj)
> v(x− ai) = min{v(x− aj), v(x− ai)} = v(aj − ai) .

This shows that (ai)i∈S is a pseudo Cauchy sequence. The equality in (9) shows that
x is a pseudo limit of this sequence. �

Let us also observe the following:

Lemma 25. Let x, z be elements in some valued field extension of (K, v) that con-
tains K̃. Take a key sequence (ai)i∈S for (K(x)|K, v). Then the following assertions
hold:

1) Assume that v(x − z) > v(x − ai) for all i ∈ S. Then (ai)i∈S is also a key
sequence for (K(z)|K, v).

2) Take k ∈ S. Then (ai)i≤k is a complete key sequence for (K(ak)|K, v).
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Proof. 1): It follows from part 2) of Lemma 19 that if (KS2) holds, then it also holds
with z in place of x. We now show the same for (KS3). Since v(x− z) > v(x− ai),
it follows that v(z−ai) = min{v(x−ai), v(x−z)} = v(x−ai). In order to complete
our proof, we need to show that v(z − y) ≤ v(z − ai) for y ∈ K(ai). Suppose
otherwise. Then v(x−y) ≥ min{v(x−z), v(z−y)} > v(x−ai) = max v(x−K(ai)),
contradiction. This shows that (KS3) also holds with z in place of x.

2): By Lemma 23, (ai)i<k is a key sequence for (K(x)|K, v). Since v(x − ak) >
v(x − ai) for i < k, part 1) shows that it is also a key sequence for (K(ak)|K, v).
Next, we show that (KS2) also holds for ak in place of x and k in place of i. Since
(ai)i∈S is a key sequence for (K(x)|K, v), we know already that K(ak) = K(ãk),
and it remains to show that a := ãk − ak−1 is a homogeneous approximation of
b′ := ak − ak−1 over K. With b := x− ak−1, we compute:

v(b− b′) = v(x− ak) ≥ v(x− ãk) = v(b− a) .

Hence the required result follows from part 2) of Lemma 19. Also (KS3) is satisfied
for ak in place of x and k in place of i because v(ak − ak) = ∞ = max v(x −
K(ak)). This also proves that by definition, (ai)i≤k is a complete key sequence for
(K(ak)|K, v). �

What is special about key sequences is described by the following lemma:

Lemma 26. Assume that (ai)i∈S is a key sequence for (K(x)|K, v). Then

(10) KS ⊆ K(x)h .

For every n ∈ S, a1, . . . , an ∈ K(an)h. If S = {1, . . . , n}, then

(11) Kh
S = K(an)h .

Hence if (K, v) is henselian, then KS = K(an).

Proof. By induction on i ∈ S, we show that ai ∈ K(x)h. By (KS1), a1 ∈ K ⊆ K(x)h.
Assume that 1 < i ∈ S and we have already shown that ai−1 ∈ K(x)h. As ãi− ai−1

is a homogeneous approximation of x− ai−1 ∈ K(x)h over K for ãi as in (KS2), we
know from Lemma 20 that

ãi − ai−1 ∈ K(x− ai−1)h ⊆ K(x)h

and hence also ãi ∈ K(x)h. This implies that ai ∈ K(ãi) ⊂ K(x)h, which proves
(10).

Now all other assertions follow when we replace x by an in the above argument,
using the fact that by Lemma 23 with S ′ = {1, . . . , n}, (ai)i≤n is a key sequence for
(K(an)|K, v). �

Lemma 27. Every key sequence (ai)i∈S has property

(KS4) K(ai−1)h ( K(ai)
h if 1 < i ∈ S.
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Proof. Suppose that 1 < i ∈ S and K(ai−1)h = K(ai)
h. Then ai ∈ K(ai−1)h and

since (K(ai−1)h|K(ai−1), v) is immediate, by part 1) of Lemma 8 the set v(ai −
K(ai−1)) has no maximum. Hence there exists c ∈ K(ai−1) such that v(ai − c) >
v(ai − ai−1). On the other hand, v(x− ai) > v(x− ai−1) by Lemma 24, whence

v(ai − ai−1) = min{v(x− ai), v(x− ai−1)} = v(x− ai−1) .

We conclude that

v(x− c) = min{v(x− ai), v(ai − c)} > v(x− ai−1)

in contradiction to (KS3). This proves our assertion. �

Proposition 28. Take a henselian field (K, v). Assume that (ai)i∈S is a key se-
quence for (K(x)|K, v). Then it has the following additional properties:

(KS5) Kras(ai, K) = Kras(ai − ai−1, K) = v(x− ai−1) if 1 < i ∈ S,

(KS6) if 1 < i ∈ S and z ∈ K̃ such that v(x − z) > v(x − ai−1), then [K(z) :
K] ≥ [K(ai) : K].

This proposition follows by induction on i ∈ S \ {1} from a slightly more general
result:

Lemma 29. Take a henselian field (K, v). Assume that i > 1, (aj)j<i is a key
sequence for (K(x)|K, v) with properties (KS5) and (KS6)), that ãi − ai−1 is a
homogeneous approximation of x−ai−1 over K, and that ai ∈ K(ãi) with v(x−ai) ≥
v(x− ãi). Then K(ai) = K(ãi), and the sequence (aj)j≤i has properties (KS5) and
(KS6).

Proof. We will first prove (KS5) for ãi in place of ai . We start with the case of
i = 2, where ai−1 = a1 ∈ K by (KS1). Hence for every σ ∈ GalK,

v(ã2 − σã2) = v(ã2 − a1 − σ(ã2 − a1)) .

This implies that Kras(ã2, K) = Kras(ã2 − a1, K) = v(ã2 − a1).
Now we consider the case of 2 < i ∈ S. By the assumption of our lemma, (KS5)

holds with i− 1 in place of i. We wish to compute v(ãi − σãi) whenever σ ∈ GalK
with ãi 6= σãi . We set a := ãi − ai−1 . Since ãi = ai−1 + a, we must have that
ai−1 6= σai−1 or a 6= σa, and

v(ãi − σãi) = v(ai−1 − σai−1 + a− σa) .

If ai−1 6= σai−1, then

v(ai−1 − σai−1) ≤ Kras(ai−1, K) = v(x− ai−2) < v(x− ai−1) ,

where we have used (7) for the last inequality. If a 6= σa, then v(a − σa) = va =
v(x − ai−1) since a is a homogeneous approximation of x − ai−1 over K. In both
cases,

(12) v(ãi − σãi) = min{v(ai−1 − σai−1), v(a− σa)} ≤ v(x− ai−1) .
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On the other hand, as v(x − ãi) > v(x − ai−1) = max v(x − K(ai−1)) by our as-
sumption on ãi− ai−1 and (KS3) with i− 1 in place of i, we have that ãi /∈ K(ai−1).
Consequently, K(ai−1, ãi) = K(ai−1, a) is a nontrivial extension of K(ai−1). It is
a separable-algebraic extension of K since by part 1) of Lemma 24, ai−1 is separa-
ble over K, and the same holds for a as it is homogeneous over K. Hence there is
σ ∈ GalK such that ai−1 = σai−1 and a 6= σa, in which case v(ai−σai) = v(x−ai−1).
Consequently, Kras(ãi, K) = v(x− ai−1).

Now we take ai ∈ K(ãi) with v(x − ai) ≥ v(x − ãi). We set d := ai − ãi and
observe that vd ≥ v(x − ãi) > v(x − ai−1). As (K, v) is henselian, we have that
vd = vσd and hence v(d − σd) > v(x − ai−1) for all σ ∈ GalK. Assuming that
σãi 6= ãi , we can use (12) to obtain that

v(d− σd) > v(ãi − σãi) ,
which then yields:

v(ai − σai) = v(ãi − σãi + d− σd) = min{v(ãi − σãi), v(d− σd)} = v(ãi − σãi) .
In particular, σãi 6= ãi implies that σai 6= ai. Since ai ∈ K(ãi) and K(ãi)|K(ai) is
a separable extension, we find that K(ai) = K(ãi). Hence the conditions σai 6= ai
and σãi 6= ãi are equivalent for all σ, and from what we have just shown we find
that v(ai − σai) = v(ãi − σãi) always holds. Therefore,

Kras(ai, K) = Kras(ãi, K) = v(x− ai−1) .

In order to show that (KS6) holds, assume that z ∈ K̃ satisfies v(x − z) >
v(x− ai−1). Since also v(x− ai) > v(x− ai−1), we have that

v(z − ai) ≥ min{v(x− z), v(x− ai)} > v(x− ai−1) = Kras(ai, K) ,

where the last equation holds by (KS5). Hence from Proposition 17 it follows that
ai ∈ K(z), which proves that (KS6) holds. �

Proposition 30. Take any valued field (K, v) and any extension (K(x)|K, v). As-
sume that S = (ai)i∈N is a key sequence for (K(x)|K, v). Then S is a complete key
sequence for (K(x)|K, v), x is transcendental over K, (ai)i∈N is a pseudo Cauchy
sequence of transcendental type in (KS, v) with pseudo limit x, and (KS(x)|KS, v)
is immediate.

Proof. S is complete as it satisfies (CKS2) because its support is N.
By Lemma 24, (ai)i∈N is a pseudo Cauchy sequence in KS with pseudo limit x.

Suppose (ai)i∈N were of algebraic type. Then by [8, Theorem 3], there would exist
some algebraic extension (KS(y)|KS, v) with y a pseudo limit of the sequence. But
then v(x− y) > v(x− ai) for all i ∈ N and by part 1) of Lemma 25, (ai)i∈S is also a
key sequence for (K(y)|K, v). Hence by Lemma 26, KS ⊂ K(y)h = Kh(y). Since y
is algebraic over K, the extension Kh(y)|Kh is finite. On the other hand, Kh

S|Kh is
infinite since (KS4) holds. This contradiction shows that the sequence (ai)i∈N is of
transcendental type. Hence x is transcendental over K and it follows from Lemma 9
that (KS(x)|KS, v) is immediate. �
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The following is Theorem 5.9 of [9], reformulated using the notion of “pre-complete
key sequence”.

Theorem 31. Assume that (K(x)|K, v) is a transcendental extension and S is a
pre-complete key sequence for (K(x)|K, v). Then

Kh
S = IC (K(x)|K, v) .

Further, KSv is the relative algebraic closure of Kv in K(x)v, and the torsion
subgroup of vK(x)/vKS is finite.

3.3. Key sequences and key polynomials.

Proposition 32. Take any valued field (K, v), an extension (K(x)|K, v), and a key
sequence S = (ai)i∈S for (K(x)|K, v) with additional properties (KS5) and (KS6).
Let Qi ∈ K[X] be the minimal polynomial of ai over K. Then Qi is a key polynomial
and ai is the unique maximal root of Qi .

Assume in addition that S is complete. Then (Qi)i∈S is a complete sequence of
key polynomials for (K(x)|K, v).

Proof. By (KS5) and (7) we know that whenever a′i 6= ai is a conjugate of ai over K,
then v(ai − a′i) ≤ v(x− ai−1) < v(x− ai); this implies that v(x− a′i) = min{v(x−
ai), v(ai−a′i)} < v(x−ai). Hence ai is the unique maximal root of Qi . In particular,
δ(Qi) = v(x− ai).

Assume that f ∈ K[X] such that δ(f) ≥ δ(Qi) = v(x − ai). Take a root z of
f such that v(x − z) = δ(f) ≥ v(x − ai) > v(x − ai−1). Then by (KS6), deg f ≥
[K(z) : K] ≥ [K(ai) : K] = degQi . This proves that Qi is a key polynomial.

We turn to the last assertion of our proposition. We note that if S = {1, . . . , n}
and x is transcendental over K, then by our assumption, v(x−an) = max v(x− K̃);
this also holds if x is algebraic over K, since then by the definition of completeness,
x = an and thus v(x− an) =∞.

We wish to show that for every f(X) ∈ K[X] there exists i ∈ S such that
degQi ≤ deg f and δ(f) ≤ δ(Qi). Let z be a root of f such that v(x − z) = δ(f).
Take i ∈ S maximal with degQi ≤ deg f . Suppose that v(x − z) > v(x − ai).
Then by what we have said above, i cannot be the last element of S. By (KS6),
deg f ≥ [K(z) : K] ≥ [K(ai+1) : K] = degQi+1, which contradicts our choice of i.
This shows that δ(f) = v(x− z) ≤ v(x− ai) = δ(Qi). �

3.4. Key sequences and tameness.

We wish to characterize the extensions (K(x)|K, v) for which there exist key se-
quences.

If an element a ∈ K̃ satisfies the conditions of Lemma 21, then (K(a)|K, v) is a
tame extension. More generally, the following holds.
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Proposition 33. Take any valued field (K, v). If a is homogeneous over K, then
(K(a)|K, v) is a tame extension. If (K, v) is henselian and S is a key sequence for
(K(x)|K, v), then KS is a tame extension of K.

Proof. If (K(a)|K, v) is not a tame extension, then by part 2) of Lemma 7, also
(K(a)h|Kh, v) is not a tame extension. Then a does not lie in the ramification field
Kr of the extension (Ksep|Kh, v) since by [10, part (b) of Lemma 2.13], Kr is the
unique maximal tame extension of (Kh, v). So there exists an automorphism σ in
the ramification group such that σa 6= a. But by the definition of the ramification
group,

Kras(a,K) ≥ v(σa− a) > va ,

showing that a is not homogeneous over K.

Now assume that (K, v) is henselian and S = (ai)i∈S is a key sequence for
(K(x)|K, v). By induction on i ∈ S, we prove that (K(ai)|K, v) is a tame ex-
tension. This holds for i = 1 since a1 ∈ K. Now assume that we have al-
ready shown that (K(ai−1), v) = (K(ãi−1), v) is a tame extension of (K, v). Since
ãi − ai−1 is homogeneous over K, the first part of our proposition shows that
(K(ãi − ai−1)|K, v) is a tame extension. Hence by parts 3) and 4) of Lemma 7,
(K(ai−1, ãi − ai−1), v) and its subfield (K(ai), v) = (K(ãi), v) are tame extensions
of (K, v). As KS = K(ai | i ∈ S), we can again employ part 3) of Lemma 7 to
conclude that (KS|K, v) is a tame extension. �

We now prove the existence of key sequences under suitable tameness assumptions:

Proposition 34. Take a henselian field (K, v) and an extension (K(x)|K, v). If

x ∈ K̃, then assume that the extension (K(x)|K, v) is tame. If x is transcendental
over K, then assume that there is a tame extension (L′|K, v) such that for a suitable
extension of v from K(x) to L′(x), the extension (L′(x)|L′, v) is weakly pure in x.
Then there exists a pre-complete key sequence S = (ai)i∈S for (K(x)|K, v) such that

KS ⊆ L′. It is complete if x ∈ K̃ or (L′(x)|L′, v) is valuation transcendental.

Proof. If x ∈ K̃, then we set L′ = K(x); hence in all cases we have that (L′|K, v) is
a tame extension.

If v(x − K) has no maximum, then we set S = {1} and a1 = 0; otherwise, we
choose a1 ∈ K such that v(x − a1) = max v(x − K). Then (KS1) is satisfied and

(KS3) holds for i = 1; (KS2) is void for i = 1. Note that if x ∈ K̃, then a maximum
always exists by part 1) of Corollary 11.

Now we assume that i > 1 and a key sequence Si−1 = (aj)1≤j≤i−1 for the extension
(K(x)|K, v) has already been constructed such that KSi−1

⊆ L′. By Proposition 28,
it has properties (KS5) and (KS6).

If x ∈ K(ai−1), then from (KS3) it follows that x = ai−1, i.e., (CKS1) holds for
n = i−1. In this case, or if (CKS2) holds for n = i−1, our construction stops here.
Otherwise, we proceed as follows.
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First we show that v(x−K(ai−1)) has a largest element, which is not the largest
element of v(x−L′). Assume that x is transcendental overK. If v(x−K(ai−1)) would
not have a largest element, then x would be the limit of a pseudo Cauchy sequence
in (K(ai−1), v) of transcendental type by part 1) of Lemma 14 and consequently,
(CKS2) would hold for n = i − 1. Hence v(x − K(ai−1)) has a largest element
v(x − ai−1). If this would also be the largest element of v(x − L′), then by part 2)

of Lemma 14 it would also be the largest element of v(x − K̃) and again, (CKS2)
would hold for n = i−1. Now assume that x is algebraic over K. As (L′|K(ai−1), v)
is a tame extension by part 4) of Lemma 7, we know from part 1) of Corollary 11
that v(x−K(ai−1)) has a largest element. However, as x ∈ L′ \K(ai−1), this is not
the largest element v(x− x) =∞ of v(x− L′).

We are going to prove that there is a homogeneous approximation for x−ai−1 over
K. By what we have shown above, v(x−ai−1) = max v(x−K(ai−1)) is not the largest
element of v(x−L′), so there is some z ∈ L′\K(ai−1) such that v(x−z) > v(x−ai−1);
in the algebraic case we can choose z = x. We have that v(z−ai−1) = v(x−ai−1). In
all cases, (K(z, ai−1)|K, v) is a subextension of (L′|K, v), so by part 4) of Lemma 7,
it is a tame extension.

We set b := z−ai−1. If e is the smallest natural number such that e vb ∈ vK, then
e is not divisible by charKv. Further, if c ∈ K is such that vcbe = 0, then cbev is
separable-algebraic over Kv. Hence the assumptions of the first part of Lemma 22
are satisfied and we obtain the existence of a homogeneous approximation a ∈ K̃
of b over K. Also in the transcendental case, a is a homogeneous approximation of
x− ai−1 over K since

v(x− ai−1 − a) ≥ min{v(z − ai−1 − a), v(x− z)} > v(z − ai−1) = v(x− ai−1) .

We set ãi := ai−1 + a.
Assume that v(x −K(ãi)) has a maximum. Then we pick ai ∈ K(ãi) such that

v(x − ai) = max v(x − K(ãi)). From Lemma 29 we infer that K(ai) = K(ãi). If
v(x − K(ai)) has no maximum, then we set ai := ãi . In both cases, (KS2) and
(KS3) hold. This shows that Si := (aj)1≤j≤i a key sequence for (K(x)|K, v). By
Lemma 26 and part 3) of Lemma 14, using also that (L′, v) is henselian since (K, v)
is,

KSi
⊆ K(x)h ∩ K̃ = IC (K(x)|K, v) ⊆ IC (L′(x)|L′, v) = L′ .

This completes the induction step.
If the construction stops at some n ∈ N, then we set S := Sn . If the construction

does not stop (which can only happen in the transcendental case), then we set S :=⋃
i∈N Si ; it is straightforward to prove that this is a key sequence for (K(x)|K, v).

In both cases, KS ⊆ L′.
As we have shown above, if the construction stops at some n ∈ N, then (CKS1) or

(CKS2) hold, that is, the key sequence S = Sn is pre-complete, and it is complete

if x ∈ K̃, in which case (CKS1) must hold. If the sequence is not complete, then
that means that x is limit of a pseudo Cauchy sequence of transcendental type in
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(K(an), v). But this is also a pseudo Cauchy sequence of transcendental type in
(L′, v), as shown in the proof of part 4) of Lemma 14. If (L′(x)|L′, v) is valuation
transcendental, then such a pseudo Cauchy sequence cannot exist, showing that S
must be complete.

Finally, if the construction does not stop, then the index set S of S is N and S
is complete by definition. �

Remark 35. It is an open problem whether it can be shown that also ai− ai−1 is a
homogeneous approximation of x− ai−1 over K. Likewise, one may be tempted to
believe that also ãi is homogeneous over K, but this appears to be not the case in
general.

We can give the following characterization of elements in tame extensions:

Corollary 36. An element y ∈ K̃ belongs to a tame extension of a henselian field
(K, v) if and only if there is a finite key sequence (ai)1≤i≤k for (K(y)|K, v) such that
y = ak .

Proof. Suppose that such a sequence exists. Then y = ak ∈ KS, and by Proposi-
tion 33, KS is a tame extension of K.

The converse is part of Proposition 34. �

Corollary 37. Assume that (K, v) is a henselian field. Then (K, v) is a tame field
if and only if for every transcendental extension (K(x)|K, v) there exists a complete
key sequence for (K(x)|K, v).

Proof. The implication “⇒” is part of Proposition 34, for L′ = K̃. The converse
follows from [2, Proposition 3.12]. �

3.5. Proof of the main theorems.

Proof of Theorem 3: Take a henselian valued field (K, v) and a transcendental
extension (K(x)|K, v). Assume that there is a tame extension (L′|K, v) such that
for some extension of v from K(x) to L′(x), the extension (L′(x)|L′, v) is weakly
pure. By Proposition 34 there exists a pre-complete key sequence S = (ai)i∈S for
(K(x)|K, v) with KS ⊆ L′. It satisfies (KS4) by Lemma 27, and (KS5) and (KS6)
by Proposition 28.

We take Qi to be the minimal polynomial of ai over K. Then by Proposition 32,
Qi is a key polynomial and ai is its unique maximal root. Assertion (ii) follows from
(KS1). Assertion (iv) follows from (KS4). Assertion (v) follows from Lemma 24.
Assertion (x) follows from part 2) of Lemma 25 together with Proposition 32.

From Theorem 31 we know that L := IC (K(x)|K, v) = Kh
S. Since (K, v) is

henselian, so is KS, thus L = Kh
S = KS . By definition, KS = K(ai | i ∈ S). If

S = {1, . . . , n}, then by Lemma 26, KS = Kh
S = K(an)h = K(an). This proves

assertion (ix). Further, by part 3) of Lemma 14 and the fact that L′ is henselian,
L = IC (K(x)|K, v) ⊆ IC (L′(x)|L′, v) = L′.
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Assume that S = N. Then by definition, S is a complete key sequence. From
Proposition 32 it follows that (Qi)i∈S is a complete sequence of key polynomials, so
we set Ω = ∅. Then assertions (i) and (iii) hold, assertion (vi) follows from (KS3),
and assertions (vii) and (viii) hold trivially. From Proposition 30 and the equality
L = KS it follows that the extension (L(x)|L, v) is immediate and weakly pure.

Since KS ⊆ K̃, this implies that the extension (K(x)|K, v) is valuation algebraic.

Now assume that S = {1, . . . , n}. Consequently, as S is a pre-complete key
sequence and x is transcendental over K, (CKS2) must hold. Assume first that

v(x−an) = max v(x− K̃). Then by Lemma 12, the extension (K(an, x)|K(an), v) is
weakly pure and valuation transcendental. Since L = KS = K(an), we have actually
proved that the extension (L(x)|L, v) is weakly pure and valuation transcendental.
Moreover, we know from Proposition 32 that (Qi)i∈S is a complete sequence of key
polynomials. As before we set Ω = ∅, so that assertions (i), (iii), (vii) and (viii)
hold. Further, assertion (vi) for i = n holds by our assumption, and for i < n follows
from (KS3).

Now assume that x is the limit of a pseudo Cauchy sequence, say (zν)ν<λ where
λ is some limit ordinal, of transcendental type in (K(an), v). Since L = K(an), it
follows from Lemma 9 that the extension (L(x)|L, v) is weakly pure and immediate.
We set Ω = {ν | ν < λ} and take Qν to be the minimal polynomial of zν over K.
Then assertion (vi) follows from (KS3), and assertion (vii) holds because Ω 6= ∅. For
the proof of assertion (viii) we observe that we have set Ω = ∅ when S is not finite
(hence equal to N); hence it remains to show that for all ν ∈ Ω, degQν = degQn =
[K(an) : K]. Without loss of generality we may assume that v(x− zν) ≥ v(x− an).
Then from Lemma 29 we obtain that K(zν) = K(an), which completes our proof of
assertion (viii).

In order to prove assertion (iii), we only have to address the polynomials Qν for
ν ∈ Ω. As we have already proved in Proposition 32 that an is the unique maximal
root of its minimal polynomial over K, and as we have just shown above that an
may be replaced by zν , we find that the same holds for zν .

Now we have to show that also assertion (i) holds. We know already from Propo-
sition 32 that each Qi for i ∈ S is a key polynomial. To prove the same for each
Qν , assume that f ∈ K[X] such that δ(f) ≥ δ(Qν) = v(x− zν). Take a root z of f
such that v(x− z) = δ(f) ≥ v(x− zν) ≥ v(x− an) > v(x− an−1). Then by (KS6),
deg f = [K(z) : K] ≥ [K(an) : K] = degQn = degQν . This proves that Qν is a key
polynomial.

To show completeness, take any f(X) ∈ K[X] of positive degree and a root z of f
such that v(x− z) = δ(f). Take i ∈ S maximal with degQi ≤ deg f . If i < n, then
as in the proof of Proposition 32 it follows that δ(f) = v(x−z) ≤ v(x−ai) = δ(Qi).
Now assume that i = n. If δ(f) ≤ δ(Qn), then we are done. Hence assume otherwise,
so that v(x− z) > v(x− an). Since in the present case x is the limit of the pseudo
Cauchy sequence (zν)ν<λ of transcendental type in (K(an), v) and this cannot have
a limit in K(an), there must be some ν < λ such that v(x− zν) > v(x− z), whence
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δ(Qν) > v(x − z) = δ(f). On the other hand, degQν = degQn ≤ deg f . This
finishes our proof of the completeness and thus of assertion (i).

We turn to the final assertions of Theorem 1. We have already shown in all cases
that the extension (L(x)|L, v) is weakly pure. The extension (K(x)|K, v) is valuation
algebraic if and only if the extension (L(x)|L, v) is. This happens precisely if the
extension (L(x)|L, v) is immediate, and this is the case if and only if S = N or Ω is
nonempty by our construction. In the case of S = N, we know from Proposition 30
that (ai)i∈N is a pseudo Cauchy sequence in (L, v) of transcendental type with x as
its limit. �

Proof of Theorem 4: Take a henselian valued field (K, v) and a tame algebraic
extension (K(x)|K, v). Then by Proposition 34 there exists a complete key sequence
S = (ai)i∈S for (K(x)|K, v). It satisfies (KS4) by Lemma 27, and (KS5) and (KS6)
by Proposition 28. Since (K(x)|K, v) is a finite extension, also S must be finite,
hence of the form S = {1, . . . , n} for some n ∈ N. As before, we take Qi to be the
minimal polynomial of ai over K. Then by Proposition 32, (Qi)i∈S is a complete
sequence of key polynomials for (K(x)|K, v), and assertion (iii) holds. Assertion
(iv) of Theorem 4 holds by (KS4). Assertion (ii) follows from (KS1). Assertion
(v) follows from Lemma 24. Assertion (vi) for i < n follows from (KS3), and for
i = n from (CKS1) which also yields assertion (vii). The analogue of assertion (x)
of Theorem 1 is proved as in the proof of Theorem 3. �

3.6. Proof of Theorem 6.

In view of Theorem 4, we only have to prove Theorem 6 for infinite extensions L|K.
There is a rather quick way to do this. Since the tame extension is in particular
separable-algebraic, we can employ the proof of [9, Theorem 3.16] to construct an
immediate extension of v from L to L(x) such that the extension (L(x)|L, v) is
weakly pure and L = IC (K(x)|K, v). (Note that for this step it is not needed that
(L|K, v) be a tame extension.) Then we can apply Theorem 3 and Proposition 5.

Alternatively, Theorem 6 can be proved by a more direct construction which ap-
plies the methods developed for the proof of Theorem 4 to suitable subextensions of
increasing finite degree. We choose a sequence ỹj , j ∈ N such that K(ỹj) ( K(ỹj+1)
for all j, and L =

⋃
i∈NK(ỹj). Then by part 4) of Lemma 7, all subextensions

K(ỹj)|K, v) of (L|K, v) and all extensions K(ỹj+1)|K(ỹj), v) are tame.
Now we build key sequences for the extensions (K(ỹj)|K, v) that satisfy a com-

patibility condition which will allow us to work with the union over these sequences.
We proceed by induction on j. At every step we will adjust the element ỹj , replacing
it by an element yj such that K(yj) = K(ỹj) and thus in the end, L =

⋃
j∈NK(yj).

In fact, at every step we will construct a complete key sequence for the extension
(K(yj)|K, v).

We set y1 = ỹ1 . From Proposition 34 we obtain a complete key sequence S1 =
(ai)1≤i≤n1 for the extension (K(y1)|K, v). Having already chosen a suitable element
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yj ∈ L withK(yj) = K(ỹj) and constructed a complete key sequence Sj = (ai)1≤i≤nj

for the extension (K(yj)|K, v), we note that yj = anj
and proceed as follows. First,

we choose zj ∈ K(yj) such that v(ỹj+1− zj) = max v(ỹj+1−K(yj)). This is possible
by part 1) of Corollary 11. Then we choose cj ∈ K such that

(13) vcj(ỹj+1 − zj) > v(yj − anj−1)

and set

(14) yj+1 := yj + cj(ỹj+1 − zj) .
At this point we note that since yj, zj, cj ∈ K(yj) = K(ỹj) ⊂ K(ỹj+1), we have that

(15) yj+1 ∈ K(ỹj+1) and ỹj+1 = c−1
j (yj+1 − yj) + zj ∈ K(yj+1, yj) .

We show that

(16) v(yj+1 − yj) = max v(yj+1 −K(yj)) .

If this were not true, there would be y′j ∈ K(yj) such that v(yj+1−y′j) > v(yj+1−yj).
By the definition of yj+1 , this is equivalent to

v(yj + cj(ỹj+1 − zj)− y′j) > vcj(ỹj+1 − zj) ,
which in turn is equivalent to

v(ỹj+1 − (zj + c−1
j (y′j − yj)) > v(ỹj+1 − zj) ,

contradicting our choice of zj .

By construction of yj+1 ,

(17) v(yj+1 − yj) = vcj(ỹj+1 − zj) > v(yj − anj−1) ≥ v(yj − ai)
for i < nj. Thus, part 1) of Lemma 25 shows that (ai)i<nj

is a key sequence for
(K(yj+1)|K, v). As ãnj

− anj−1 is a homogeneous approximation of yj − anj−1 over
K, we find that

v(yj − ãnj
) = v(yj − anj−1 − (ãnj

− anj−1)) > v(yj − anj−1) .

Further,

v(yj+1 − anj−1) = min{v(yj+1 − yj), v(yj − anj−1)} = v(yj − anj−1) .

Using this, we compute:

v(yj+1 − anj−1 − (ãnj
− anj−1)) = v(yj+1 − ãnj

) ≥ min{v(yj+1 − yj), v(yj − ãnj
)}

> v(yj − anj−1) = v(yj+1 − anj−1) ,

shows that (KS2) holds for yj+1 in place of x and nj in place of i. With the same
choices for x and i, also (KS3) holds by equation (16). We have now proved that
Sj is a key sequence for K(yj+1)|K, v).

Using the methods of the proof of Proposition 34, we now extend Sj to a complete
key sequence Sj+1 = (ai)1≤i≤nj+1

for K(yj+1)|K, v). In particular, we have that
yj+1 = anj+1

and by (KS4),

K(yj) = K(anj
) ⊂ K(anj+1

) = K(yj+1) ,
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hence by (15), K(yj+1) = K(ỹj+1). This completes our induction. It remains to
prove that S :=

⋃
j∈NSj = (ai)i∈N gives rise to a strongly complete sequence of key

polynomials (Qi)i∈N for (L|K, v) by taking each Qi to be the minimal polynomial of
the element ai over K.

In order to show that (SCKP1) holds, we first observe that L =
⋃
j∈NK(yj) =⋃

j∈NK(anj
) ⊆ K(ai | i ∈ S). On the other hand, for every i ∈ S there is j ∈ N

such that i ≤ nj , and by Lemma 26, ai ∈ K(anj
). Hence L = K(ai | i ∈ S).

In order to show that (SCKP2) holds, pick any k ∈ N. Choose j ∈ N such that
k ≤ nj . By construction, (ai)1≤i≤nj

is a complete key sequence for the extension
K(anj

|K, v). Hence by part 2) of Lemma 25, (ai)i≤k is a complete key sequence for
(K(ak)|K, v). Now Proposition 32 shows that (Qi)i≤k is a complete sequence of key
polynomials for (K(ak)|K, v), and that property 3) holds. The validity of assertions
(iv), (v), (vi) and (x) is shown as in the proof of Theorem 4. This completes the
proof of the theorem. �

4. Construction of extensions

In this section we show how extensions of the valuation from a tame field (K, v)
to a transcendental extension K(x) can be constructed by use of implicit function
fields, key sequences and pseudo Cauchy sequences. At the same time, we introduce
a basic classification of these extensions. The first criterion is whether we want the
implicit function field L to be a finite or infinite extension of K. Note that as (K, v)
is henselian, the extension of v to every algebraic extension field of K is unique.
Using Theorem 1 and Corollary 2 together with Lemma 12, we obtain the following
case distinction:

Case A: L is a finite extension of K. As L is supposed to be the implicit function
fieldof (K(x)|K, v), we know from Theorem 1 that (L(x)|L, v) is weakly pure. Hence
by Lemma 12 there are three possible subcases:

A.1: For some a ∈ L, the value v(x− a) is non-torsion over vK.

A.2: For some a ∈ L and some d ∈ K and e ∈ N, vd(x− a)e = 0 and d(x− a)ev is
transcendental over Kv.

A.3: The element x is limit of a pseudo Cauchy sequence in (L, v) of transcendental
type.

Case B: L is an infinite extension of K. For it to be an implicit constant field, it
must be countably generated separable-algebraic over K.

We will now discuss the construction methods in all cases in detail. Let us first
consider Case A. We take a ∈ K̃ such that L = K(a). If we assign to x− a a value

in some ordered abelian group containing vK̃ that is non-torsion over vK (i.e., not

contained in vK̃), then we are in case A.1. If on the other hand we pick d ∈ K and
e ∈ N such that vd(x − a)e = 0 and have extended v so that d(x − a)ev becomes
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transcendental over Kv, then we are in case A.2. In both cases, for every b ∈ K̃ we
have that

v(x− b) = min{v(x− a), v(b− a)} .
Consequently, for each polynomial f ∈ K̃[X], if we write f(X) = c

∏n
i=1(X − bi),

then

vf(x) = vc+
n∑
i=1

min{v(x− a), v(bi − a)} .

This shows that in cases A.1 and A.2 the extension of v from K to K(x) is uniquely
determined by our choice of a and the information on x− a in the respective cases.

Assume now that we decide for case A.3. We note that every pseudo Cauchy
sequence in (K(a), v) without a limit in K(a) must be of transcendental type by
part 2) of Corollary 11, as (K(a), v) is a tame field by part 1) of Lemma 7. This
implies that it uniquely determines an extension of v from K(a) to K(x, a), and thus
determines an extension of v from K to K(x). In order to obtain a construction
for case A.3, we must assume that (K(a), v) and hence also (K, v) is not a maximal
field. Then we may choose any pseudo Cauchy sequence in (K(a), v) without a limit
in K(a) for the construction of the extension.

In all of the above cases, (L(x)|L, v) is weakly pure, and it follows from Lemma 13
that L is the implicit constant field of L(x)|L, v). To obtain that L is also the
implicit constant field of K(x)|K, v), we refine our construction as follows. We write
α := Kras(a,K). In cases A.1 and A.2 we may choose the value v(x − a) to be
larger that α. In case A.3, provided that (K, v) is not a maximal field, we choose
any pseudo Cauchy sequence (aν)ν<λ in (K(a), v) without a limit in K(a). After
multiplying all aν with an element c ∈ K of high enough value, we may assume that
there is some µ < λ such that v(aµ+1 − aµ) > α. Now we set bν := aν − aµ + a.
Then also (bν)ν<λ is a pseudo Cauchy sequence in (K(a), v) without a limit in K(a).
We extend v from K(a) to K(x, a) by taking x to be a limit of this pseudo Cauchy
sequence. Then

v(x− a) = v(x− bµ) = v(bµ+1 − bµ) = v(aµ+1 − aµ) > α .

In all cases, from Proposition 17 we obtain that a ∈ K(x)h. Hence,

L = K(a) ⊆ K(x)h ∩ K̃ ⊆ IC (K(x)|K, v) ⊆ IC (L(x)|L, v) = L ,

which shows that L = IC (K(x)|K, v).

Finally, assume that we are picking a countably generated infinite separable-
algebraic extension L of K to be our implicit constant field. In this case, the proof of
[9, Proposition 3.16] yields a pseudo Cauchy sequence of transcendental type in (L, v)
which determines an extension of v from L to L(x) such that L = IC (K(x)|K, v).
In contrast to the previous cases, even if (K, v) is a maximal field, (L, v) is not (see
[1, Theorem 1.1]), and there will always be the necessary pseudo Cauchy sequence
in (L, v) for the construction of the extension.
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