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Abstract. For arbitrary real closed fields R, we study the structure of the
space M(R(y)) of R-places of the rational function field in one variable over R
and determine its dimension to be 1. In the case of non-archimedean R, we ex-
hibit the self-similarities that can be found in such spaces. For extensions F |R
of formally real fields, with R real closed and satisfying a natural condition,
we find embeddings of M(R(y)) in M(F (y)) and prove uniqueness results.
Further, we study embeddings of products of spaces of the form M(F (y)) in
spaces of R-places of rational function fields in several variables. Our results
uncover rather unexpected obstacles to a positive solution of the open question
whether the torus can be realized as a space of R-places.

1. Introduction

For any field K, the set of all orderings on K, given by their positive cones P ,
is denoted by X (K). This set is non-empty if and only if K is formally real. The
Harrison topology on X (K) is defined by taking as a subbasis the Harrison
sets

H(a) := {P ∈ X (K) | a ∈ P} , a ∈ K \ {0} .

With this topology, X (K) is a boolean space, i.e., it is compact, Hausdorff and
totally disconnected (see [13, p. 32]).

Associated with every ordering P on K is an R-place λ(P ) of K, that is, a place
of K with image contained in R ∪ {∞}, which is compatible with the ordering
in the sense that non-negative elements are sent to non-negative elements or ∞.
The set of all R-places of K will be denoted by M(K). The Baer-Krull Theorem
(see [12, Theorem 3.10]) shows that the mapping

λ : X (K) −→ M(K)

(which we will also denote by λK) is surjective. Through λ, we equip M(K) with
the quotient topology inherited from X (K), making it a compact Hausdorff space
(see [12, p. 74 and Cor. 9.9]), and λ a continuous closed mapping. According to
[12, Theorem 9.11] the subbasis for the quotient topology on M(K) is given by
the family of open sets of the form

U(a) = {ζ ∈ M(K) | ζ(a) > 0}
where a is in the real holomorphy ring of K, i.e., ζ(a) 6= ∞ for all ζ ∈ M(K).
Since for every b ∈ K the element b

1+b2
is in the real holomorphy ring of K (see
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[12, Lemma 9.5]), we have that

H ′(b) := {ζ ∈ M(K) | ∞ 6= ζ(b) > 0} = U

(
b

1 + b2

)

is a subbasic set for every b ∈ K. So we can assume that the topology on M(K)
is given by the subbasic sets H ′(b), b ∈ K.

Throughout this paper, R(y) will always denote the rational function field in
one variable over the field R. For the case of real closed R, we gave in [15] a
handy criterion for two orderings on R(y) to be sent to the same R-place by λ :

Theorem 1. Take a real closed field R and two distinct orderings P1, P2 of R(y).
Then λ(P1) = λ(P2) if and only if the cuts induced by y with respect to P1 and
P2 in R are upper and lower edge of a ball in R.

See Section 2 for the notions in this theorem and for more details. In the present
paper, we put this result to work in order to find, for given formally real extensions
F of a real closed field R, continuous embeddings ι of M(R(y)) in M(F (y)).

For any field extension L|K, the restriction

res = resL|K : M(L) 3 ζ 7→ ζ|K ∈ M(K)

is continuous (see [5, 7.2.]). An embedding ι : M(K) → M(L) will be called
compatible with restriction if res ◦ ι is the identity.

In order to determine when such embeddings of M(R(y)) in M(F (y)) exist,
we have to look at the canonical valuations of the ordered fields R and F . The
canonical valuation v of an ordered field is the valuation corresponding to its
associated R-place. If v is the canonical valuation of the ordered field F , then its
restriction to R is the canonical valuation of the field R ordered by the restriction
of the ordering of F , and we will denote it again by v. Recall that the ordering
and canonical valuation of a real closed field are uniquely determined. By vF
and vR we denote the respective value groups. Then vF |vR is an extension of
ordered abelian groups. Note that vR = {0} if and only if R is archimedean
ordered. In Section 5, we will prove:

Theorem 2. Take a real closed field R and a formally real extension field F of
K. A continuous embedding ι of M(R(y)) in M(F (y)) compatible with restriction
exists if and only if vR is a convex subgroup of vF , for some ordering of F . In
particular, such an embedding always exists when R is archimedean ordered. If
F is real closed, then there is at most one such embedding.

For the case of F not being real closed, we prove a partial uniqueness result
(Theorem 31).

Let us point out a somewhat surprising consequence of the above theorem.
If R is a non-archimedean real closed field and F is an elementary extension
(e.g., ultrapower) of R of high enough saturation, then vR will not be a convex
subgroup of vF and there will be no such embedding ι.

In Section 6 we consider the special case where R is archimedean ordered and
give a more explicit construction of ι and a more explicit proof of the unique-
ness. The construction we give is of interest also when other spaces of places are
considered (e.g., spaces of all places, together with the Zariski topology).
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It is well known that for an archimedean real closed field R, M(R(y)) is home-
omorphic to the circle (over R, with the usual interval topology). In fact, this is
an easy consequence of Theorem 1. Hence our embedding result shows that each
M(F (y)) contains the circle as a closed subspace. We use this fact in Section 7
to prove:

Theorem 3. If F is any real closed field, then the (small or large) inductive
dimension as well as the covering dimension of M(F (y)) is 1.

While spaces of orderings are well understood, this is not the case for spaces
of R-places. Some important insight has been gained (see for instance [1], [2], [3],
[6], [9], [15], [17], [21]), but several essential questions have remained unanswered.
For example, it is still an open problem which compact Hausdorff spaces are
realized as M(F ) for some F . It is therefore important to determine operations on
topological spaces (like passage to closed subspaces, taking finite disjoint unions,
taking finite products) under which the class of realizable spaces is closed. It has
been shown in [6] that closed subspaces and finite disjoint unions of realizable
spaces are again realizable, as well as products of a realizable space with any
boolean space.

It has remained an open question whether the product of two realizable spaces
is realizable. A test case is the torus; it is not known whether the torus (or
any other topological space of dimension > 1) is realizable. As M(R(y)) is the
circle, M(R(x)) × M(R(y)) is the torus. In Section 10 we construct a natural
embedding of M(R(x)) × M(R(y)) in M(R(x, y)). This construction is closely
related to the one given in Section 6. If this embedding would be continuous
with an image that is closed in M(R(x, y)), it would follow from the realizability
of closed subspaces that the torus is realizable. It turns out, however, that this
very natural attempt fails. Neither is the embedding continuous, nor is the image
closed. To the contrary, it is dense in, while not being equal to, M(R(x, y)).

This result supports the common feeling among experts that the torus cannot
be realized. A first step to show this could be to show that it cannot be realized
over non-archimedean fields, more precisely, as M(L) where L is an algebraic
extension of a rational function field over a non-archimedean real closed field. Our
Theorem 1 can be employed to show the strange “fractal” topological structure of
M(F (y)) when F is non-archimedean real closed. This generated some hope that
the fractal structure would persist under algebraic extensions of F (y) (whenever
they yield somewhat non-trivial spaces of R-places), so that “non-fractal” spaces
like the torus or even the circle M(R(y)) cannot be embedded. But as pointed
out above, our results show the circle to be a closed subspace of M(F (y)). By
the results of [6], this proves that after a (usually infinite) algebraic extension
of F (y), the space of R-places is again a circle and is thus back to being “non-
fractal”. We also see that the circle can be the space of R-places of arbitrarily
large formally real fields (however, this already follows from [6, Proposition 4.1]).

We will describe the above mentioned fractal structure in Section 9. We have
given it the name “dense fractal pearl necklace”.

In the final Section 12 we will show that for an arbitrary extension L|K, there is
a continuous embedding of M(K) in M(L) compatible with restriction as soon as
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L admits a K-rational place, that is, a place trivial on K with image K ∪{∞}.
In particular, this applies when L is a rational function field over K.

2. Cuts, balls and R-places

Take any totally ordered set T and D, E ⊆ T . We will write D < E if d < e
for all d ∈ D and e ∈ E. Note that ∅ < T and T < ∅. For c ∈ T , we will write
c > D if c > d for all d ∈ D, and c < E if c < e for all e ∈ E.

The pair (D, E) is called a cut in T if D < E and D ∪ E = T . In this case,
D is an initial segment of T , that is, if d ∈ D and d > c ∈ T , then c ∈ D;
similarly, E is a final segment of T , that is, if e ∈ E and e < c ∈ T , then c ∈ E.

We include the cuts C−∞ = (∅, T ) and C∞ = (T, ∅); the empty set is under-
stood to be both initial and final segment of T .

Take any non-empty subset A of T . By A+ we will denote the cut (D, T \D)
for which D is the smallest initial segment of T which contains A. Similarly, by
A− we will denote the cut (T \E, E) for which E is the smallest final segment of
T which contains A.

A cut (D, E) is called principal if D has a last element or E has a first element.
In the first case, the cut is equal to {d}+, where d is the last element of D; in
this case we will denote it by d+. In the second case, the cut is equal to {e}−,
where e is the first element of E; in this case we will denote it by e−.

We will need the following fact:

Lemma 4. If C1, C2 are cuts in T such that C1 < C2, then C1 ≤ a− < a+ ≤ C2

for some a ∈ T .

Proof: Write C1 = (D1, E1) and C2 = (D2, E2). If C1 < C2, then there is
some a ∈ D2 \D1 . Then C1 ≤ a− < a+ ≤ C2 . 2

For any pair (D, E) such that D < E, we define the between set

BetwT (D, E) := {c ∈ T | D < c < E} .

Now consider any ordered field F with its canonical valuation v. If D,E are
any subsets of F , we set

v(E −D) := {v(e− d) | e ∈ E , d ∈ D} ⊆ vF ∪ {∞} .

The following observation is easy to prove.

Lemma 5. Assume that D is an initial segment or E is a final segment of F .
Then v(E −D) is an initial segment of vF ∪ {∞}.

A subset B ⊆ F is called a ball in F (with respect to the valuation v) if it is
of the form

B = BS(a, F ) := {b ∈ R | v(a− b) ∈ S ∪ {∞}}
where a ∈ F and S is a final segment of vF . We consider S = ∅ as a final segment
of vF ; we have that B∅(a, F ) = {a}.

The notion of “ball” does not refer to some space over F , but to the ultrametric
underlying the natural valuation of F . Note that because of the ultrametric
triangle law, every element of a ball is a center, that is, if b ∈ BS(a, F ) then
BS(a, F ) = BS(b, F ). Therefore, v(b − c) ∈ S for all b, c ∈ BS(a, F ). A subset
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B of F is a ball if and only if for any choice of a, b ∈ B and c ∈ F such that
v(a− c) ≥ v(a− b) it follows that c ∈ B.

If 0 ∈ BS(a, F ), then BS(a, F ) = BS(0, F ) is a convex subgroup of the ordered
additive group of F . Every ball in F is in fact a coset of a convex subgroup:
BS(a, F ) = a + BS(0, F ).

By a ball complement for the ball B = BS(a, F ) we will mean a pair (D,E)
of subsets of F such that D < B < E and F = D ∪B ∪E. In this case again, D
is an initial segment and E is a final segment of F .

Lemma 6. If (D,E) is a ball complement for B = BS(a, F ), then

v(E −D) = v(E −B) = v(B −D) = vF \ S .

Proof: First, we show that v(E −D) = vF \ S. For d ∈ D and e ∈ E, we
have that v(a − d) < S and v(e − a) < S because d, e /∈ B. From d < a < e
it then follows that v(e − d) = min{v(e − a), v(a − d)} < S. This proves that
v(E −D) < S.

Now take α ∈ vF , α < S. Choose 0 < c ∈ F such that vc = α. Then
v(a − (a − c)) = vc = α, whence a − c /∈ B and therefore, d := a − c ∈ D.
Similarly, a + c /∈ B and therefore, e := a + c ∈ E. Since d < a < e, we find
α = v(2c) = v(e − d) ∈ v(E − D). Since v(E − D) is an initial segment of
vF ∪ {∞} by Lemma 5, and S is a final segment, we can now conclude that
v(E −D) = vF \ S.

Again by Lemma 5, also v(E−B) and v(B−D) are initial segments of vF∪{∞}.
If d ∈ D, e ∈ E and b ∈ B, then d < b < e, whence v(b − d) ≥ v(e − d) and
v(e−b) ≥ v(e−d). Consequently, v(E−D) is contained in v(E−B) and v(B−D).
On the other hand, d, e /∈ B implies that v(b − d), v(e − b) < S. So by what we
have proved earlier, v(b− d), v(e− b) ∈ v(E −D). This shows that all three sets
are equal. 2

We will say that a cut is the lower edge of the ball B = BS(a, F ) if it is the
cut B−; similarly, a cut is said to be the upper edge of the ball B if it is the cut
B+. Two cuts will be called equivalent if they are either equal or one is the
lower edge B− and the other is the upper edge B+ of a ball B.

A cut of the form B+ or B− for B a ball will be called a ball cut. Principal
cuts in F are ball cuts: a+ = {a}+ = B∅(a, F )+ and a− = {a}− = B∅(a, F )−.

If a cut is neither the lower nor the upper edge of a ball, then we call it a non-
ball cut. The equivalence class of a non-ball cut is a singleton. As the following
lemma will show, the equivalence class of a ball cut consists of two distinct cuts.

Lemma 7. If a cut is the upper or the lower edge of a ball in F , then the ball
is uniquely determined. In particular, B+

1 = B−
2 for two balls B1 and B2 is

impossible. Therefore, equivalence classes of balls contain at most two cuts.

Proof: We show the assertion for a cut B+ = BS(a, F )+; the case of
BS(a, F )− is similar.

Take any d ∈ F and some final segment T of vF . Suppose that B+ =
BT (d, F )+. Since the balls BS(a, F ) and BT (d, F ) are final segments of the left
cut set of B+, their intersection is non-empty. So one of them is contained in the
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other. If they were not equal, the bigger one would contain an element which is
bigger than all elements in the smaller ball, but that is impossible.

Now suppose that B+ = BT (d, F )−. Then d > BS(a, F ), so v(a − d) < S.
Similarly, a < BT (d, F ), so v(a−d) < T . Set d′ := (d+a)/2; then d < d′ < a and
v(a− d′) = v(a− d) = v(d′− a). Consequently, d′ > BS(a, F ) and d′ < BT (d,R),
a contradiction. 2

In combination with Theorem 1, this lemma shows that the mapping λ will
glue not more than two orderings into one R-place. The other, quite different
way of proof is by an application of the Baer-Krull Theorem.

Proposition 8. Take a real closed field F . Then for every ζ ∈ M(F (y)), the
preimage λ−1(ζ) consists of at most two orderings.

Let us add the following observation:

Proposition 9. For every formally real field R, the mapping λ : X (F ) → M(F )
induces continuous glueings, that is, if P1, P2 ∈ X (F ) such that for every pair
of open neighborhoods U1 of P1 and U2 of P2 there are Q1 ∈ U1 and Q2 ∈ U2 with
λ(Q1) = λ(Q2), then λ(P1) = λ(P2).

Proof: Take two orderings P1, P2 ∈ X (F ) such that λ(P1) 6= λ(P2). Since
M(F ) is Hausdorff, there are disjoint open neighborhoods U ′

1 of λ(P1) and U ′
2

of λ(P2). Their preimages U1 := λ−1(U ′
1) and U2 := λ−1(U ′

2) are open neigh-
borhoods of P1 and P2 , respectively. Since U1 ∩ U2 = ∅, there cannot exist any
orderings Q1 ∈ U1 and Q2 ∈ U2 such that λ(Q1) = λ(Q2). 2

3. Topologies on C(F ) and X (F )

Take any ordered field F . The set C(F ) of all cuts in F is linearly ordered as
follows: if (D1, E1) and (D2, E2) are two cuts in F , then (D1, E1) ≤ (D2, E2) if
D1 ⊆ D2 . Intervals are defined as in any other linearly ordered set. Note that
the linear order of C(F ) has endpoints C∞ and C−∞ .

The interval topology on C(F ) (like on every other linearly ordered set
with endpoints) is defined by taking as basic open sets all intervals of the form
(C1, C2) = {C ∈ C(F ) | C1 < C < C2} for any two cuts C1, C2 ∈ C(F ), together
with (C1, C∞] if C1 6= C∞, and [C−∞, C2) if C−∞ 6= C2.

Note that in the interval topology on C(F ), an open interval may have a first or
a last element different from C∞, C−∞. Indeed, if C = a+ is a principal cut and
C1 < a−, then (C1, a

+) has last element C. Similarly, if C = a− and a+ < C2,
then (a−, C2) has first element C. However, this is the only way in which first
and last elements will arise in open intervals:

Lemma 10. Take an interval I that is open in the interval topology. If C is the
first element of I, then C = a+ for some a ∈ F . If C is the last element of I,
then C = a− for some a ∈ F .

Proof: A finite intersection or arbitrary union of intervals of the form (C1, C2)
will only have a first or last element if that is already true for one of the intervals.
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Suppose that C is the first element of I; the case of C being the last element is
similar. Then C is the first element of an interval (C1, C2), which means that
there is no cut properly between C1 and C. Therefore, our assertion follows from
Lemma 4. 2

Let us also note that Lemma 4 implies:

Lemma 11. The principal cuts lie dense in C(F ).

A subset of C(F ) will be called full if it is closed under equivalence. We
define the full topology on C(F ) to consist of all full sets that are open in
the interval topology. This topology is always strictly coarser than the interval
topology because in the latter there are always open sets containing C∞ without
containing C−∞ . Hence it is not Hausdorff, but it is quasi-compact.

Proposition 12. Let B be a ball in F. Then the intervals [B−, B+], (B−, B+)
and their complements are full in C(F ).

Proof: Take any ball B1 in F . If B1∩B = ∅, then both B+
1 and B−

1 lie in the
complement of (B−, B+), and by Lemma 7, also in the complement of [B−, B+].

If B1 ∩B 6= ∅, then B1 ⊆ B or B ⊂
6= B1 . In the latter case again, both B+

1 and
B−

1 lie in the complements of [B−, B+] and (B−, B+). If B1
⊂
6= B, then both B+

1

and B−
1 lie in [B−, B+] and in (B−, B+). Finally, if B1 = B, then both B+

1 and
B−

1 lie in [B−, B+] and in the complement of (B−, B+). 2

Let us also observe:

Lemma 13. If F |R is an extension of ordered fields, then the restriction mapping
res : C(F ) → C(R) preserves ≤ and equivalence and is continuous in both the
interval and the full topology. The preimage of every full subset of C(R) under
res is again full.

Proof: It is clear that res preserves ≤. Hence, the preimage of every convex
set in C(R) is convex in C(F ). Therefore, if I is an open interval in C(R), then
its preimage I ′ is convex, and if it has no smallest and no largest element, then
it is open. If it has a smallest element C ′, then res(C ′) is the smallest element
of I, hence equal to C−∞ in C(R). Therefore, I ′ contains the cut C−∞ of C(F ),
whence C ′ = C−∞. Similarly, a largest element of I ′ can only be equal to C∞
in C(R). It follows that I ′ is open. We have proved that res is continuous with
respect to the interval topology.

Suppose that B is a ball in F . Then B0 = B ∩ R is either empty or a ball
in R. In the first case, resB− = resB+, and in the second case, resB− = B−

0

and resB+ = B+
0 . This proves that res preserves equivalence. This implies that

the preimage U ′ of a full set U is again full: if C1 ∈ U ′ is equivalent to C2, then
res(C1) ∈ U and res(C2) are equivalent, whence res(C2) ∈ U and C2 ∈ U ′. From
this and the continuity shown above it follows that res is continuous with respect
to the full topology. 2
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Take any ordered field L. The notion “full” was introduced in [10] for X (L),
but only for the Harrison sets. We generalize the definition to arbitrary subsets
Y of X (L) by calling Y full if λ−1

L (λL(Y )) = Y . We will call two orderings
P1, P2 ∈ X (L) equivalent if λ(P1) = λ(P2). Hence, Y is full if and only if it is
closed under equivalence.

Note that the intersection of finitely many full sets is again a full set and the
union of any family of full sets is also a full set. We define the full topology on
X (L) by taking as open sets all full sets that are open in the Harrison topology.
In general, this topology is strictly coarser than the Harrison topology and hence
not Hausdorff, but it is always quasi-compact.

Remark 14. 1) If Y is a full open (or closed) subset of X (L), then λ(Y ) is an
open (or closed, respectively) subset of M(L).
2) For any U ⊂ M(L), λ−1(U) is a full subset of X (L).
3) Take any extension L|K of ordered fields. Then in the diagram

X (L) λL−→ M(L)

res
y res

y

X (K) λK−→ M(K)

the restriction mappings are continuous, and the diagram commutes (see [5, 7.2.]).
Being continuous mappings from compact spaces to Hausdorff spaces, the restric-
tion mappings are also closed and proper.

The analogue of Lemma 13 is:

Lemma 15. If L|K is an extension of ordered fields, then the restriction map-
ping res : X (L) → X (K) preserves equivalence and is continuous w.r.t. both the
Harrison and the full topology. The preimage of every full set in X (R) under res
is again full.

Proof: The continuity in the Harrison topology has just been stated. The
fact that res preserves equivalence follows from the commutativity of the above
diagram. As in the proof of Lemma 13, this implies the last assertion, and it
follows that res is also continuous with respect to the full topology. 2

If R is any real closed field, each ordering P on R(y) is uniquely determined
by the cut (D, E) in R where D = {d ∈ R | y − d ∈ P} and E = R \D (cf. [8]).
Hence, we have a bijection

χ : C(R) −→ X (R(y)) ,

which we will also denote by χR .

Proposition 16. With respect to the interval topology on C(R) and the Harrison
topology on X (R(y)), χ is a homeomorphism. The same holds with respect to the
full topologies. For C1, C2 ∈ C(R), C1 is equivalent to C2 if and only if χ(C1) is
equivalent to χ(C2).
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Proof: The first assertion is a consequence of [15, Prop.2.1]. For the proof of
the second assertion, we first prove the third. By definition, χ(C1) is equivalent
to χ(C2) if and only if λ(χ(C1)) = λ(χ(C2)). But by Theorem 1, this holds if
and only if C1 and C2 are equivalent. It follows that the image of a full subset of
C(R) under χ is again full, and the preimage of a full subset of X (R(y)) under χ
is again full. Now the second assertion follows from the first. 2

This proposition, together with Theorem 1, gives us a description of M(R(y))
as the quotient space of C(R) with respect to the equivalence relation for cuts:

Proposition 17. Via the mapping λ ◦ χ, the space M(R(y)) with the topology
induced by the Harrison topology is the quotient space of C(R) with the full topol-
ogy, where the quotient is taken modulo the equivalence of cuts. The full topology
is the coarsest topology on C(R) for which λ ◦ χ is continuous. The image of a
full open set in C(R) under λ ◦ χ is open.

A place in M(R(y)) is called principal if it is the image under λ ◦ χ of a
principal cut in C(R). From Proposition 17 and Lemma 11 we obtain:

Lemma 18. The principal cuts lie dense in M(R(y)).

We will also need:

Proposition 19. The restriction mappings in the following diagram are con-
tinuous (w.r.t. the interval and the Harrison topology as well as w.r.t. the full
topologies), and the diagram commutes:

C(F )
χF−→ X (F (y))

λF (y)−→ M(F (y))

res
y res

y res
y

C(R)
χR−→ X (R(y))

λR(y)−→ M(R(y))

Proof: In view of Lemmas 13 and 15 and part 3) of Remark 14, it just
remains to prove that the square on the left hand side of the diagram commutes.
This follows from the fact that the cut induced by y in R under the restriction
of some ordering from F (y) is simply the restriction of the cut induced by y in
F under this ordering. 2

We note the following fact, which is straightforwar to prove:

Lemma 20. If ι is an embedding of C(R) in C(F ), or of X (K) in X (L), or of
M(K) in M(L), compatible with restriction, then the preimage of a set U under
ι is equal to its image under restriction.

4. Embeddings of C(R) in C(F )

We consider an extension F |R of ordered fields. Our goal is to construct an
embedding ι of M(R(y)) in M(F (y)) under suitable assumptions on the exten-
sion; this will be done in Section 5. In view of Proposition 17, we first define
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an order preserving embedding of C(R) in C(F ). To this end, we need to study
the set of all elements in F that realize a cut in R. More generally, we have to
consider the following situation.

Lemma 21. Take two non-empty sets D < E in R. Assume that (D, E) is either
a non-ball cut in R with BetwF (D, E) 6= ∅, or a ball complement in R. Then

BetwF (D,E) = BS(a, F )

for each a ∈ BetwF (D,E), where S is the largest final segment of vF disjoint
from v(E−D) (or equivalently, the largest subset of vF such that S > v(E−D)).

Proof: First, we show that B := BetwF (D,E) is contained in BS(a, F ). Take
any d ∈ D, e ∈ E and b ∈ B. As d < a < e and |a − b| < e − d, we have that
v(a− b) ≥ v(e−d). We show that we must have v(a− b) > v(e−d), which yields
that b ∈ BS(a, F ).

Suppose that v(a− b) = v(e− d). We assume that b < a; the case of b > a is
symmetrical. Then it follows that v(a − d) = v(e − d) and v(b − d) ≥ v(e − d),
so that v

(
a−b
e−d

)
= 0, v

(
a−d
e−d

)
= 0 and v

(
b−d
e−d

)
≥ 0. We consider the residues

under v, which are real numbers. Firstly, v
(

a−b
e−d

)
= 0 and a−b

e−d > 0 imply that(
a−b
e−d

)
v > 0, and v

(
b−d
e−d

)
≥ 0 and b−d

e−d > 0 imply that
(

b−d
e−d

)
v ≥ 0. Secondly,

we have that

0 ≤
(

b− d

e− d

)
v <

(
a− d

e− d

)
v ,

where the last inequality holds because
(

a−d
e−d

)
v −

(
b−d
e−d

)
v =

(
a−d
e−d − b−d

e−d

)
v =(

a−b
e−d

)
v > 0. So there are rational numbers q1, q2 > 0 such that

(
b− d

e− d

)
v < q1 < q2 <

(
a− d

e− d

)
v ,

which yields
b− d < q1(e− d) < q2(e− d) < a− d ,

whence
b < d + q1(e− d) < d + q2(e− d) < a .

Consequently, d+q1(e−d) , d+q2(e−d) ∈ BetwR(D, E), which can only happen
in the ball complement case. In this case, BetwR(D,E) is a ball BS0(a0, R) in R,
with D < a0 < E. By Lemma 6, S0 = vR \ v(E −D). But

v(d + q2(e− d) − (d + q1(e− d))) = v((q2 − q1)(e− d)) = v(e− d) < S0 ,

in contradiction to d+ q1(e−d) , d+ q2(e−d) ∈ BS0(a0, R). We have now proved
that B is contained in BS(a, F ).

It remains to show that BS(a, F ) is contained in B. If this were not the case,
then for some b ∈ BS(a, F ) there would exist some d ∈ D with b ≤ d, or some
e ∈ E with b ≥ e. We will assume the first case and deduce a contradiction; the
second case is symmetrical. Since b ≤ d < a and BS(a, F ) is convex, we have
that d ∈ BS(a, F ).
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First, we consider the case of (D,E) being the complement of a ball BS0(a0, R)
in R. We have that a0 ∈ B ⊆ BS(a, F ), so BS(a, F ) = BS(a0, F ). Further, we
know from Lemma 6 that v(E−D) = vR\S0 . By our choice of S, this implies that
S∩vR = S0, and we obtain that d ∈ BS(a0, F )∩R = BS0(a0, R), a contradiction.

In the non-ball case, we use that BS(a, F ) = BS(d, F ) to obtain that BS(a, F )∩
R = BT (d,R), where T := S∩vR. From S > v(E−D) it follows that BT (d,R) <
E. In the present case, BetwR(D, E) = ∅, so we find that BT (d,R) is contained
in D. Since BS(a, F ) is convex and contains a > D, it follows that BT (d,R) is a
final segment of D. But this contradicts our assumption that (D, E) is a non-ball
cut. 2

Remark 22. In the case where (D, E) is the complement of a ball BS0(a0, R) in
R, we can choose a = a0. Moreover, S is then equal to the largest final segment
of vF disjoint from vR \ S0 (or equivalently, the largest subset of vF such that
S > vR \ S0).

The next lemma tells us which cuts in F restrict to the same cut in R:

Lemma 23. Take any cut C in R.
a) If C = (D, E), then the set of all cuts in F that restrict to C is {C ′ ∈ C(F ) |
D+ ≤ C ′ ≤ E−}, where the cuts D+ and E− are taken in F . (If D = ∅, then
D+ means the cut F− in F , and if E = ∅, then E− means the cut F+.)
b) Assume that C = B+ or C = B− for a ball B0 = BS0(a0, R) 6= R in R, and
take the ball BS(a0, F ) as in Lemma 21. Then the set of all cuts in F that restrict
to the cut C in R is {C ′ ∈ C(F ) | B+

0 ≤ C ′ ≤ BS(a0, F )+} for C = B+
0 , and

{C ′ ∈ C(F ) | BS(a0, F )− ≤ C ′ ≤ B−
0 } for C = B−

0 . If vR is a convex subgroup
of vF and C is not principal, then B+

0 = BS(a0, F )+, B−
0 = BS(a0, F )−, and the

above sets are singletons.

Proof: The proof of part a) is straightforward. Now assume the hypotheses
of part b). We prove the assertions for C = B+

0 . For C = B−
0 , the proof is

symmetrical. If (D, E) is the ball complement of B0 in R, then C = (D∪B0, E).
By Lemma 21, BetwF (D, E) = BS(a, F ), which implies that BetwF (D∪B0, E) =
{b ∈ BS(a, F ) | b > B0}. This implies the first assertion of part b).

For the proof of the second assertion, assume that vR is a convex subgroup of
vF and that C is not principal. Then S0 is a non-empty final segment of vR,
and S0 6= vR since BS0(a0, R) 6= R by assumption. We wish to show that S0 is
an initial segment of S. Since S0 is a final segment of vR and vR is convex in
vF , also S0 is convex in vF . Hence if S0 were not an initial segment of S, then
there were an element γ ∈ S such that γ < S0. On the other hand, S > vR \ S0,
whence S0 > γ > vR \ S0 6= ∅. But this contradicts the convexity of vR in vF .

Since S0 is an initial segment of S, the ball BS0(a0, R) is coinitial and cofinal
in the ball BS(a0, F ). This yields that B+ = BS(a0, F )+ and B− = BS(a0, F )−.

2

We define an order preserving embedding ι̃ of C(R) in C(F ) as follows. Take
a cut C in R. If C = (D,E) is a non-ball cut in R, then we set ι̃(C) = D+
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or ι̃(C) = E−, where the cuts are taken in F . If C is the lower or upper edge
of a ball B0 6= R in R and (D, E) is the ball complement of B0 , then we set
ι̃(C) = D+ if C = B−

0 is the lower edge, and ι̃(C) = E− if C = B+
0 is the upper

edge. Finally, we set ι̃(R−) = R− and ι̃(R+) = R+. Note that ι̃ is uniquely
determined by this definition if and only if no non-ball cut (D,E) in R is filled
in F because then D+ = E− will still hold in F .

Remark 24. For a cut C in R, its image ι̃(C) is a non-ball cut in F if and only
if C is a non-ball cut in R that is not filled in F . Hence if ι̃(C) is a non-ball cut
in F then it is the only cut in F that restricts to C.

Indeed, if C is a ball cut in R, then by our definition of ι̃, also ι̃(C) is a ball
cut. If C = (D, E) is a non-ball cut in R that is filled in F , then by Lemma 21,
C+ = B− and D− = B+ for a ball B = BS(a, F ) in F , so ι̃(C) is again a ball cut.
But if the non-ball cut C = (D, E) is not filled in F , then it is also a non-ball cut
in F , as the restriction to R of a ball cofinal in the left or coinitial in the right
cut set in F would be a ball in R cofinal in D or coinitial in E.

The embedding ι̃ is order preserving since the mapping C(R) 3 D+ 7→ D+ ∈
C(F ) is order preserving and we have D+ = E− for every cut (D,E) in R.

If BS0(a0, R) 6= R is a ball in R, and if we take S as defined in Lemma 21,
then by our definition,

ι̃(BS0(a0, R)−) = BS(a0, R)− and ι̃(BS0(a0, R)+) = BS(a0, R)+ .

This together with ι̃(R−) = R− and ι̃(R+) = R+ shows:

Lemma 25. The embedding ι̃ sends equivalent cuts to equivalent cuts. Hence the
preimage of a full set is full.

Let us also note:

Proposition 26. If vR is cofinal in vF (which means that there is no f ∈ F
such that f > R), then ι̃ sends principal cuts to principal cuts. Otherwise, no
principal cut is sent to a principal cut.

Proof: A principal cut in R is the upper or lower edge of a ball B∅(a0, R). Take
the ball BS(a0, F ) as in Lemma 21. By definition, ι̃(B∅(a0, R)− = BS(a0, F )−
and ι̃(B∅(a0, R)+ = BS(a0, F )+. The latter cuts are principal if and only if S = ∅.
By Remark 22, S = ∅ if and only if there is no γ ∈ vF such that γ > vR, that is,
if and only if vR is cofinal in vF . 2

If there is at least one non-ball cut in R that is filled in F , then the embedding
ι̃ will not be continuous with respect to the interval topology. Even worse:

Proposition 27. Take any extension F |R of ordered fields. If there is at least
one non-ball cut in R that is filled in F , then there exists no embedding of C(R)
in C(F ) that is continuous with respect to the interval topology and compatible
with restriction.

Proof: Take C to be a non-ball cut in R that is filled in F . Then Lemma 21
shows that BetwF (D, E) is equal to a ball B in F . In order to be compatible
with restriction, an embedding has to send C to a cut C ′ in F which is equal to
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B+, B−, or a proper cut in B. Suppose that C ′ 6= B+. Take any cut C1 < B−
and consider the open interval I = (C1, B

+) in C(F ). Then the restriction of I to
C(R) is an interval in C(R) with last element C. This shows that the preimage of
I under any embedding compatible with restriction is not open, as follows from
Lemma 10 since C is not a principal cut.

In the case of C ′ = B+, choose C2 ∈ C(F ) such that B+ < C2 and consider
the open interval I = (B−, C2) in C(F ). Its restriction to C(R) is an interval with
first element C, hence again not open. 2

The problem is that an open interval in C(F ) can end in a set that fills a cut
from R, in which case its preimage in C(R) will include an endpoint. However, a
full open set will have to enter the between set from both sides, and so we obtain
the following positive result if we switch from the interval to the full topology:

Proposition 28. Assume that vR is a convex subgroup of vF . Then the em-
beddings ι̃ : C(R) → C(F ) constructed above are exactly the embeddings that are
continuous with respect to the full topology and compatible with restriction.

Proof: Take an embedding ι̃ : C(R) → C(F ) as constructed above. In view
of Lemma 23, ι̃ is compatible with restriction.

By virtue of Lemma 25, in order to show that ι̃ is continuous with respect to
the full topology, it suffices to show that the preimage of any full open set U is
open in the interval topology of C(R). Take C ∈ C(R) with ι̃(C) ∈ U . Since U is
open in the interval topology of C(F ), there is an open interval I which contains
ι̃(C). The preimage of I under ι̃ is again an interval, and if C is not an endpoint
of it, then C lies in some open subinterval of this preimage.

Now suppose that C is an endpoint of the preimage of I. Then either all cuts
in I on the left side of ι̃(C) restrict to C, or all cuts in I on the right side of ι̃(C)
restrict to C. In both cases, we have that more than one cut in F restricts to
C. Since we have assumed vR to be a convex subgroup of vF , Lemma 23 shows
that we are in one of the following cases:

a) C is a non-ball cut,

b) C is a principal cut,

c) C = R+ or C = R−.

In all three cases, by our construction of ι̃, we have that ι̃(C) = B− or ι̃(C) = B+

for some ball B in F . Denote the restriction of B− to R by C1 , and the restriction
of B+ to R by C2 . Then C = C1 or C = C2 .

Since U is assumed to be full, B−, B+ ∈ U and since U is open, B− ∈ I1 and
B+ ∈ I2 for some open intervals I1 and I2 contained in U .

We first deal with cases a) and b). In both cases, B− is the smallest cut that
reduces to C1 and B+ is the largest cut that reduces to C2 . The open interval I1

contains a cut on the left of B−, which consequently restricts to a cut C ′
1 < C1 .

Similarly, I2 contains a cut on the right of B+, which consequently restricts to
a cut C ′

2 > C2. For every C ′ ∈ (C2, C
′
2) we have that ι̃(C2) < ι̃(C ′) < ι̃(C ′

2),
hence ι̃(C ′) ∈ I2. This shows that [C2, C

′
2) is contained in the preimage of I2 .

Similarly, it is shown that (C ′
1, C1] is contained in the preimage of I1 .
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In case a), both B+ and B− restrict to C, so we have C = C1 = C2. In case
b), where C = a+ or C = a− for some a ∈ R, B+ restricts to a+ and B− restricts
to a−. In both cases, (C ′

1, C1] ∪ [C2, C
′
2) = (C ′

1, C
′
2). It follows that C has the

open neighborhood (C ′
1, C

′
2) which is contained in the preimage of U .

Now we consider case c). In this case, ι̃(C) = R−, the largest cut that restricts
to C1 = R−, or ι̃(C) = R+, the smallest cut that restricts to C2 = R+. The open
interval I1 contains a cut on the right of R−, which consequently restricts to a
cut C ′

1 > R− . Similarly, I2 contains a cut on the left of R+, which consequently
restricts to a cut C ′

2 < R+. For every C ′ ∈ (C ′
2, R

+) we have that ι̃(C ′
2) < ι̃(C ′) <

ι̃(R+), hence ι̃(C ′) ∈ I2. This shows that (C ′
2, R

+] is contained in the preimage
of I2 . Similarly, it is shown that [R−, C ′

1) is contained in the preimage of I1 .
Now one of these two intervals is an open neighborhood of C.

It follows in all three cases that C has an open neighborhood which is contained
in the preimage of U . This proves that the restriction of U is open.

Now assume that ι̃′ is an embedding of C(R) in C(F ), compatible with restric-
tion. Suppose that there is a cut C in C(R) such that its image ι̃′(C) is not in
accordance with our above construction.

First, we consider the case of C being a non-ball cut. Then our assumption and
the compatibility with restriction yield that D+ < ι̃′(C) < E− in C(F ). If the ball
BS(a, F ) is chosen as in Lemma 21, then D+ = BS(a, F )− and E− = BS(a, F )+.
Therefore, the open interval (D+, E−) in C(F ) is full by Lemma 12. But the
preimage of this interval is the singleton {C}, hence not open.

Now we consider the case of C = B+
0 for some ball B0 in R; the case of C = B−

0
is symmetrical. If (D,E) is the ball complement of B0 in R, then our assumption
and the compatibility with restriction yield that D+ < B+

0 ≤ ι̃′(C) < E− in
C(F ). The same argument as before shows that (D+, E−) is a full open interval
in C(F ). Its preimage in C(R) has C as its last element. Since C is an upper edge
of a ball not equal to R, it follows that this interval is not open.

Finally, we consider the case of C = R+; the case of C = R− is symmetrical.
Then our assumption and the compatibility with restriction yield that R+ < ι̃′(C)
in C(F ). The open set [C−∞, R−) ∪ (R+, C∞] in C(F ) is full by Lemma 12. But
the preimage of it is either {R+} or {R−, R+}, hence not open. 2

Our positive result is contrasted by the following negative result:

Proposition 29. Assume that vR is not a convex subgroup of vF . Then there
are no embeddings ι̃ : C(R) → C(F ) that are continuous with respect to the full
topology and compatible with restriction.

Proof: If vR is not a convex subgroup of vF , then there are α, β ∈ vR
and γ ∈ vF \ vR such that α < γ < β. Take S0 := {β ∈ vR | γ < β} and
B0 := BS0(0, R). Note that B0 6= R because α /∈ S0 , and that B0 is not a
singleton because β ∈ S.

Now if BS(0, F ) is as in Lemma 21, then it follows from Remark 22 that
γ ∈ S \ S0 . This implies that BS0(0, R) is not cofinal in BS(0, F ), whence
B+

0 < BS(0, F )+. Now assume that ι̃ : C(R) → C(F ) is an embedding compatible
with restriction. Then by Lemma 23, B+

0 ≤ ι̃(B+
0 ) ≤ BS(0, F )+. Suppose first
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that B+
0 < ι̃(B+

0 ). By Lemma 12, the open neighborhood U := [C−∞, B−
0 ) ∪

(B+
0 , C−∞] of ι̃(B+

0 ) in C(F ) is full. But ι̃−1(U) = [C−∞, B−
0 ) ∪ [B+

0 , C−∞] or
ι̃−1(U) = [C−∞, B−

0 ] ∪ [B+
0 , C−∞] in C(R), both of which are not open since B0

is not a singleton and therefore B+
0 is not the immediate successor of B−

0 .
Suppose now that B+

0 = ι̃(B+
0 ). Again by Lemma 12, the open neighborhood

U := (BS(0, F )−, BS(0, F )+) of ι̃(B+) in C(F ) is full. But ι̃−1(U) = (B−
0 , B+

0 ] or
ι̃−1(U) = [B−

0 , B+
0 ] in C(R), both of which are not open since B0 6= R. 2

5. Embeddings of M(R(y)) in M(F (y))

We will now consider an extension of formally real fields F |R, with R real
closed, but not necessarily archimedean. We will first consider the case where
also F is real closed.

We assume that vR is convex in vF and start from one of the embeddings
ι̃ : C(R) → C(F ) constructed in the previous section (cf. Proposition 28). We
define an embedding

ι : M(R(y)) −→ M(F (y))
in the following way. If M(R(y)) 3 ζ = λR(y) ◦ χR(C) for a cut C in R, then we
set

ι(ζ) := λF (y) ◦ χF (ι̃(C)) .

Since ι̃ is compatible with the equivalence of cuts, the embedding ι is well-defined
and the diagram

C(F )
λF (y)◦χF−→ M(F (y))

ι̃
x ι

x

C(R)
λR(y)◦χR−→ M(R(y))

commutes.

Theorem 30. Take an extension F |R of real closed fields. If vR is convex in vF ,
then the embedding ι as defined above does not depend on the particular choice of
ι̃ and is continuous and compatible with restriction.

Conversely, if ι : M(R(y)) → M(F (y)) is continuous and compatible with
restriction, then it induces an embedding ι̃ : C(R) → C(F ) continuous w.r.t.
the full topology and compatible with restriction, such that the above diagram
commutes, and vR is convex in vF .

Proof: Take ι̃ as constructed in the previous section. We show that ι is
continuous. Take any open set U in M(F (y)). By Proposition 17, its preimage
U1 in C(F ) is a full open set. Then by Proposition 28, the preimage U2 of U in
C(R) is a full open set. Again by Proposition 17, the image U3 of U2 in M(R(y))
is open. From Lemma 20 we know that res(U) is the preimage of U under ι. But
from the commutativity of the diagram in Proposition 19 we know that

res(U) = res ◦ λF (y) ◦ χF (U1) = λR(y) ◦ χR ◦ res(U1) = U3 .
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So the preimage of U under ι is open. This proves the continuity of ι.
In the construction of ι̃ in the previous section the only freedom we had was

to choose either the upper or the lower edge of the ball which fills a non-ball cut
in R; but these cuts correspond to the same R-place in M(F (y)). This shows
that all embeddings ι̃ constructed in the previous section determine the same
embedding ι.

We will now prove the second assertion. Take ι̃ as in the assumption. For each
C ∈ C(R), we wish to define ι̃(C) such that

λF (y) ◦ χF ◦ ι̃ (C) = ι ◦ λR(y) ◦ χR (C) .

Set ξ := λR(y) ◦ χR(C) ∈ M(R(y)) and ξ′ := ι(ξ). Since ι is compatible with
restriction, ξ is the restriction of ξ′ to R(y). By the commutativity of the diagram
in Proposition 19, we find that if C ′ ∈ C(F ) is sent to ξ′ by λF (y)◦χF , then res(C ′)
must be sent to ξ by λR(y) ◦ χR.

If C is a non-ball cut, then choose any C ′ ∈ C(F ) such that λF (y) ◦χF (C ′
1) = ξ′

and define ι̃(C) := C ′. Since C is the only cut in R that is sent to ξ by λR(y) ◦χR,
it follows that res(C ′) = C.

If C is a ball cut, that is, C = B−
0 or C = B+

0 for some ball B0 in R, then
we have to find images for both B−

0 and B+
0 . We claim that the continuity of

ι implies that the preimage of ξ′ under λF (y) ◦ χF is {B−, B+} for some ball B

in F with res(B−) = B−
0 and res(B−) = B−

0 . We treat the case of B0 6= R and
leave the case of B0 = R to the reader.

We write B0 = BS0(a0, R), take S as in Lemma 21, and set B := BS(a0, F ).
Suppose the preimage of ξ′ is not {B−, B+}. Take C ′ in the preimage. Then
by what we have shown above, C ′ restricts to B−

0 or B+
0 . We assume the latter

case; the former is symmetrical. Then B+
0 ≤ C ′ < B+. By Proposition 12, the

open interval (B−, B+) is full, so U := λF (y)((B−, B+)) is open in M(F (y)) and
contains ξ′. The restriction I of (B−, B+) to C(R) has B+

0 = res(C ′) as its largest
element, hence it is not open. The same argument as in the first part of this proof
shows that the preimage U ′ of U under ι is equal to λF (y) ◦χF ◦ res ((B−, B+)) =
λF (y) ◦ χF (I), which is not open. But this contradicts the continuity of ι. We
see that the preimage of ξ′ must be {B−, B+}. So we set ι̃(B−

0 ) = B− and
ι̃(B+

0 ) = B+ and note that res(B−) = B−
0 and res(B+) = B+

0 .
We have now defined a mapping ι̃ : C(R) → C(F ) which is compatible with the

restriction. Therefore, ι̃ must be injective, and since the restriction preserves ≤
by Lemma 13, ι̃ must preserve < . By definition, ι̃ also preserves equivalence.

It remains to show that ι̃ is continuous w.r.t. the full topology. Take a full open
set U in C(F ). By Proposition 17, U1 := λF (y) ◦ χF (U) is open. By Lemma 20,
U2 := res(U1) is the preimage of U1 under ι, hence open since ι is continuous. By
the commutativity of the diagram in Proposition 19,

U2 = res ◦ λF (y) ◦ χF (U) = λR(y) ◦ χR ◦ res (U) .

Thus, the full set res(U) in C(R) is the preimage of U2 , hence open by Proposi-
tion 17. Again by Lemma 20, the full open set res(U) is the preimage of U under
ι̃. This proves the continuity of ι̃. 2
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Now we will consider the case of F not being real closed. We choose a real clo-
sure R′ of F and take ι′ : M(R(y)) → M(R′(y)) to be the embedding constructed
above. Since resR′(y)|F (y) is continuous (cf. Remark 14, part 3) )

ι := resR′(y)|F (y) ◦ ι′

is a continuous mapping from M(R(y)) to M(F (y)). Since ι′ is compatible with
the restriction

resR′(y)|R(y) = resF (y)|R(y) ◦ resR′(y)|F (y) ,

we see that ι is compatible with the restriction. For this reason, it is also injective.
As the real closure R′ can be taken with respect to any ordering on F , we

may lose the uniqueness of ι, However, we are able to show the following partial
uniqueness result:

Theorem 31. Take two orderings P1 and P2 of F which induce the same R-
place, R′

1 and R′
2 the respective real closures of F , and ι′i : M(R(y)) → M(R′

i(y)),
i = 1, 2, the unique continuous embeddings compatible with restriction. Consider
the following commuting diagram:

M(R′
1(y))

res1
MMM

MM

&&MMM
MM

M(R(y))

ι′1qqqqq

88qqqqq

ι′2
MMM

MM

&&MMM
MM

M(F (y))resoo

M(R′
2(y))

res2qqqqq

88qqqqq

Then
res1 ◦ ι′1 = res2 ◦ ι′2 .

Proof: We will first show that the mappings coincide on all R-places of R(y)
determined by the principal cuts.

Suppose that ζ = χ(a+) = χ(a−), where a ∈ R. Note that for the correspond-
ing valuation vζ on R(y), we have that vR < vζ(a−y). Let ζi := ι′i(ζ), for i = 1, 2.
By the definition of the embedding ι′i, we have that ζi is determined by the upper
and lower edge of the ball BSi(a, R′

i) where Si = {α ∈ vR′
i | α > vR}. Then for

the corresponding valuation vζi
on R′

i(y) we have that vR < vζi
(a − y) < Si in

vζiR
′
i. Since these value groups are divisible (by [7, Theorem 4.3.7], R′

i being real
closed fields), the values vζi(a − y) are rationally independent over these value
groups. Therefore, the valuations vζi are uniquely determined by the natural val-
uations on R′

i and the values vζi(a− y). The same remains true when we restrict
to F (y). There, by our assumption, the restrictions of the natural valuations
on R′

i coincide, so the restrictions of the valuations vζi to F (y) must coincide,
too. Further, the residue fields of vζi on F (y) are equal to the residue field of F
because vζi(a− y) is rationally independent over vF . Since the restrictions to F
of ζ1 and ζ2 coincide, the restrictions to F (y) of these R-places coincide, as well.
Therefore, res1 ◦ ι′1(ζ) = res2 ◦ ι′2(ζ) .

Now take ζ1 = res1 ◦ ι′1(ζ) and ζ2 = res2 ◦ ι′2(ζ) for some ζ ∈ M(R(y)) and
suppose they are distinct. Since M(F (y)) is Hausdorff, there are disjoint open
neighborhoods U1 3 ζ1 and U2 3 ζ2 . The preimages of U1 and U2 in M(R(y)) are
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open, and ζ lies in their intersection. So this intersection is not empty, and by the
density of the principal places in M(R(y)) (cf. Lemma 18), there is a principal
place ζ0 in this intersection. But the images of ζ0 under the two embeddings are
equal and hence must lie in U1 ∩ U2 , a contradiction. 2

6. Embeddings of M(R(y)) in M(F (y)) for archimedean R

In this section we will consider an extension of formally real fields F |R in the
special case where R is archimedean real closed. The general case has been treated
in the previous section. Here, we wish to give a different, more explicit construc-
tion of a continuous embedding ι of M(R(y)) in M(F (y)) which is compatible
with restriction.

We choose any real place ξ of F . Then F := ξ(F ) ⊆ R. Since R is archimedean,
we can assume that ξ|R = idR and that F |R is an extension of archimedean
ordered fields. By ξy we denote the constant extension of ξ to F (y), i.e.,
the unique extension of ξ which is trivial on R(y). Its residue field is ξ(F )(y).
Similarly, for every ζ ∈ M(R(y)) we denote by ζF the constant extension of ζ to
F (y). We set ιF |R(ζ) := ζF .

Lemma 32. The mapping ιF |R : M(R(y)) → M(F (y)) is a continous embedding
compatible with the restriction. If F is real closed, then it is a homeomorphism.

Proof: Since F |R is an extension of archimedean ordered fields, R lies dense in
F . It follows from [15, Theorem 3.2] that the restriction mapping from M(F (y))
to M(R(y)) is a homeomorphism if F is real closed. Hence in this case, ιF |R is a
homeomorphism.

If F is not real closed, then we consider a real closure R′ of F . By what we
have shown already, ιR′|R is a homeomorphism. Since resR′(y)|R(y) is continuous,
the same holds for ιF |R = resR′(y)|F (y) ◦ ιR′|R. 2

Now we define

(1) ι(ζ) := ζF ◦ ξy .

Theorem 33. The mapping ι : M(R(y)) → M(F (y)) is a continous embedding.

Proof: Take a ∈ F (y). We have to show that the preimage of a subbasis set
H ′(a) under ι is open in M(R(y)). If ξy(a) is 0 or ∞, then the same holds for
ζF ◦ ξy for every ζ ∈ M(R(y)). In this case, H ′(a) is empty and we are done.

Assume now that ξy(a) 6= 0,∞. Then ξy(a) is a nonzero rational function
g(y) ∈ F (y). The preimage of H ′(a) is then the set of all real places ζ ∈ M(R(y))
such that ζF (g) > 0. In the case of F = R (which for instance holds when R = R),
this is precisely H ′(g) in M(R(y)). For the general case, we apply Lemma 32
to conclude that the preimage of H ′(g) under the constant extension mapping
ζ 7→ ζF , and hence the preimage of H ′(a) under ι, is open. 2

From Theorem 31, we now obtain:
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Theorem 34. The mapping ι defined in (1) is the unique continuous embedding
of M(R(y)) in M(R(x, y)) that is compatible with restriction and such that all
places in the image of ι have the same restriction to R(x).

We have chosen to give a direct proof of Theorem 33 although it can be derived
from the theorems of the last section. In order to do this, we have to show that
the embedding defined in (1) coincides with the embedding we have constructed
before. To this end, we consider an ordering P of R(y) and the cut C it induces
in the archimedean real closed field R. If R = R, then the only possibilities are
C = C∞, C = C−∞, or C = r+, r− for r ∈ R. If R 6= R, C can also be a cut
induced in R by some real number r ∈ R \R.

If C = C∞ or C = C−∞, we have that y > F or y < F under the corresponding
orderings. In this case, 0 < vy−1 < vF+, where vF+ denotes the set of positive
elements of vF .

In the case of C = r+, r−, we have that ι(C) is the upper or lower edge of
BvF+(r, F ). This ball is r +M where M is the valuation ideal of infinitesimals
in F . Since C is induced by y, we find that 0 < v(y − r) < vF+.

In the final case, we have two subcases. If C is not filled in F , then v(y−f) ≤ 0
for every f ∈ F . If C is filled by some element in F , then we can identify this
element with the real number r that fills the cut C. In this case, we obtain the
same result as in the previous case.

In all three cases, we find the constant extension ξy of ξ must be trivial on
R(y), which implies that ι(ζ) must be of the form ζF ◦ ξy.

In the case of R = R, we can show the above more directly:

Proposition 35. Take ι to be an embedding of M(R(y)) in M(R(x, y)), com-
patible with restriction and such that all places in the image of ι have the same
restriction to R(x). If there is some ξ ∈ im(ι) such that ξ(x) = a and ξ(y) = b
we have that for some n ∈ N,

0 < vξ(x− a) < nvξ(y − b) ,

then the embedding is not continuous. The same holds if ξ(x) = ∞ and x− a is
replaced by 1/x and/or ξ(y) = ∞ and y − b is replaced by 1/y.

Proof: Take
f(x, y) =

x− a + (y − b)n

x− a
.

Then H ′(f) ∩ im(ι) is the singleton {ξ}. Indeed, ξ ∈ H ′(f) since ξ(f) = 1. But
if ξ′ = ι(ζ) 6= ξ, then ζ(y) 6= b, whence ξ(f) = ∞. The cases of ξ(x) = ∞ and/or
ξ(y) = ∞ are similar. 2

It is possible to generalize the approach of this section to the general setting
of the previous section by replacing the R-place ξ of F by the finest coarsening
ξ′ whose residue field contains R. (The valuation ring of ξ′ is the compositum of
the valuation ring of ξ and the subfield R of F .) But we would need an analogue
of Lemma 32 for the case of non-archimedean fields R and F = ξ′(F ). We found
that the tools developed to deal with this analogue can be directly applied to
construct the embedding of M(R(y)) in M(F (y)) in the setting of the previous
section.
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7. The dimension of M(F (y))

Throughout this section, we take F to be a real closed field. We are now able to
determine the dimension of the space M(F (y)). We consider the covering dimen-
sion dim, the small inductive dimension ind, and the strong inductive dimension
Ind. The following result is part of [20, Theorem 5]:

Theorem 36. If Y is the continuous image of a compact ordered space, then
dimY = indY = IndY .

Since the space M(F (y)) is the continuous image under λ of the compact
ordered space X (F (y)), we obtain:

Corollary 37. We have dimM(F (y)) = indM(F (y)) = IndM(F (y)).

A lower bound for the dimension is provided by our embedding results. Being
compact Hausdorff, every space of R-places is a normal space. Thus, we can
apply the following fact ([18, Proposition 10-2]):

Proposition 38. If Y is a normal space and X a closed subset of Y , then
IndX ≤ Ind Y .

By Theorem 33, the circle M(R(y)) is homeomorphic to a closed subspace of
M(F (y)). Since the inductive dimension of the circle is 1, we obtain from the
previous proposition that

Ind M(F (y)) ≥ 1 .

To obtain an upper bound, we use the following theorem (cf. [19, Theorem
III.7]):

Theorem 39. Let f be a continuous mapping of a space X onto a space Y such
that for each point q of Y , the boundary of f−1(q) contains at most m + 1 points
(m ≥ 1). Then dimY ≤ dimX + m.

We apply the theorem to λ : X (F (y)) → M(F (y)). For every q ∈ M(F (y)),
λ−1(q) contains at most 2 points and is closed, so its boundary contains at most
2 points. On the other hand, dimX (F (y)) = IndX (F (y)) = 0 since X (F (y))
is totally disconnected. The last theorem now shows that dimM(F (y)) ≤ 1.
Putting everything together, we obtain the equation

dimM(F (y)) = indM(F (y)) = IndM(F (y))

which proves Theorem 3.

8. Self-similarity of M(F (y))

If L is any field, then every automorphism σ of L induces the following bijection
of M(L) onto itself:

M(L) 3 ζ 7→ ζ ◦ σ ∈ M(L) .

This bijection is in fact a homeomorphism because

ζ ∈ H ′(b) ⇐⇒ ζ ◦ σ ∈ H ′(σ−1b) .

Let us have a closer look at the case of M(F (y)), with F a real closed field.
Take any automorphism σ of F (y). It is easy to show that σ0 := σ|F must be an
order preserving automorphism of F . (If σ(c) ∈ F (y) \ F for some c ∈ F , then
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F (y) does not contain a real closure of Q(σ(c)).) It follows that for the canonical
R-place ξ of F , we must have that ξ ◦ σ0 = ξ. Hence, if ζ ∈ M(F (y)), then both
ζ and ζ ◦ σ are extensions of ξ to F (y).

It is well known that the automorphisms σ of F (y) which leave F elementwise
fixed are precisely those given by

(2) y 7→ ay + b

cy + d
with ad− bc 6= 0 .

We can study the effect of the homeomorphism of M(F (y)) induced by such an
automorphism by analyzing the corresponding effect on C(F ). Since

ay + b

cy + d
=

a

c
+

b− ad
c

cy + d
,

the assignment (2) can be achieved by a composition of addition of and multipli-
cation by elements from F together with one inversion of a linear polynomial in
y. The corresponding actions on C(F ) are:
1) for a ∈ F , y 7→ y + a shifts the corresponding cut C = (D, E) filled by y in F
to the cut C + a = (D + a,E + a);
2) for a ∈ F , y 7→ ay shifts the corresponding cut C = (D,E) to the cut
aC = (aD, aE);
3) for the inversion y 7→ y−1 it is possible to define an inversion of the corre-
sponding cut C which will be the cut filled by y−1.
In the paper [14] we give the definition of the inversion of cuts and we prove
directly, without using the connection with M(F (y)):

Proposition 40. All three actions on C(F ) are compatible with equivalence.

So far, we have discussed self-similarities of M(F (y)) that transform it into
itself. The question arises whether there are also homeomorphisms onto proper
subspaces – like zooming in on a fractal substructure. How “homogeneous” is the
space M(F (y))? For example, the following question appears to be of importance
when the spaces of R-places of finite extensions of F (y) are studied:
Open Problem: If B is an infinite ball in F , is there a homeomorphism from
C(F ) onto C(B) that is compatible with equivalence? More generally, give a
criterion for two infinite balls B and B′ in F to admit a homeomorphism from
C(B) onto C(B′) that is compatible with equivalence.

For the conclusion of this section, we wish to give a construction of a real closed
field F for which there exist homeomorphisms from M(F (y)) onto infinitely many
distinct subspaces.

Consider the power series field F = R((tQ)) with coefficients in R and ex-
ponents in Q. This is a real closed field ([7, Theorem 4.3.7]). Since any two
countable dense linear orderings without endpoints are order isomorphic, there
exists an order isomorphism ϕS from Q onto any non-empty final segment S of
Q which does not have a smallest element. Any such isomorphism induces an
isomorphism

F = R((tQ)) 3
∑

q∈Q
cqt

q 7→
∑

q∈Q
cqt

ϕS(q) ∈ BS(0, F )



22 KATARZYNA AND FRANZ-VIKTOR KUHLMANN

from the ordered additive group of F onto its convex subgroup B = BS(0, F ).
If f is any element in F , then we can compose the isomorphism with the order
preserving mapping B 3 a 7→ f + a ∈ f + B. The order preserving mapping thus
obtained gives rise to an order isomorphism, hence homeomorphism,

ψS,f : C(F ) → C(f + B) .

We define MS,f (F (y)) to be the image of C(f + B) under λ ◦ χ. In a similar
way as in Section 5, we obtain a commuting diagram

C(F )

λ◦χ

²²

ψS,f // C(f + B)

λ◦χ

²²
M(F (y)) ιS,f // MS,f (F (y))

with a homeomorphism ιS,f from M(F (y)) onto its subspace MS,f (F (y)).
As the non-empty final segments S of Q without smallest element form a dense

linear ordering under inclusion, we have proved:

Theorem 41. Take the field F = R((tQ)) and f ∈ F . Then there exists a set of
subspaces of M(F (y)), all homeomorphic to M(F (y)), on which inclusion induces
a dense linear order, and such that the f -principal place is the only R-place of F
contained in all of them.

9. The “densely fractal pearl necklace”

Take any non-archimedean real closed field F . In this section we describe the
fractal structure of M(F (y)). We start with the linearly ordered set C(F ). For
every element a ∈ F , there are the two principal cuts a− and a+ in C(F ). But
these are glued by λ ◦ χ, so we obtain a canonical embedding of F in M(F (y))
whose image is exactly the set of principal places. Also the cuts F− and F+

are glued by λ ◦ χ, which closes the linear ordering of the principal places at the
ends, making it into a (non-archimedean) circle. If we would have started with
F = R, these would already be all possible glueings, and we would have obtained
the usual circle.

In this circular structure, the principal places are joined by the images of the
non-ball cuts, on which λ ◦ χ is injective, that is, which are not glued with other
cuts. If we would have started with F a real closed subfield of R, the first step
would have put all elements of F in the circle, while this second step would have
added all elements of R.

We have now obtained the circular string of our necklace.
Sitting densely between the non-glueing and principal cuts are the ball-cuts.

Each glueing of two cuts B− and B+ splits the necklace open and forms from a
part of it a smaller “circle” — a pearl of our necklace. But as B = BS(a) for
a final segment with S 6= ∅, vF of vF , there are final segments S′, S′′ 6= ∅, vF
such that S′ ⊂6= S ⊂

6= S′′. It follows that BS′′(a) ⊂6= BS(a) ⊂6= BS′(a), and the same
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happens around every other b ∈ F . This shows that each pearl is made up of
smaller pearls and is itself part of a larger pearl.

It should be noted that glueings do not “cross” each other; this is because if
two balls have a non-empty intersection, then one of the balls is contained in the
other.

We see that if we zoom in on a pearl we find again a pearl necklace, essentially
the same structure, and the same happens when we zoom out. That is why
we talk of a “fractal pearl necklace”. However, there is a difference to the well
known fractal structures. Since F is real closed, its value group vF is divisible
and hence dense. Therefore, the final segments of vF , ordered by inclusion, also
form a dense linearly ordered set. Every final segment corresponds to a level of
“pearls”, a level of the fractal structure. So for each level, there is no immediate
predecessor or successor; when we pass from one pearl to a bigger or smaller one
we automatically jump through infinitely many intermediate levels. This is why
we call our necklace “densely fractal”.

It is not necessarily true that each level is perfectly similar to every other
level. For instance, the balls can have different cofinalities. But if the field F is
sufficiently homogeneous, as is the case for the field R((tQ)) which we discussed in
the previous section, then there will be a coinitial and cofinal subset of levels that
are all perfectly similar (cf. Theorem 41). Moreover, the situation is the same
around every principal place, represented by an element f ∈ F . Switching from
one element f to another can be considered as turning the necklace, or more
precisely, turning pearls at infinitely many levels. This is a fractal rotational
symmetry along the string(s) of principal and non-glued places.

10. Embeddings of
∏n

i=1 M(R(xi)) in M(R(x1, . . . , xn))

In order to study possible embeddings of the torus in spaces of real places,
we wish to consider embeddings of M(R(x))×M(R(y)) in M(R(x, y)). Initially,
we will treat the more general case of n variables. We consider the projection
mapping

ρ : M(R(x1, . . . , xn)) 3 ξ 7→ (ξ|R(x1), . . . , ξ|R(xn)) ∈
n∏

i=1

M(R(xi)) .

Lemma 42. The mapping ρ is surjective.

We describe a general construction that will prove the lemma. Take R-places
ξi ∈ M(R(xi)). We wish to associate to them an R-place ξ of R(x1, . . . , xn) whose
restriction to R(xi) is ξi . We may assume that ξi(xi) 6= ∞; otherwise, we can
replace xi by 1/xi. For 1 ≤ i < n, let ξ′i be the place of R(xi, . . . , xn) which
is trivial on R(xi+1, . . . , xn) and such that ξ′i(xi) = ξi(xi). Its residue field is
R(xi+1, . . . , xn). Then the place

(3) ξ = ξn ◦ ξ′n−1 ◦ . . . ◦ ξ′1 .

satisfies the above conditions. This construction can be replaced by the symmetric
ones where the xi are permuted.

Remark 43. There are many more possibilities for choosing a common exten-
sion ξ of the ξi . Set ξi(xi) = ai . Choose any rationally independent elements
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r1, . . . , rn ∈ R. Then there is a (uniquely determined) R-place ξ of R(x1, . . . , xn)
such that for the valuation v associated with ξ we have that v(xi−ai) = ri . The
value group of ξ is generated by the values r1, . . . , rn and is thus archimedean.
In contrast to this, the value group of the place in (3) has rank n and is thus not
archimedean if n > 1.

The surjectivity shows that there exist embeddings

(4) ι :
n∏

i=1

M(R(xi)) ↪→ M(R(x1, . . . , xn)) .

Such an embedding will be called compatible if ρ ◦ ι is the identity.

Theorem 44. The image of every compatible embedding ι as in (4) lies dense
in M(R(x1, . . . , xn)). But for n > 1, every non-empty basic open subset of
M(R(x1, . . . , xn)) contains infinitely places that are not in the image of ι.

Proof: Take non-zero elements f1, . . . , fm ∈ R(x1, . . . , xn) such that

U := H ′(f1) ∩ . . . ∩H ′(fm) 6= ∅ .

Take ζ ∈ U and write fi(x1, . . . , xn) = gi(x1,...,xn)
hi(x1,...,xn) . Choose an ordering on

R(x1, . . . , xn) compatible with ζ. Then the existential sentence

∃X1 . . .∃Xn :
∧

1≤i≤m

hi(X1, . . . , Xn) 6= 0 ∧ gi(X1, . . . , Xn)
hi(X1, . . . , Xn)

> 0

holds in R(x1, . . . , xn) with this ordering. By Tarski’s Transfer Principle, it also
holds in R with the usual ordering. That is, there exist a1, . . . , an ∈ R such that
hi(a1, . . . , an) 6= 0 and gi(a1,...,an)

hi(a1,...,an) > 0 for 1 ≤ i ≤ m. Hence for every R-place

ζ ∈ M(R(x1, . . . , xn)) such that ζ(xi) = ai we will have that ζ(fi) = gi(a1,...,an)
hi(a1,...,an) >

0. Among all such ζ there is precisely one in im(ι). For this ζ, we have that
ζ ∈ U ∩ im(ι). This proves that im(ι) lies dense in M(R(x1, . . . , xn)).

For n > 1, Remark 43 shows that there are infinitely many R-places ζ ∈
M(R(x1, . . . , xn)) such that ζ(xi) = ai . As only one of them is in im(ι), U \ im(ι)
is infinite. 2

Corollary 45. A compatible embedding ι as in (4) cannot be continuous with
respect to the product topology on

∏n
i=1 M(R(xi)).

Proof: Suppose we have a continuous compatible embedding. Under the
product topology, the space

∏n
i=1 M(R(xi)) is compact. As the continuous image

of a compact space in a Hausdorff space is again compact (cf. [11], Chapter 5,
Theorem 8), we find that the image is closed in M(R(x1, . . . , xn)). As it is also
dense in M(R(x1, . . . , xn)) by Theorem 44, it must be equal to M(R(x1, . . . , xn)).
But this contradicts the second assertion of Theorem 44. Hence the embedding
cannot be continuous. 2
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Remark 46. All of the above can be generalized to the case of infinitely many
elements xi , i ∈ I that are algebraically independent over R. After choosing
some well-ordering on I, the construction of the embedding

ι :
∏

i∈I

M(R(xi)) ↪→ M(R(xi | i ∈ I))

proceeds by (possibly transfinite) induction. The above theorem and corollary
remain valid. The proof of the theorem still works, as in the finitely many poly-
nomials f1, . . . , fm only finitely many variables xi can appear. For infinite I, it
is no longer true that the choice of the elements a1, . . . , an determines a unique
place in im(ι). Still, an application of Remark 43 shows that U \ im(ι) is infinite.

We will now reprove the result of the corollary in the case of n = 2 by look-
ing more closely at the topologies that are involved here. Every embedding
of M(R(x)) × M(R(y)) in M(R(x, y)) will induce a topology on M(R(x)) ×
M(R(y)) whose open sets are the preimages of the intersections of the open
sets of M(R(x, y)) with the image of the embedding.

Theorem 47. For every compatible embedding ι, the topology induced on
M(R(x))×M(R(y)) is finer than the product topology.

Proof: Take a basic open set in the product topology of M(R(x))×M(R(y))
which is the interior or exterior of a circle given by (x−a)2 +(y−b)2 = r2, where
a, b, r ∈ R. We set

f(x, y) = r2 − (x− a)2 − (y − b)2 .

Then the set im(ι)∩H ′(f) is precisely the image of the interior of the circle, and
set im(ι)∩H ′(−f) is precisely the image of the exterior of the circle. This proves
that the induced topology is equal or finer to the product topology.

It remains to present an induced open set in M(R(x))×M(R(y)) which is not
open in the product topology. Take the unique ξ in im(ι) such that ξ(x) = 0 and
ξ(y) = 0.

f(x, y) =





1 + x
y if ξ(x

y ) = 0
1 + y

x if ξ( y
x) = 0

y2

x2 otherwise.

It follows in all three cases that ξ ∈ H ′(f). The preimage of ξ under ι is (ξ1, ξ2)
where ξ1(x) = 0 and ξ2(y) = 0. If the subset U induced by H ′(f) in M(R(x))×
M(R(y)) would be open, then it would contain the interior of a circle x2+y2 = r2

for some r > 0. But this is impossible since whenever (ξ1, ξ2) ∈ U , then for the
first choice of f , ξ2(y) = 0 must imply ξ1(x) = 0, and for the two other choices
of f , ξ1(x) = 0 must imply ξ2(y) = 0. 2

Open Problem: What is the induced topology? Is it one-dimensional or two-
dimensional?
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11. Embeddings of more general products

For simplicity, we will only consider the product of two spaces M(F1) and
M(F2); a generalization to any finite products can be achieved along the lines of
the last section. We will also assume that F1 and F2 both contain R. Then we
can assume them embedded in some extension field of R such that F1 and F2 are
linearly disjoint over R. We denote by F the field compositum of F1 and F2, that
is, the smallest subextension of the given extension of R that contains both F1

and F2.
As before, we consider the corresponding projection mapping

ρ : M(F ) 3 ξ 7→ (ξ|F1 , ξ|F2) ∈ M(F1)×M(F2) .

We show that ρ is surjective. Take (ξ1, ξ2) ∈ M(F1) ×M(F2). Then there is an
extension ξ′1 of ξ1 from F1 to F such that the residue field of ξ′1 is F2. Then take
ι(ξ1, ξ2) = ξ2 ◦ ξ′1. Here again, one obtains a different place of F by interchanging
F1 and F2 , showing that ρ is not injective.

The surjectivity shows that there exist embeddings

ι : M(F1)×M(F2) −→ M(F )

As before, ι will be called compatible if ρ ◦ ι is the identity.
If F1|R and F2|R are function fields, we can again prove that the image of

every compatible embedding ι lies dense in M(F ). We will need the following
fact. For a proof, see the second half of the proof of the lemma on p. 190 of [16].

Lemma 48. Take a field k and a function field K = k(x1, . . . , xd, z) where
x1, . . . , xd are algebraically independent over k and z is separable-algebraic over
k(x1, . . . , xd). If f ∈ k[x1, . . . , xd, Z] is the irreducible polynomial of z over
k(x1, . . . , xd) and if a1, . . . , ad, b ∈ k such that

f(a1, . . . , ad, b) = 0 and
∂f

∂Z
(a1, . . . , ad, b) 6= 0 ,

then K admits a k-rational place ξ such that ξ(xi) = ai , 1 ≤ i ≤ d, and ξ(z) = b.

Theorem 49. If F1|R and F2|R are function fields of transcendence degree ≥ 1,
then the image of every compatible embedding ι lies dense in M(F ). But every
non-empty basic open subset of M(F ) contains infinitely places that are not in
the image of ι.

Proof: We write F1 = R(x1, . . . , xd, z1) and F2 = R(xd+1, . . . , xd+e, z2)
with x1, . . . , xd+e algebraically independent over R, z1 separable-algebraic over
R(x1, . . . , xd), and z2 separable-algebraic over R(xd+1, . . . , xd+e). Then F =
R(x1, . . . , xd+e, z1, z2). Let G1 ∈ k[x1, . . . , xd, Z1] be the irreducible polynomial of
z1 over k(x1, . . . , xd) and G2 ∈ k[xd+1, . . . , xd+e, Z] be the irreducible polynomial
of z2 over k(xd+1, . . . , xd+e).

Take non-zero elements f1, . . . , fm ∈ F such that U := H ′(f1)∩. . .∩H ′(fn) 6= ∅.
Take ζ ∈ U and write

fi(x1, . . . , xd+e, z1, z2) =
gi(x1, . . . , xd+e, z1, z2)

hi(x1, . . . , xd+e)
with polynomials gi ∈ R[X1, . . . , Xd+e, Z1, Z2] and hi ∈ R[X1, . . . , Xd+e]. Choose
an ordering on F compatible with ζ. Then the existential sentence
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∃X1 . . . ∃Xd+e∃Z1∃Z2 :

G1(X1, . . . , Xd, Z1) = 0 ∧ ∂G1
∂Z1

(X1, . . . , Xd, Z1) 6= 0 ∧

G2(Xd+1, . . . , Xd+e, Z2) = 0 ∧ ∂G2
∂Z2

(Xd+1, . . . , Xd+e, Z2) 6= 0 ∧
∧

1≤i≤m hi(X1, . . . , Xd+e) 6= 0 ∧ gi(X1,...,Xd+e,Z1,Z2)
hi(X1,...,Xd+e)

> 0

holds in F with this ordering. By Tarski’s Transfer Principle, it also holds in R
with the usual ordering. That is, there exist a1, . . . , ad+r, b1, b2 ∈ R such that

G1(a1, . . . , ad, b1) = 0 ∧ ∂G1
∂Z1

(a1, . . . , ad, b1) 6= 0(5)

G2(ad+1, . . . , ad+e, b2) = 0 ∧ ∂G2
∂Z2

(ad+1, . . . , ad+e, b2) 6= 0(6)
∧

1≤i≤m hi(a1, . . . , ad+e) 6= 0 ∧ gi(a1,...,ad+e,b1,b2)
hi(a1,...,ad+e)

> 0(7)

Hence for every R-place ζ ∈ M(F ) such that ζ(xi) = ai and ζ(zj) = bj we
will have that ζ(fi) > 0, 1 ≤ i ≤ m. By Lemma 48, (5) guarantees that there is
ζ1 ∈ M(F1) such that ζ1(xi) = ai , 1 ≤ i ≤ d, and ζ1(z1) = b1 , and (6) guarantees
that there is ζ2 ∈ M(F2) such that ζ2(xi) = ai , d+1 ≤ i ≤ d+e, and ζ2(z2) = b2 .
Consequently, there is ζ ∈ im(ι) with ζ(xi) = ai and ζ(zj) = bj . It follows that
ζ ∈ U ∩ im(ι). This proves that the image of our construction lies dense in M(F ).

From Remark 43 it again follows that there are infinitely many R-places ζ of
R(x1, . . . , xd+e) such that ζ(xi) = ai . These places can be extended to F by
setting ζ(zj) = bj . All of them have archimedean value group. In contrast, all
places in im(ι) are compositions of two non-trivial places and therefore have non-
archimedean value group. This shows that U \ im(ι) is infinite. 2

As before, one proves:

Corollary 50. If F1|R and F2|R are function fields, then a compatible embedding
cannot be continuous with respect to the product topology on M(F1)×M(F2).

12. Raising the transcendence degree

In this final section, we show how to use previous constructions to embed
M(K) in M(L), for an arbitrary field K and suitable transcendental extensions
L of K.

Theorem 51. Assume that L admits a K-rational place ξ. Then

ι : M(K) 3 ζ 7→ ζ ◦ ξ ∈ M(L)

is a continuous embedding compatible with restriction.

Proof: It is clear that the embedding is compatible with restriction. For
the continuity, take f ∈ L and assume that H ′(f) ∩ im(ι) 6= ∅. Pick ζ ∈ M(K)
such that ζ ◦ ξ = ι(ζ) ∈ H ′(f). It follows that (ζ ◦ ξ)(f) 6= ∞ and therefore,
∞ 6= ξ(f) ∈ K. For arbitrary ζ ∈ M(K), we have that (ζ ◦ ξ)(f) = ζ(ξ(f)), so
ζ ◦ ξ ∈ H ′(f) ⇔ ζ ∈ H ′(ξ(f)). Hence, ι−1(H ′(f)) = H ′(ξ(f)), which proves that
ι is continuous. 2
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There are fields L of arbitrary transcendence degree over K which allow a
unique K-rational place ξ. This fact has been used in [6] to show that a given
space of R-places can be realized over arbitrarily large fields. The other extreme
is:

Corollary 52. Take a collection xi , i ∈ I, of elements algebraically independent
over K. Then there are at least |K||I| many distinct continuous embeddings of
M(K) in M(K(xi | i ∈ I)), all of them compatible with restriction and having
mutually disjoint images.

This follows from the fact that for every choice of elements ai ∈ K there is a
K-rational place ξ of L such that ξ(xi) = ai .

Corollary 53. There are at least 2ℵ0 many continuous embeddings of M(R(x)) in
M(R(x, y)), all of them compatible with restriction and having mutually disjoint
images.

It should be noted that Theorem 2 does not follow from Theorem 51. The
condition that vR is a convex subgroup of vF does by no means imply that F (y)
admits a R(y)-rational place.
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