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Abstract

In the spirit of the Ax-Kochen-Ershov principle, we show that in certain cases the burden of
a Henselian valued field can be computed in terms of the burden of its residue field and that of
its value group. To do so, we first see that the burden of such a field is equal to the burden of its
leading term structure. These results are generalisations of Chernikov and Simon’s work in [11].
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Introduction

Since the work of Shelah [32], model theorists have defined and studied combinatorial configurations
that first order theories may encode, in order to measure their relative tameness. Theories which are
able to encode complex configurations are considered less tame. Arising from this classification a com-
plex hierarchy of first order theories. The most important class is undoubtedly that of stable theories;
the classes of NIP (Non-Independance Property), simple and NTP2 theories (Non-Tree Property of
the second kind) are generalisations of stability which have been extensively studied in the last 20
years. The abstract study of these classes leads to a better understanding of algebraic structures, as
some algebraic phenomena may or not occur, depending of the complexity of the theory (e.g. [23]).
Locating a given concrete first-order theory in this hierarchy is often interesting and challenging, and
many methods are known: one can show stability (resp. NIP) by counting types over small sets (resp.
coheirs over models). Simple theories are exactly theories with some abstract independence relation
([25]). The situation seems to be different when we look at quantitative versions of these notions, such
as the burden. This is a notion of dimension for NTP2 theories, and in order to compute it, a concrete
understanding of formulas is required.

Since Ax, Kochen and Ershov’s work, Henselian valued fields appear to be perfect playgrounds for
this kind of consideration, and many model theoretic questions on valued fields have been reduced to
the residue field and value group. The theorem of Delon [12] is one of the first instances: a Henselian
valued field of equicharacteristic 0 is NIP if and only if both of its residue field and its value group are
NIP1. A more quantitative transfer in NIP Henselian valued fields was then showed by Shelah in [33]:
a Henselian valued field of equicharacteristic 0 is strongly dependant if and only if both its residue
field and its value group are strongly dependant. Both results were generalised to NTP2 theories by
Chernikov in [8]: a Henselian valued field of equicharacteristic 0 is NTP2 (resp. strong, of finite burden)
if and only if both of its residue field and its value group are NTP2 (resp. strong, of finite burden). This
approach is based on the faith that the study of the residue field and the value group might be enough
to classify some rather nice valued fields. In the case of equicharacteristic 0 Henselian valued fields,
this faith is justified by the theorem of Pas: a Henselian valued field of equicharacteristic zero equipped
with an angular component (also called ac-map), eliminates quantifiers relative to the value group and
the residue field. It is indeed an important tool for producing transfer principles. However, the theorem
of Pas has some limits: considering an ac-map has the disadvantage of adding new definable sets to the
structure of valued fields. From the point of view of complexity, it has an impact: any ultraproduct
of p-adic fields over a non-principal utrafilter on prime numbers is inp-minimal, i.e. of burden 1 (see
[11]), but it is of burden 2 when endowed with an ac-map. Another approach initiated by Basarab
and Kuhlmann, is to consider another interpretable sort capturing information from both the value
group and the residue field. This lead to the definition of the leading term structure (see Paragraph
1.2.1), also called the RV-sort. Unlike the ac-map, it is always interpretable in the standard languages
of valued fields, and adding it to the language does not add definable sets. The study of valued fields
together with its RV-sort offers an additional point of view: let us cite Hrushovski and Kazdan’s work
in motivic integration, where RV-sort structures are used, as opposed to Denef, Loeser and Cluckers’
work, where ac-maps are used. More relevant to this paper, Chernikov and Simon prove in [11] that,
under some hypothesis, an equicharacteristic zero Henselian valued field is inp-minimal if only if both
its residue field and its value group are inp-minimal, going via an intermediate step: they first reduce
the question to the RV-sort.

The main aim of this paper is to give a general transfer principle for burden in certain Henselian
valued fields. In particular, we provide a full answer to [11, Problems 4.3 & 4.4]. Here is an overview
of the paper:
The first section consists of preliminaries on pure model theory and on model theory of valued fields

1It was later show by Gurevich and Schmitt that any pure ordered abelian group is NIP.
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and groups. We define the burden of a theory, indiscernible sequences and few related lemmas. Then
we define the sort RV and recall some relative quantifier elimination results.

Section 2 is dedicated to the proof of the following theorem:

Theorem 2.2. Consider an {A}-{C}-enrichment of a pure exact sequenceM of abelian groups

0 // A
ι // B

ν // C // 0 ,

in a language L. Let D = D(x) be the set of formulas in the pure language of groups which are
conjunction of formulas of the form ∃y nx = my for n,m ∈ N. For D(x) ∈ D and A an abelian group,
D(A) is a subgroup of A, and we have

bdnM = max
D∈D

(bdn(A/D(A)) + bdn(D(C))).

In particular:

• If A/nA is finite for all n ≥ 1, then

bdnM = max
k∈N

(bdn(kA) + bdn(C[k])),

where C[k] := {c ∈ C | kc = 0} is the subgroup of k-torsion.

• If C has finite k-torsion of all k ≥ 1, then

bdnM = max
n∈N

(bdn(A/nA) + bdn(nC)).

• If C has finite n-torsion and A/nA is finite for all n ≥ 1, then

bdnM = max(bdn(A), bdn(C)).

We also give an easy generalisation, notably for short exact sequences of ordered abelian groups.

In Section 3, we prove our main theorems. The first concerns the following partial theories of
Henselian valued fields, that we gather here under the name of benign theories of valued fields:

1. Henselian valued fields of characteristic (0, 0),

2. algebraically closed valued fields,

3. algebraically maximal Kaplansky valued fields.

Theorem 3.12. Let K = (K,Γ, k) be a benign Henselian valued field, with value group Γ and residue
field k. Then:

bdn(K) = max
n≥0

(bdn(k?/k?n) + bdn(nΓ)) .

The second concerns unramified mixed characteristic Henselian valued fields with perfect residue
field.

Theorem 3.21. Let K = (K, k,Γ) be an unramified mixed characteristic Henselian valued field with
value group Γ and residue field k. We denote by Kac<ω = (K, k,Γ, acn, n < ω) the structure K endowed
with compatible ac-maps. Assume that the residue field k is perfect. One has

bdn(K) = bdn(Kac<ω) = max(ℵ0 · bdn(k), bdn(Γ)).
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For both proofs, and as in [11], we proceed in two steps: we show first that the burden of these
Henselian valued fields is equal to the burden of their RV-sorts (see Theorem 3.2) and use Section 2
to conclude.

Let us conclude this introduction with some generalities about transfer principles. We summarise
the strategy presented above by formalising the reduction in valued fields and pure short exact se-
quences of abelian groups. We introduce reduction diagrams. It is nothing else than a concise way to
picture relative quantifier elimination and by extension, the strategy for proving reduction principles.

Heuristic 0.1. A reduction diagram of a structureM is a rooted tree such that:

• all nodes are pure sorts ofM (in some ∅-interpretable language) endowed with their full structure;

• the root isM;

• any node admits relative resplendent quantifier elimination (in some ∅-interpretable language)
to the set of its children;

• any two sorts in two different branches are orthogonal.

The idea is that one might be able to reduce certain questions on the structure M to the set of its
leaves. Every node describes then an intermediate step. Reduction to a node would also have the
advantage of being generalised to any enrichment of structure below the node.

In this text, we compute the burden (Definition 1.12) of the following examples in terms of the
burden of the leaves. In [38] we also characterise stable embeddedness of elementary pairs of models
in terms of stable embeddedness of elementary pairs of structures in the leaves.

Example. 1. IfM0,M1 are arbitrary structures, both the direct productM0×M1 and the disjoint
unionM0 ∪M1 reduce toM0 andM1 (Fact 1.33):

M0 ×M1

M0 M1 ,

M0 ∪M1

M0 M1 .

We can of course keep going:

(M0 ×M1) ∪M2

M0 M1 M2 .

2. Let Kac = {K,Γ, k, ac : K → k} be a Henselian valued field of equicharacteristic 0 of valued
group Γ, residue field k, and angular component ac. It admits the following reduction diagrams
(Theorem of Pas):

Kac

k Γ .
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3. LetM = {A,B,C, ι, ν} be a short exact sequence of abelian groups

0 // A
ι // B

ν // C // 0 ,

seen as a three-sorted structure. Assume A is a pure subgroup of B. It admits the following
reduction diagram (Fact 1.74):

M

A C .

To get relative quantifier elimination, one has to consider interpretable maps from B to A/nA,
n ≥ 0. The sort A/nA are understood to be part of the induced structure on A.

4. Let K = {K,Γ, k,RV(K)} be a Henselian valued field of equicharacteristic 0, value group Γ,
residue field k and RV-sort RV(K) (definition in Paragraph 1.2.1). It admits the following
reduction diagram (Fact 1.63 and Fact 1.74):

K

RV(K)

k Γ .

5. If K = {K,Γ, k} is a Henselian valued field of equicharacteristic 0, where moreover the residue
field k is endowed with a structure (k,Γ′, k′) of Henselian valued field of equicaracteristic 0, and Γ
is endowed with a predicate for a convex subgroup ∆. Then by Corollary 1.75 (and resplendence),
we have the following reduction diagram:

K

RV(K)

k

RV(k)

k′ Γ′

Γ

∆ Γ/∆

.
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1 Preliminaries

1.1 On pure model theory

We will assume the reader to be familiar with basic model theory concepts, and in particular with
standard notations. One can refer to [37]. Symbols x, y, z, . . . will usually refer to tuples of variables,
a, b, c, . . . to parameters. Capital letters K,L,M,N, . . . will refer to sets, and calligraphic letters
K,L,M,N , . . . will refer to structures with respective base sets K,L,M,N, . . . . If there is no ambi-
guity, we may respectively name a very saturated elementary extension with blackboard bold letters
K,L,M, . . . Languages will be denoted with a roman character L,L′,LRings,LΓ,k etc.

In this section, we will consider any (possibly multi-sorted) first order language L, and an arbitrary
L-structureM.

1.1.1 Relative quantifier elimination and resplendence

We will use freely Rideau-Kikuchi’s terminology about enrichment that we briefly recall now. The
reader can refer to [30, Annexe A] for a more detailed exposition. This will allow us to give effortless
generalisations to richer structures, or to simplify the notation, by reducing the language to the strict
necessity for producing transfer principles.

First, let us recall two notions of relative quantifier elimination.

Definition 1.1. Let M be a multisorted structure in a language L, and consider Π ∪ Σ a partition
of the set of sorts. We denote by L Σ the language of all function symbols and relation symbols in L
involving only sorts in Σ. Then, we say that

• M eliminates Π-quantifiers if every formula φ(x) is equivalent to a formula without quantifier in
a sort in Π.

• M eliminates quantifiers relatively to Σ if the theory of MΣ−Mor – obtained by naming all
L Σ-definable sets (without parameters) with a new predicate– eliminates quantifiers.

As observed in [30, Annexe A], M eliminates quantifiers relatively to Σ, then it eliminates Π-
quantifiers.

Definition 1.2. LetM be a multi-sorted structure in a language L, and let Σ be a set of sorts in L.

• a language Le containing L is said to be a Σ-enrichment of L if all new function symbols and
relation symbols only involve the sorts in Σ and the new sorts Σe in Le \ L. An expansionMe

ofM to Le is called a Σ-enrichment ofM.

• Σ is said to be closed if any relation symbol involving a sort in Σ or any function symbol with a
domain involving a sort in Σ only involves sorts in Σ.

Fact 1.3 ([30]). Let M be a multisorted structure, and consider Π ∪ Σ a partition of the set of sorts.
If Σ is a closed set of sorts, then M eliminates Π-quantifiers if and only if M eliminates quantifiers
relatively to Σ.

In the context of this text, these two notions of quantifier elimination will be often equivalent.
Another consequence of closedness is the automatic resplendence of relative quantifier elimination:

Definition 1.4. LetM be a multi-sorted structure in a language L, and let Σ be a set of sorts in L.
We say thatM eliminates quantifiers resplendently relatively to Σ if for any Σ-enrichmentMe ofM,
Th(Me) eliminates quantifiers relatively to Σ ∪ Σe (where Σe is the set of new sorts in Me ).
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Fact 1.5 ([30, Proposition A.9]). LetM be a multi-sorted structure in a language L, and assume that
Th(M) eliminates quantifiers relative to a closed set of sorts Σ. Then Th(M) eliminates quantifiers
resplendently relatively to Σ.

Notice however that closedness does not characterise resplendence of relative quantifier elimination,
as we will see later with pure short exact sequence of abelian groups. Let us introduce the notion of
stable embedded definable sets and of pure sorts.

Definition 1.6. • A definable subset D ofM is called stably embedded if all definable subsets of
Dn, n ∈ N can be defined with parameters in D.

• Two definable subsets D and D′ ofM are called orthogonal if for all formulas

φ(x0, . . . , xn−1;x′0, . . . , x
′
n−1, a)

with parameters a in M, there are finitely many formulas θi(x0, . . . , xn−1, ai) and
θ′i(x

′
0, . . . , x

′
n−1, a

′
i), with i < k and parameters a0, . . . , an−1, a′0, . . . , a′n−1 inM, such that

φ(Dn, D′
n
, a) = ∪i<kθi(Dn, ai)× θ′i(D′

n
, ai).

If S is a sort, we use the following terminology in order to say that definable sets in S can be given
by formulas with parameters in S and function/predicate symbols contained in S.

Definition 1.7. Consider a sort S in an L-structureM. We denote by L S the language L restricted
to function/predicate symbols which only involve S. We say that S is pure or unenriched if defin-
able subsets of S (with parameters) are given by L S(S)-formulas – this is to say by a formula with
parameters in S and with function/predicate symbols only involving the sort S.

A pure sort S can be seen as an L S-structure on its own. In particular, it is stably embedded.
Purity of a sort S is usually a simple corollary of quantifier elimination relative to S and closedness of
S (see Fact 1.9).

Remark that the notion of closedness is syntactic, which is not ideal. One may indeed use another
bi-interpretable language, where the sort is no longer closed, but where resplendent relative quantifier
elimination still holds2. Here is a sightly improved version of purity which can replace the notion of
closedness. It is, in a certain sense, less dependent of the language.

Definition 1.8. Consider M a structure. An imaginary sort S = (S, . . .) endowed with an inter-
pretable structure in a language LS is called pure with control of parameters if every formula φi(xS , b)
where xS is a tuple of S-variables and b is a tuple of parameters in M, is equivalent to a formula
φS(xS , πS(t(b))) where πS is the canonical projection onto S, φS is an LS-formula and t(x) is a tuple
of L-terms.

The following is immediate:

Fact 1.9. Consider M an L-structure. If S is a closed sort and M eliminates quantifier relative to
S, then S endowed with its induced structure in L S is pure with control of parameters. In particular,
it is pure and stably embedded.

Proposition 1.10. Let M be an L-structure, and S an imaginary sort of arity n with some inter-
pretable structure given in a language LS. Assume that M has quantifier elimination and that S is a
pure imaginary structure with control of parameters. The (multisorted) structure {M,S, πS : Mn → S}
in the language L2 := L ∪ LS ∪ {πS : Mn → S} admits quantifier elimination relatively to S.

2This happens for instance with the residue field k of an equicharacteristic 0 Henselian valued field: it is closed in
the traditional 3-sorted language of valued fields but it is also natural to interpret in addition a short exact sequences of
abelian groups 1→ k× → RV? → Γ→ 0. See Paragraph 1.2.1
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Notice that by definition, we have L2 S = LS . As S is by definition a closed sort in the language
L2, this is in fact a characterisation of purity with control of parameters:

Corollary 1.11. An interpretable structure S is pure with control of parameters if and only if
{M,S, πS : Mn → S} admits quantifier elimination relative to S.

Proof. We use the usual back-and-forth argument. Let N be a |M |-saturated model of the theory of
M in the language L2. Let f : (A,SA)→ (B,SB) be an isomorphism between a substructure (A,SA)
ofM and a substructure (B,SB) of N . Assume that the restriction f S to S is elementary. We want
to extend f to an embedding ofM into N .
Step 0: We may assume that SA = SM .
Indeed, by elementarity of f S , there exists an isomophism f̃ S : SM → f̃ S(SM ) ⊂ SN extending f S .
The union f ∪ f̃ S is a partial isomorphism as the sort S is closed. Indeed, every quantifier-free formula
φ(a, s) with parameters in (A,SM ) can be written of the form:∨

φL(a) ∧ φS(s, πS(t(a))),

where φL is an L-formula, φS is an LS-formula and t is a tuples of L-terms. As A is a structure,
all terms t(a) are elements of A. It follows that f ∪ f̃ S preserves these formulas.
Step 1: We may assume that A = M and thus conclude the proof.
Indeed, let a ∈M \A. We denote by p(x) the quantifier free type of a over A. We want an appropriate
answer for a, i.e. an element f̃(a) of N satisfying the set of formulas:

{φ(x, f(b), f(s)) | φ(x, b, s) ∈ p(x), b ∈ A, s ∈ SM}

By compactness, it suffices to show that it is finitely consistent. Consider a formula

φ(x, b, s) ∈ p(x),

where b ∈ A and s ∈ SM . As S is pure with control of parameters, the formula

∃x φ(x, b, yS)

is equivalent to an LS(SM )-formula ψS(t(b), yS) (with a tuple of L-terms t(y)).
The formula

θ(y) = ∀yS ψS(t(y), yS)⇔ ∃x φ(x, y, yS)

is interpreted in the language L by a formula Σ(y). AsM has quantifier elimination in the language
L, we may assume that Σ(y) is quantifier-free. We have:

M |= Σ(b),

M |= ψS(t(b), s).

As f respects quantifier free-formula and f SM respects LS(SM )-formula, we have

N |= Σ(f(b)),

N |= ψS(f(t(b)), f(s)).

Of course, f(t(b)) = t(f(b)). We get: N |= ∃x φ(x, f(b), f(s)). This concludes our proof.

As an example, we treat the question of quantifier elimination in the field of p-adics in a two-sorted
language of valued fields. This is a well known result, but we are not aware of a reference.
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Example. Consider the theory T of the p-adics Qp for some p. By Macintyre’s theorem [26], it admits
quantifier elimination in the language LMac := Lrings ∪{Pn}n<ω where the predicate Pn interprets the
nth-powers.

• The value group Γ, simply considered as a set, is not pure. Indeed, the theory T in the language
LMac∪{Γ}∪{val} (no structure on Γ) does not eliminate the quantifiers in the formula encoding
the addition:

φ(xΓ, yΓ, zΓ) ≡ ∃x, y ∈ K val(x) = xΓ ∧ val(y) = yΓ ∧ val(xy) = zΓ,

where xΓ, yΓ, zΓ are variables in Γ.

• By Bélair’s theorem [6, Theorem 5.1], the structure {Qp,On,Γ, val : Qp → Z, acn : Qp → On}
enriched with angular components (see Paragraph 1.2.1) eliminates quantifiers in the sort for Qp.
It results that the value group (Γ,+, 0, <,∞) –as an imaginary sort of Qp in the ring language–
is pure with control of parameters. Then, by Corollary 1.11, T eliminates quantifiers relative to
Γ in the language

L2 := LMac ∪ {Γ, <,+, 0,∞} ∪ {val}

• To get full elimination of quantifiers, one only needs to eliminate quantifiers in {Γ, <,+, 0,∞}.
So the theory T eliminates quantifiers in the language LMac ∪ {Γ, <,+, PΓ,n, 0, 1,∞} ∪ {val}
where PΓ,n interprets the set of values divisible by n.

1.1.2 Burden of a theory

In [32], Shelah defined the notion of burden as an invariant cardinal κinp and implicitly defined the tree
property of the second kind. A theory which does not satisfy it is called NTP2. Interest in the class of
NTP2 theories grew after the success of stability theory and with the necessity of extending methods
to unstable contexts. In [10], Chernikov and Kaplan studied the forking relation in NTP2 theories,
establishing notably that types over models fork if and only if they divide. In [8], Chernikov continued
the study of NTP2 theories, establishing in particular a criterion with indiscernible sequences and the
sub-multiplicativity of the burden.

We recall here a definition of burden, some of the results cited above and give some important
lemmas required for the proof of Theorem 3.12. We will give a second definition ( slightly different) of
the burden in order to formalise a convention due to Adler [1].

Definition 1.12. Let λ be a cardinal. For all i < λ, φi(x, yi) is L-formula where x is a common tuple
of free variables, bi,j are elements of M of size |yi| and ki is a positive natural number. Finally, let p(x)
be a partial type. We say that {φi(x, yi), (bi,j)j∈ω, ki}i<λ is an inp-pattern of depth λ in p(x) if:

1. for all i < λ, the ith row is ki-inconsistent: any conjunction
∧ki
l=1 φi(x, bi,jl) with

j1 < · · · < jki < ω, is inconsistent.

2. all (vertical) paths are consistent: for every f : λ → ω, the set {φi(x, bi,f(i))}i<λ ∪ p(x) is
consistent.

Most of the time, we will not mention the ki’s and only say that the rows are finitely inconsistent.

Definition 1.13. • Let p(x) be a partial type. The burden of p(x), denoted by bdn(p(x)), is the
cardinal defined as the supremum of the depths of inp-patterns in p(x). If C is a small set of
parameters, we write bdn(a/C) instead of bdn(tp(a/C)).

• The cardinal supS∈S bdn({xS = xS}) where xS is a single variable from the sort S and S is the
set of sorts, is called the burden of the theory T , and it is denoted by κ1

inp(T ) or by bdn(T ). The
theory T is said to be inp-minimal if κ1

inp(T ) = 1.
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• More generally, for λ a cardinal, we denote by κλinp(T ) the supremum of bdn({x = x}) where
|x| = λ and variables run in all sorts S ∈ S. We always have κλinp(T ) ≥ λ ·κ1

inp(T ). In particular,
if models of T are infinite, κλinp(T ) ≥ λ.

• A formula φ(x, y) has TP2 if there is an inp-pattern of the form {φ(x, y), (bi,j)j<ω, ki}i<ω.
Otherwise, we say that φ(x, y) is NTP2.

• The theory T is said NTP2 if κ1
inp(T ) < ∞. Equivalently, T is NTP2 if and only if there is no

TP2 formula. (See [8, Remark 3.3])

In all the notation above, we may replace T byM. In [8], Chernikov proves the following:

Fact 1.14 (Sub-multiplicativity). Let a1, a2 ∈ M. If there is an inp-pattern of depth κ1 × κ2 in
tp(a1a2/C), then either there is an inp-pattern of depth κ1 in tp(a1/C) or there is an inp-pattern of
depth κ2 in tp(a2/a1C).

As a corollary, for n < ω, we have κninp(T )+1 ≤ (κ1
inp(T )+1)n and then κninp(T ) = κ1

inp(T ) = bdn(T )
as soon as one of these cardinals is infinite.

If the reader knows the notion of dp-rank of a theory T , usually denoted by dp-rank(T ), let us say
the following: it admits as well a similar definition in term of depth of ict-patterns and it has been
showed that a theory T is NIP if and only if the depth of ict-pattern is bounded by some cardinal (see
[1] for more details). In this paper, the reader only needs to know that the notions of dp-rank and
burden coincide in NIP theories. If they are not familiar with the notion of dp-rank, they may take it
as a definition.

Fact 1.15 ([1, Proposition 10]). Let T be an NIP theory, and p(x) a partial type. Then dp-rank(p(x)) =
bdn(p(x)).

The previous fact is only stated with partial type p(x) = {x = x}, but the proof is the same.

Example. Any quasi-o-minimal theory is inp-minimal (see e.g. [35, Theorem A.16]). In particular,
{Z, 0,+, <} is inp-minimal.

We give below, for any cardinal λ, an example of a structure of burden λ. First, we want to give
some tools in order to ‘manipulate’ inp-patterns.

The definition of burden of a theory, as many other notion of complexity, gives to unary sets an
important role. But one has to notice that the notion of unary set is syntactic, and is not preserved
under bi-interpretability:

Remark 1.16. For n ∈ N, one can consider the multisorted structure (Mn,M, pi, i < n) where
pi : Mn → M, (a0, . . . , an−1) 7→ ai is the projection to the ith coordinate. If we denote its theory by
Tn, then we clearly have κninp(T ) = κ1

inp(T
n).

To clarify, let us introduce the following terminology:

Definition 1.17. Let M and N be two structures. We say that N is interpretable on a unary set
in M if there is a bijection f : N → D/ ∼ where D is a unary definable set in M, ∼ is a definable
equivalence relation, and the pull-back inM of any graph of function and relation of N is definable.
The structuresM and N will be said bi-interpretable on unary sets3 if N is interpretable on a unary
set inM andM is interpretable on a unary set in N .

3In the literature, the notion of bi-interpretability usually requires furthermore that the composition of the interpre-
tation f ◦ g : M → M (resp. g ◦ f : N → N ) is definable in M (resp. in N ). This is however not relevant for the
computation of the burden, and we omit it in our definition.
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We will work up to bi-interpretability on unary sets, meaning in particular that the main results
of this text will only depend on the structure that we want to consider and not on the language.

Fact 1.18. Let M and N be two structures, and assume that N is interpretable on a unary set in
M, then bdn(N ) ≤ bdn(M). In particular, if M and N are bi-interpretable on unary sets, then
bdn(M) = bdn(N ).

For example, {Z, 0,+, <} does not interpret

{Z× Z, (Z, 0,+, <), π1 : Z× Z→ Z, π2 : Z× Z→ Z}

on a unary set (the first being of burden 1, the second being of burden at least 2). However, if k is an
imperfect field, we will see that k interprets {k × k, (k, 0, 1,+, ·), π1 : k × k → k, π2 : k × k → k} on a
unary set.

Lemmas on inp-patterns Let L be any first order language, M a L-structure of base set M and
let λ be a cardinal.

Definition 1.19. • A sequence (bj)j∈λ of (tuples of) elements of M is indiscernible over a subset
A ⊂M if for every n ∈ N and every formula φ(x0, . . . , xn−1, a) with parameters a ∈ A, we have

M |= φ(b0, . . . , bn−1, a)⇔ φ(bj0 , . . . , bjn−1 , a)

for every j0 < · · · < jn−1 ∈ λ.

• An array (bi,j)i∈λ,j∈ω is mutually indiscernible if every line (bi,j)j∈ω is indiscernible over
{bk,j}k 6=i,k∈λ,j<ω.

We will intensively use the following fact:

Fact 1.20 ([8, Lemma 2.2]). If p(x) is a partial type and if {φi(x, yi), (bi,j)j∈ω, ki}i<λ is an inp-pattern
in p(x), there is an inp-pattern {φi(x, yi), (b̃i,j)j∈ω, ki}i<λ in p(x) with a mutually indiscernible array
(b̃i,j)i<λ,j<ω.

We will now present some easy lemmas, which we will later use. They give us tools to ‘transform’
inp-patterns into simpler ones which are easier to analyse.

Lemma 1.21. Let {φi(x, yi), (ai,j)j<ω, ki}i<λ be an inp-pattern with (ai,j)i<λ,j<ω mutually indis-
cernible. Assume for every i < λ, φi(x, ai,0) is equivalent to some formula ψi(x, bi,0) with parameter
bi,0. Then we may extend (bi,0)i<λ to an mutually indiscernible array (bi,j)i<λ,j<ω such that

{ψi(x, yi), (bi,j)j<ω, ki}i<λ,

is an inp-pattern.

Proof. By 1-indiscernibility, we find bi,j such that φi(M, ai,j) = ψi(M, bi,j). Then, the statement is
clear.

Remark 1.22. Let D be a stably embedded definable set in M, and {φi(x, yi,j), (ai,j)j<ω, ki}i<λ an inp-
pattern in D. This in particular implies that solutions of paths can be found in D but the parameters
(ai,j) may not belong to D. Using the previous lemma, we may actually assume that this is the case.
It follows that D endowed with the induced structure is at least of burden λ.

The next lemma shows that one can ‘eliminate’ disjunction symbols in inp-patterns. A direct
consequence is that if the theory has quantifier elimination, then we may assume that formulas of
inp-patterns are conjunctions of atomic and negation of atomic formulas.
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Lemma 1.23. Let {φi(x, yi,j), (ai,j)j<ω, ki}i<λ be an inp-pattern with (ai,j)i<λ,j<ω mutually indis-
cernible. Assume that φi(x, yi,j) =

∨
l≤ni ψl,i(x, yi,j). Then there exists a sequence of natural numbers

(li)i<λ such that li ≤ ni and
{ψli,i(x, yi,j), (ai,j)j<ω, ki}i<λ

is an inp-pattern.

Proof. Let d |= {φi(x, ai,0)}j<λ. For every i < λ, let li ≤ ni be such that d |= ψli,i(x, ai,0). By
the mutual-indiscernibility of (ai,j)i<λ,j<ω, every path of the pattern {ψli,i(x, yi,j), (ai,j)j<ω, ki}i<λ is
consistent. The inconsistency of the rows follows immediately from the inconsistency of the rows of
the initial pattern.

This lemma is particularly useful in order to compute the burden, as shown in the following example.

Example. • Let L = {R,B} be the language with two binary predicates, and letM be a set with
two cross-cutting equivalence relations with infinitely many infinite classes (for all a and b, there
are infinitely many c such that R(a, c) and B(b, c)).

M :=

Then we have bdn(M) = 2.

• More generally, given a cardinal λ, we can consider a setMλ equipped with λ-many cross cutting
equivalence relations (in a language with λ-many binary predicates). Then, bdn(Mλ) is of burden
exactly λ.

Proof. For simplicity, we only show the first case (when λ = 2). The general case can be prove the
same way. We also leave to the reader the proof that (M, B,R) eliminates quantifiers and show that
bdn(M) = 2. First, let us give an inp-pattern of depth 2. Consider (a0,j)j<ω in distinct R-equivalence
classes and (a1,j)j<ω in distinct B-equivalence classes. Then one sees that{

R(x, y0), B(x, y1), (ai,j)j<ω , 2
}
i<2

is an inp-pattern of depth 2. Indeed:

• Rows are 2-inconsistent: if j, j′ < ω are distinct, then R(x, a0,j) ∧ R(x, a0,j′) is inconsistent and
B(x, a1,j)

B(x, a1,j′) is inconsistent.

• Paths are consistent: there are elements cj0,j1 such that R(a0,j0 , cj0,j1) and B(a1,j1 , cj0,j1) for all
j0, j1 < ω.

We show now that any inp-pattern of depth > 2 must be of depth exactly 2, and is – after some
manipulation – of this form. Consider an inp-pattern{

φi(x, yi), (ai,j)j<ω , ki

}
i<k

of depth k > 1 with a mutual indiscernible array (ai,j)i<k,j<ω (we used Fact 1.20). By quantifier
elimination and elimination of the disjunction (Lemma 1.23), we may assume that for all i < k, the
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formula φi(x, yi) is a conjunction of the atomic formulas R(x, yli), B(x, yli), x = yli (for l < |yi|) and
their negation. In fact, we may assume that there is at most one positive occurrence of B(x, yli)
in φi(x, yi) and if one does occur, their is no other occurrence of B in φi(x, yi). Indeed, write for
instance φi(x, yi) = φ′i(x, yi) ∧ B(x, y0

i ) ∧ (¬)B(x, y1
i ). Since the formula is consistent and B is an

equivalence relation, φi(x, ai,0) is equivalent to φ′i(x, ai,0) ∧ B(x, a0
i,0) and we may replace φi(x, yi) by

φ′i(x, yi) ∧B(x, y0
i ) (Lemma 1.21).

Now, assume that there is a negative occurrence of B in φ0(x, yi), say ¬B(x, y0
0). By the previous

manipulation, their is no positive occurrence of B. Write φ0(x, y0) = φ′0(x, y0)∧¬B(x, y0
0). By writing

that the line is k0-inconsistent, we get
∧
j<k0

φ′0(x, a0,j) `
∨
j<k0

B(x, a0
0,j). If

∧
j<k0

φ′0(x, a0,j) is
consistent, there are 0 < j0, j1 < k0 such that φ′0(x, a0,j0) ` B(x, a0

0,j1
), which is a contradiction.

Thus, {φ′0(x, y0), (a0,j)j<ω} is already k0-inconsistent. We may remove all negative occurrence of B in
φ0(x, y0), as the line will still be k0-inconsistent. Similarly, we remove all occurrences of x 6= yl0 and
¬R(x, yli) in φ0(x, y0) and repeat the same process for all formulas φi(x, yi), 0 < i < k. It means that we
may assume that φi(x, yi) is one of the following four formulas: R(x, y0

i ), B(x, y0
i ), B(x, y0

i )∧R(x, y1
i )

or B(x, y0
i ) ∧ R(x, y0

i ). Now, it is easy to see, using consistency of paths, that our pattern must be of
depth 2 and of the form {

R(x, y0
0), B(x, y0

1), (ai,j)j<ω

}

‘Elimination’ of conjunction symbols may happen in more specific context. Notably:

Proposition 1.24. Let K and H be two structures, and consider the multisorted structure G:

G = {K ×H,K,H, πK : K ×H → K,πH : K ×H → H},

called the direct product structure (where πK and πH are the natural projections). Then G eliminates
quantifiers relative to K and H, and K and H are orthogonal and stably embedded within G.

G

K H

We have
bdn(G) = bdn(K) + bdn(H).

We prove an obvious generalisation for product of more than two structures in the next paragraph.

Proof. Relative quantifier elimination, stable embeddedness and orthogonality are rather obvi-
ous. The inequality bdn(G) ≥ bdn(K) + bdn(H) is easy but we give a detailed proof. Let
{φi(xK , yi), (ai,j)j<ω}i∈λ1 be an inp-pattern in K and {ψi(xH , yi), (bi,j)j<ω}i∈λ2 an inp-pattern in H.
Then

{φi(πK(xK , xH), yi), (ai,j)j<ω}i∈λ1 ∪ {ψi(πH(xK , xH), yi), (bi,j)j<ω}i∈λ2
is an inp-pattern in G of depth λ1 + λ2. Indeed, first notice that inconsistency of each rows is clear.
Secondly, take a path f : λ1 t λ2 → ω. There is an element dK ∈ K satisfying {φi(xK , ai,f(i))}i∈λ1 and
an element dH ∈ H satisfying {ψi(xH , bi,f(i))}i∈λ2 . Then, the element d = (dK , dH) of G is a solution
of the pattern along the path f .

For the other inequality, let {θi(x, yi,j), (ci,j)j<ω, ki}i<λ be an inp-pattern in G, with (ci,j)i<λ,j<ω
mutually indiscernible. We may assume θi(x, ci,j) is of the form φi(xK , ai,j)∧ψi(xH , bi,j) where xK =
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πK(x), xH = π(xH), ci,j = ai,j^bi,j , φi(xK , ai,j) is a K-formula and ψi(xH , bi,j) is a H-formula. Indeed,
let d |= {θi(x, ci,0)}j<λ, by orthogonality, θi(x, ci,0) is equivalent to a formula of the form:∨

k<ni

φi,k(xK , ai,0) ∧ ψi,k(xH , bi,0).

Then we conclude by using Lemmas 1.21 and 1.23. For every i, at least one of the sets {φi(xK , ai,j)}j<ω
and {ψi(xH , bi,j)}j<ω is ki-inconsistent (by indiscernibility of (ci,j)j). We may "eliminate" the con-
junction as well and assume that every line is an LK-formula or an LH -formula. We conclude that
λ ≤ bdn(K) + bdn(H).

Together with Fact 1.18, we get more generally:

Fact 1.25. Let M = (A,C, . . .) be a many-sorted structure. Assume that A and C are orthogonal and
stably embedded in M . Then we have bdn(A× C) = bdn(A) + bdn(C).

Let us finish this paragraph with one more lemma:

Lemma 1.26. Let D and D′ two type-definable sets respectively given by the partial types p(x) and
p′(x) and let f : D → D′ be a surjective finite to one type-definable function. Then we have bdn(D) :=
bdn(p(x)) = bdn(p′(x)) =: bdn(D′).

Proof. We may assume that D and D′ are definable, the general case can be similarly deduced. Let
{φ′i(x′, yi), (ai,j)j<ω, ki}i<λ be an inp-pattern in D′. Clearly, {φ′i(f(x), yi), (ai,j)j<ω, ki}i<λ is an inp-
pattern in D. Hence bdn(D) ≥ λ. Conversely, let {φi(x, yi), (ai,j)j<ω, ki}i<λ be an inp-pattern of
depth λ in D. Consider the pattern

{φ′i(x′, yi,j), (ai,j)j<ω}i<λ,

where
φ′i(x

′, ai,j) ≡ ∃x x ∈ D ∧ x′ = f(x) ∧ φ(x, ai,j).

Clearly every path is consistent. Assume for some i < λ, the row {φ′i(x′, ai,j)}j<ω is consistent,
witnessed by some h′. Note that h′ is in D′. By the pigeonhole principle, there are h ∈ D and an
infinite subset J of ω such that f(h) = h′ and h |= {φi(x, ai,j)}j∈J , contradiction. It follows that
{φi(x′, yi,j), (ai,j)j<ω}i<λ is an inp-pattern in D′. We conclude that bdn(D′) ≥ λ.

1.1.3 More on burden and strength

We will formally introduce a well known convention with respect to the burden, which consists of
writing bdn(M) = λ− for a limit cardinal λ ifM admits inp-patterns of depth µ for all µ < λ, but no
inp-pattern of depth λ. It has been introduced in [1], and has the advantage to emphasising a relevant
distinction. If the reader is not interested by such subtleties, they may move to the next subsection.
Proposition 1.34 might be interesting on its own, as it corresponds to the ‘baby case’ for the difficulty
that we will encounter for mixed-characteristic Henselian valued fields. One can refer to [1] for this
paragraph.

Definition 1.27. We define the ordered class (Card?, <) as the linear order obtained from the ordered
class of cardinals (Card, <) by adding for any limit cardinal λ a new element λ− (called ‘lambda
minus’). This new element comes immediately before λ: λ− < λ and if µ ∈ Card? with µ < λ,
then µ ≤ λ−. In addition to the natural injection Card ↪→ Card?, we define the actualisation map
act : Card? → Card as the map such that act(λ−) = λ for every limit cardinal λ, and act(κ) = κ for
any cardinal κ ∈ Card. It will be convenient to also set κ− = λ when κ = λ+ ∈ Card is a successor
cardinal.
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If λ is a limit cardinal, one should think λ as an ‘actual’ lambda and λ− as a ‘potential’ lambda.
We don’t change our notion of cardinality of a set. As we will see, this definition of Card? is motivated
by the burden, i.e. by a notion of dimension. It also motivates to (partially) extend the arithmetic
operations of Card to Card?. We will have to answer any question of the form: should the cardinal
ℵ0 · ℵω− be ℵω− or ℵω? As the definitions themselves appear to be a bit technical, we prefer to first
give intuition to the reader with a small digression on graphs.

Graphs and cliques We consider symmetric graphs in the language L = {R}. We denote by Kκ

the complete graph on κ-many vertices, for κ a cardinal in Card. Given a graph G, we denote by C(G)
the cardinal in Card?:

C(G) =

{
κ ∈ Card if Kκ embeds in G and Kκ+ does not,
κ− ∈ Card? if Kλ embeds in G for all cardinal λ < κ and Kκ does not.

Example. Let G be the disjoint union of graphs ∪n<ℵ0Kn:

G := •
•

•
•

•

•

••

• •
•
••

• •
· · ·

By definition, we have C(G) = ℵ0−.

In addition to the union of graphs, we want to consider another natural operation:

Definition 1.28. We define the lexicographic product of graphs G and F as the graph G[F ] with set
of vertices G× F and a symmetric relation given by:

(g0, f0)RG[F ](g1, f1) ⇔

{
g0 = g1 and f0R

Ff1,

g0 6= g1 and g0R
Gg1.

Example. Consider the lexicographic product of K4 and K3. We simply obtain K12:

K4[K3] :=

•••

•••

•••

•••

If C(G), C(F) ∈ Card are cardinals greater or equal to 2, we have by pigeonhole principle that

C(G[F ]) = C(G)× C(F).

This gives us the intuition of how one can define the product of cardinals in Card?. Let us look at two
examples:

Example. Consider G = ∪n<ωKℵn and F = ∪α<ω1Kℵα . Then we have C(G) = ℵω− and C(F) = ℵω1−.
If we consider the lexicographic product with Kℵ0 , we obtain:

• C(Kℵ0 [G]) = ℵω ,

• C(Kℵ0 [F ]) = ℵω1− .
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We leave the proof to the reader, with the following picture for the intuition:

Kℵ0 [G] ⊃ Kℵ3

Kℵ4Kℵ5

Kℵ1 Kℵ2

. . .

As a consequence, one might be tempted to write ℵ0 · ℵω− = ℵω and ℵ0 · ℵω1− = ℵω1−. This is
what we want to define now.

Arithmetic on Card? We first define the cofinality of a cardinal λ in Card? as the cofinality of
act(λ), denoted by cf(λ). Secondly, we define the following operations:

Definition 1.29. Let Λ = (λi)i∈I be a sequence in Card?. Let λ = supi∈I(act(λi)) ∈ Card be the
supremum in the usual sense, and supp(Λ) = {i ∈ I |λi 6= 0}. We find a partition I1 ∪ I2 ∪ I3 of I such
that:

Λ = (λi)i∈I1 ∪ (λ−)i∈I2 ∪ (λ)i∈I3 ,

where λi < λ− for i ∈ I1. We define sup? as follows:

• sup?i∈I(λi) =

{
λ if |I3| 6= ∅.
λ− otherwise.

If |I| and λ are finite, the definition of the sum
∑? in Card? is the sum in the usual sense:∑

i∈I

?
λi =

∑
i∈I

act(λi) =
∑
i∈I

λi.

Otherwise, we set:

•
∑?

i∈I λi =



| supp(Λ)| if | supp(Λ)| ≥ λ,
λ if I3 6= ∅,
λ if |I2| ≥ cf(λ),

λ if supi∈I1(act(λi)) = λ,

λ− otherwise.

if | supp(Λ)| < λ.

For λ, µ ∈ Card, λ limit cardinal, we define the product ·? : Card×Card? → Card? in terms of sum:

•
∑?

µ λ− = µ ·? λ− =

{
λ− if µ < cf(λ),
µ · λ if µ ≥ cf(λ).

We see in particular that, under these definition, sup? and
∑? do not necessary coincide anymore

when there are infinite. However, it is clear that we recover the usual definition via the actualisation
map, as we have the following commutative diagrams:

Card?|I|

act
��

∑?

// Card?

act

��

Card|I|
∑

// Card

Card?|I|

act
��

sup?
// Card?

act

��

Card|I|
sup

// Card
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Here are the promised examples:

Examples. • Consider the sequence Λ1 = ℵω−, 1, 2, 3, . . .. We have sup? Λ1 =
∑? Λ1 = ℵω−.

• Consider the sequences Λ2 = (ℵω−)i<ω = ℵω−,ℵω−, . . . and Λ3 = (ℵi)i<ω = ℵ0,ℵ1, . . .. We have
sup? Λ2 = sup? Λ3 = ℵω− and

∑? Λ2 =
∑? Λ3 = ℵω.

• Consider Λ4 = (ℵi)i<ω ∪ (ℵ2ω−). Then sup? Λ4 =
∑? Λ4 = ℵ2ω−.

• We have ℵ0 · ℵω− = ℵω, ℵ0 · ℵω1− = ℵω1− and ℵ1 · ℵω1− = ℵω1 .

Now, we go back to the burden.

Burden, strength and Card? In Definition 1.13, the burden of the complete theory T is the
supremum (in Card∪{∞}) of depth of inp-patterns in T . However this supremum is not necessarily
attained by an actual inp-pattern. This distinction is in particular motivated by the following definition:

Definition 1.30 ([1]). A complete theory is called strong if there is no inp-pattern of infinite depth
in T .

One sees that, paradoxically, some strong theories have burden ℵ0 and some theories of burden
ℵ0 are not strong (see examples below). In other words, the definition of burden we gave failed to
characterize strength. We will use Adler’s convention (see [1]) which gives a solution to this problem:
the burden takes value in Card? ∪{∞}. We will indicate when we use this convention by writing bdn?

instead of bdn.

Definition 1.31. (second definition of burden) Let T be a complete theory. We denote by S the set
of sorts.

• The burden bdn?(π(x)) of a partial type π(x) is the supremum in Card? ∪{∞} of the depths of
inp-patterns in p(x).

• The cardinal sup?S∈S bdn?({xS = xS}) where xS is a single variable from the sort S, is called the
burden of the theory T , and it is denoted by κ1?

inp(T ) or by bdn?(T ).

In other words, if the supremum λ ∈ Card of depth of inp-patterns is attained, the burden is equal
to λ . Otherwise, it is equal to λ−. In particular, strong theories are exactly theories of burden at
most ℵ0−. One can check that every lemma in the previous paragraph -and its proof- still hold. Let
us give a formal definition:

Definition 1.32. Let Mi = (Mi, . . .) be a structure in a language Li, for i ∈ I a set of indices. We
define the following multisorted structure:

• The disjoint union ⋃
i

Mi = {(Mi, . . .)}i∈I .

with a sort for eachMi’s.

• The direct product ∏
i∈I
Mi = {

∏
i∈I

Mi, (Mi, . . . )i∈I , (πi :
∏
j∈I

Mj →Mi)i∈I},

with a sort for eachMi’s and a sort for the product and where πi :
∏
j∈IMj →Mi is the natural

projection.
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We have the following fact:

Fact 1.33. • The sortsMi in the union ∪i∈IMi are stably embedded and pairwise orthogonal.

∪i∈IMi

Mi Mj · · ·

• The direct product
∏
i∈IMi eliminates quantifiers relative to the sorts Mi. In particular, the

sortsMi are stably embedded, and pairwise orthogonal.∏
i∈IMi

Mi Mj · · ·

Proof. The first point is easy and is solved by simple inspection on formulas. For the second point, we
leave to the reader to prove quantifier elimination.

Stable embeddedness is clear by inspection: a formula φ(xi, a, (aj)j∈J) with variable xi ∈ Mi and
parameters a ∈M and aj ∈Mj for j ∈ I and withoutM -sorted quantifiers is a disjunction of formulas
of the form

φi(xi, ai, πi(a)) ∧ φ(a) ∧
∧

j∈I\{i}

φj(aj , πj(a)),

where φi(xi, ai, πi(a)) is an Li-formula, φj(aj , πj(a)) are closed Lj-formula j ∈ I \ {i} and φ(a) is a
closed formula in the empty language. It is clearly equivalent to an Li-formula with parameters inMi,
as a closed formula is true or false and can be replaced either by xi = xi or by xi 6= xi . Orthogonality
is also clear: for the same reason, a formula φ(xi, xj , a, (aj)j∈J) with variable xi ∈ Mi and xj ∈ Mj

without M -sorted quantifiers is equivalent to a disjunction of formulas of the form

φi(xi, ai, πi(a)) ∧ φj(xj , aj , πj(a)).

Naturally, we have a generalisation of Proposition 1.24 for infinite products.

Proposition 1.34. Let Mi = (Mi, . . .) be a structure in a language Li, for i ∈ I a set of indices.
Assume they are not all finite. One has:

• bdn?(
⋃
i∈IMi) = sup?i∈I bdn?(Mi),

• bdn?(
∏
i∈IMi) =

∑?
i∈I bdn?(Mi).

Remark 1.35. If all structures Mi are finite, there are two cases: either #{i ∈ I | |MI | > 1} is
infinite and bdn?(

∏
i∈IMi) = 1, or #{i ∈ I | |MI | > 1} is finite and bdn?(

∏
i∈IMi) = 0. As the

condition |Mi| > 1 cannot be seen in terms of burden, we must treat this case separately.

Proof. The first point is clear: an inp-pattern P (x) in
⋃
iMi has to ‘choose’ in which sort Mi its

variable x lives. This sort, sayMi0 , is stably embedded by Fact 1.33. By Remark 1.22, the depth of
P (x) is bounded by bdn(Mi0). Going to the supremum, one sees that definitions match:

bdn?(
⋃
i∈I
Mi) = sup?i∈I bdn?(Mi).

The second point is more subtle: if Q(x) is an inp-pattern of depth µ in
∏
i∈IMi, with the variable

x in the main sort, then the pattern refers to the sortsMi simultaneously.
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Claim 1. Assume that
∏
i∈IMi admits an inp-pattern of depth µ. Then there is an inp-pattern of

depth µ in
∏
i∈IMi of the following form:

{φα(πf(α)(x), yf(α)), (af(α),j)j<ω}α<µ,

for some function f : µ → I and where φα(xf(α), yf(α)) is a Mf(α)-formula. In other word, we may
assume that a line α "mentions" only one structureMi.

Proof. Let us assume that
∏
Mi admits an inp-pattern Q(x) = {ψα(x, ȳα), (āα,j)j<ω, kα}α<µ of depth

µ ≥ 2. We assume the array (āα,j)α<µ,j<ω to be mutually indiscernible. To simplify the notation, a
generic line of Q(x) is denoted by {ψ(x, ȳ), (āj)j<ω, k} (we drop the index α). By relative quantifier
elimination and by Lemma 1.23, we may assume that formulas ψ(x, ȳ) in Q(x) are of the form∧

n<N

x 6= yn ∧ x = y ∧
∧
φi(πi(x), yi),

where φi(x, yi) are Li-formulas, N ∈ N and where ȳ = (y1, . . . , yN , y) ∪ (yi)i∈I and āj =
(a1j , . . . , aNj , aj) ∪ (aij)i∈I for j < ω. If the atomic formula x = y does occur, for example in the
first row, then consistency of paths contradicts k2-inconsistency of the second row. Thus, we knows
that formulas in Q(x) are of the form∧

n<N

x 6= yn ∧
∧
φi(πi(x), yi),

Now, the formula
∧
n<N x 6= yn is co-finite. This implies that

{
∧
φi(πi(x), ai,j)}j<ω

is k+ 1-inconsistent. Indeed, otherwise, for one (equivalently for all) k+ 1-increasing tuple j0 < · · · <
jk < ω, the set {∧

φi(πi(x), ai,j1), . . . ,
∧
φi(πi(x), ai,jk)

}
is satisfied by an,jl for some n < N and l ≤ k. Without loss of generality, assume that n = N − 1 and
l = k. Then, by mutual indiscernibility, (aN−1,j)j≥k are solutions of{∧

φi(πi(x), ai,0), . . . ,
∧
φi(πi(x), ai,k−1)

}
This contradicts the k-inconsistency of the line{ ∧

n<N

x 6= an,j ∧
∧
φi(πi(x), ai,j)

}
j<ω

,

unless (aN−1,j)j<ω is constant. In that case, this parameter can be ignore: replace the formula by∧
n<N−1

x 6= yn ∧
∧
φi(πi(x), yi),

and we still have an inp-pattern. We get our contradiction by induction on N . Hence, we may assume
that formulas ψ(x, ȳ) in Q(x) are of the form∧

φi(πi(x), yi).

We may now conclude using mutual indiscernibility that for at least one i =: f(α), the set

{φi(πi(x), ai,j)}j<ω
is k-inconsistant. We may replace the formula

∧
φi(πi(x), yi) by φf(α)(πf(α), yf(α)). In other word, we

may assume that only the index i = f(α) occurs in the formula of the line α. We found an inp-pattern
of the desired form.
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We denote bdn?(Mi) by λi and supi∈I act(λi) ∈ Card by λ. One immediate corollary is that

bdn?(
∏
i∈I
Mi) = bdn?(

∏
i∈I
λi 6=0

Mi) ≥ 1,

(notice that we used that some Mi is infinite). We may assume that I = supp(λi)i∈I . Now, the
proof is straight forward and is just a case study. We distinguish six cases:

First case: the cardinals |I| and λ are finite. Then, this is immediate from the previous claim:
bdn?(

∏
Mi) =

∑
λi =

∑?λi.
Second case: we have |I| ≥ λ and |I| ≥ ℵ0. Then, let (bi,j)j<ω be a sequence of pairwise distinct

elements ofMi. Let x be a variable in the main sort. Then, {πi(x) = yi, (bi,j)j<ω}i∈I is an inp-pattern
of depth |I|. We have bdn?(

∏
Mi) ≥ |I|. Reciprocally, assume

∏
Mi admits an inp-pattern Q(x) of

depth µ > |I|. By the previous claim and pigeonhole principle, we find an inp-pattern of depth µ in
someMi, which is a contradiction with λ ≤ |I| < µ. We get bdn?(

∏
Mi) =

∑?
i∈I λi = |I|.

Third case: we have |I| < λ and λi = λ ≥ ℵ0 for some i ∈ I. Then clearly bdn?(
∏
Mi) ≥ λ.

Again, by pigeonhole principle, one gets bdn?(
∏
Mi) ≤ λ.

Fourth case: we have |I| < λ and cf(λ) ≤ #{i ∈ I | λi = λ−}. Then, choose any sequence of
cardinals (µα)α<cf(λ) with supremum λ (in the usual sense) and µα < λ for all α. We can assume
that I = cf(λ) and that we have an inp-pattern Qi(xi) in Mi of depth µi. The inp-pattern Q(x) =
∪i∈IQi(πi(x)) is of depth λ. We get bdn?(

∏
Mi) =

∑
i∈I

?λi = λ.
Fifth case: we have sup{act(λi) | λi /∈ {λ−, λ}} = λ. We conclude as in the previous case that

bdn?(
∏
Mi) =

∑
i∈I λi = λ.

Last case: we are not in the above cases. Then, by the previous claim, there is no inp-pattern of
depth λ in

∏
Mi. We have then

bdn?(
∏
Mi) =

∑
i∈I

?
λi = λ−.

In a supersimple theory, the burden of a complete type is always finite (see [1]). Hence, supersimple
theories are examples of strong theories.

Example. The following structures have burden ℵ0−:

• Any union structure M =
⋃
nMn, where for every n ∈ N, Mn is a structure of burden n.

• Any model of ACFA, the model companion of the theory of algebraically closed fields with an
automorphism.

• Any model of DCF0, the theory of differentially closed fields.

The first example is clear by the previous discussion but could look artificial. It will naturally
appear when we will discuss the burden of the RV<ω-sort in mixed characteristic (see Section 3.3).
The fact that the last two examples are of burden ℵ0− (and not finite) follows from the fact they are
super-simple and from the next remark. Indeed, Chernikov and Hils noticed that, since such fields are
infinite dimensional vector spaces over respectively their fixed field and their constant field, they must
admit a pattern of size n for every integer n:

Remark 1.36. [9, Remark 5.3] Let T be a simple theory and assume there is a n-dimensional type-
definable vector space V over a type-definable infinite field F . Then there is a type in V of burden
≥ n.

Let us look at one natural example of a non-strong theory:
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Remark 1.37. Let k be an imperfect field of characteristic p, considered as a structure in the language
of fields. Then bdn?(k) ≥ ℵ0.

Proof. Let e0, e1 ∈ k be two linearly independent elements over kp. Then, we have the definable
injective map

f2 : k × k → k
(a, b) 7→ ape0 + bpe1

By induction, we define for n ≥ 2:

fn+1 : k(n+1) → k
(a0, . . . , an−1) 7→ fn(a0, . . . , an−3, f2(an−2, an−1)).

Then, consider the formula for n ≥ 0:

φn(x, yn) ≡ ∃y0, . . . , yn−1, yn+1 x = fn+2(y0, . . . , yn+1),

and pairwise distinct parameters bn,j ∈ k, for j < ω. Then

{φn(x, yn), (bn,j)j<ω}n<ω

is an inp-pattern of depth ℵ0 : inconsistency of the rows is clear, and it is easy to show consistency of
paths by compactness.

Remark 1.38. Similarly, one can show that if a modelM is bi-interpretable on a unary set with the
direct productM×M = (M ×M,M, π1 : M ×M →M,π2 : M ×M →M), then bdn?(M) ≥ ℵ0 and
it is never of the form λ− where λ is a cardinal of cofinality ℵ0. Indeed, let us sketch an argument:
Assume bdn?(M) ≥ λ−, let (λn)n be a sequence of cardinals cofinal in λ. We must find an inp-pattern
of depth λ inM. Consider f2 : D2 −→M×M an interpretation map where D2 is a definable unary
subset of M (and the relation f(a) = f(a′) is a definabe equivalence relation on D2). We may define
by induction an interpretation of

∏
nM on a unary set Dn ⊂ M by ‘duplicating’ the last component

at each step:

D2
f2−→M×M,

D3
f2−→M×D2

id×f2−→ M× (M×M),

D4
f2−→M×D3

id×f2−→ M× (M×D2)
id×id×f2−→ M× (M× (M×M)),

etc.

Now, given an inp-pattern Pn(x) = {φi(xn, yi), (ai,j)j<ω}i<λn in M of depth λn, we define a new
pattern P ′n(x) := {φ′i(x, y′i), (a′i,j)j<ω}i<λn by taking the (definable) pre-image φ′i(Dn+1, a

′
i,j) of the

definable set φi(M,ai,j) via the map πn ◦ fn+1 : Dn+1 → M (where πn is the projection to the nth

coordinate). We see then that P ′n(x) is also an inp-pattern. Furthermore, define P ′(x) =
⋃
n P
′
n(x).

One can see, using compactness, that all paths are consistent, and that P ′(x) is an inp-pattern of depth
λ inM.

1.2 On model theory of algebraic structures

1.2.1 Valued fields

We gather here some facts on valued fields. After some general statement on indiscernible sequences,
we will introduce the RV-sort. Then, we will list the theories of valued fields that we will consider.
We will recall some basics of the theory of Kaplansky. The reader can refer to [24] for more details.
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We will need a few lemmas, such as a kind of transitivity of pseudo-limits, and a case study of
indiscernible sequences. A valued field will be typically denoted by K = (K,Γ, k, val) where K is the
field (main sort), Γ the value group and k the residue field. The valuation is denoted by val, the
maximal ideal m and the valuation ring O. We recall the two traditional languages of valued fields.

Notation and languages
We will work in different (many-sorted) languages. Let us define two of them:

• Ldiv = {K, 0, 1,+, ·, |}, where | is a binary relation symbol, interpreted by the division:

for a, b ∈ K, a | b if and only if val(a) ≤ val(b).

• LΓ,k = {K, 0, 1,+, ·} ∪ {k, 0, 1,+, ·} ∪ {Γ, 0,∞,+, <} ∪ {val : K → Γ,Res : K2 → k}.
where Res : K2 → k is the two-place residue map, interpreted as follows:

Res(a, b) =

{
res(a/b) if val(a) ≥ val(b) 6=∞,
0 otherwise.

In the next paragraphs, we will also introduce the many-sorted languages LRV and LRV<ω which involve
the leading term structures RV and RV<ω.

By bi-interpretability, a theory of valued fields can be expressed indifferently in either of these lan-
guages. Let K be a valued field. If the context is clear, we will often abusively denote by K,Γ, k,RV, ...
the sorts in K. In general, the sorts of a valued field L will be denoted by L,ΓL, kL,RVL ... and of a
valued field K′ by K ′,Γ′, k′,RV′, . . . etc.

Pseudo-Cauchy sequences We will discuss here some simple facts about mutually indiscernible
arrays in a valued field K. We will denote by Z̄ the set of integers with extreme elements {−∞,∞}.
We recall the definition of pseudo-Cauchy sequences:

Definition 1.39. Let (I,<) be a totally ordered index set without greatest element. A sequence
(ai)i∈I of elements of K is pseudo-Cauchy if there is i ∈ I such that for all indices i < i1 < i2 < i3,
val(ai2 − ai1) < val(ai3 − ai2). We say that a ∈ K is a pseudo limit of the pseudo-Cauchy sequence
(ai)i∈I and we write (ai)i∈I⇒a if there is i ∈ I such that for all indices i < i1 < i2, we have
val(a− ai1) = val(ai2 − ai1).

The next two lemmas give some useful properties of indiscernible pseudo-Cauchy sequences.

Lemma 1.40. 1. Assume (ai)i<ω is an indiscernible sequence and a is a pseudo limit of (ai)i<ω.
Then for any i, val(ai− a) = val(ai− ai+1) depends only on i and not on the chosen limit a (for
general pseudo-Cauchy sequence, this holds only for i big enough).

2. For three mutually indiscernible sequences (ai)i<ω, (bi)i<ω and (ci)i<ω, if (ai)i<ω⇒b0 and
(bi)i<ω⇒c0, then we have (ai)i<ω⇒c0.

(ci)i (bi)i (ai)i
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3. If (ai)i∈Z̄ is an indiscernible sequence in K, then (ai)i∈ω⇒a∞ or (a−i)i∈ω⇒a−∞ or for i 6= j,
val(ai − aj) is constant (in this last case, (ai)i∈Z̄ will be called a fan).

Proof. 1. By definition of a pseudo-Cauchy sequence, (val(ai−ai+1))i is eventually strictly increas-
ing. By indiscernibility, it is strictly increasing. Let i0 be such that val(a− ai) = val(ai+1 − ai)
for all i > i0. Then val(a − ai0) = min(val(a − ai0+1), val(ai0+1 − ai0)) = min(val(ai0+2 −
ai0+1), val(ai0+1 − ai0)) = val(ai0+1 − ai0). It holds also for i = i0 and we can reiterate.

2. Notice that, by mutual indiscernibility and (1), val(ai − b0) = val(ai − ai+1) = val(ai − bj) for
any i, j < ω, i.e. (ai)i<ω⇒bj for any j. Similarly, (bi)i<ω⇒cj for any j. We have val(b0 − b1) ≥
val(b0 − ai) = val(ai − b1). If val(b0 − b1) = val(b0 − ai), we have by mutual indiscernibility
that (val(b0 − ai))i<ω is constant, which is a contradiction with (ai)i<ω⇒b0. Then, we have
val(b0 − c0) = val(b0 − b1) > val(b0 − ai). As val(ai − c0) ≥ min(val(ai − b0), val(b0 − c0)), we
deduce that val(ai − c0) = val(ai − b0) for all i, i.e. (ai)⇒c0.

3. It is immediate by indiscernibility (consider for example val(a0 − a1) and val(a1 − a2)).

Lemma 1.41. Let (aj)j∈Z and (bl)l∈Z two mutually indiscernible sequences in K such that
(val(aj − bl))j,l is not constant. At least one of the following occurs:

1. (aj)j<ω⇒b0,

2. (bl)l<ω⇒a0,

3. (a−j)j<ω⇒b0,

4. (b−l)l<ω⇒a0.

Note that if for example (bl)l<ω⇒a0, then by mutual indiscernibility, (bl)l<ω⇒aj for every j ∈ Z.

Proof. Since val(aj − bl) is not constant, using the mutual indiscernibility, one of the following occurs:

1. val(a0 − b0) < val(a1 − b0),

2. val(a0 − b0) < val(a0 − b1),

3. val(a0 − b0) < val(a−1 − b0),

4. val(a0 − b0) < val(a0 − b−1).

Indeed, if 1. and 3. do not hold, then the sequence (val(b0 − aj))j∈Z is constant. If 2. and 4. do
not hold, then the sequence (val(bl − a0))l∈Z is constant. This cannot be true for both sequences as it
would contradict the assumption. We conclude by indiscernibility.

Γ

K · · · · · ·· · · · · ·

val(ai − aj) = constant

val(a0 − b−1)

val(a0 − b2)

val(a0 − b1)

val(a0 − b0)

a0 a1 a3 b2 b1 b0 b−1a−1 0
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The leading term structure We will now define the RV-sort (or RV-sorts, as we may need to
consider more than one sort) –an intermediate structure between the valued field and its value group
and residue field. We also introduce corresponding languages LRV and LRV<ω . This paragraph is largely
inspired by [17], which one can use as a reference. Let K be a Henselian valued field of characteristic
(0, p) with p ≥ 0, of value group Γ and residue field k. If δ ∈ Γ≥0, we denote by mδ the ideal of the
valuation ring O defined by {x ∈ O | v(x) > δ}. The leading term structure of order δ is the quotient
group

RV?
δ := K?/(1 + mδ).

The quotient map is denoted by rvδ : K? → RV?
δ . The valuation val : K? → Γ induces a group

homomorphism valrvδ : RV?
δ → Γ. Since m = m0 and k? := (O/m0)? ' O×/(1 + m0), we have the

following short exact sequence:

1→ k?
ι→ RV?

0

valrv0→ Γ→ 0.

In general, we denote by Oδ the ring O/mδ, called the residue ring of order δ . One has O×δ '
O×/(1 + mδ) and the following exact sequence:

1→ O×δ
ιδ→ RV?

δ

valrvδ→ Γ→ 0.

Furthermore, as mγ ⊆ mδ for any δ ≤ γ in Γ≥0, we have a projection map RV?
γ → RV?

δ denoted by
rvγ→δ or simply by rvδ. We add a new constant 0 to the sort RV?

δ and we write RVδ := RV?
δ ∪{0}.

We set the following properties:

• for all x ∈ RVδ, 0 · x = x · 0 = 0.

• valrvδ(0) =∞, rvδ(0) = 0.

Proposition 1.42. For any a, b ∈ K and δ ∈ Γ≥0, rvδ(a) = rvδ(b) if and only if val(a−b) > val(b)+δ
or a = b = 0.

Proof. This follows easily from the definition: assume rvδ(a) = rvδ(b) and a 6= 0. Then a = b(1 + µ)
for some µ ∈ mδ and val(a − b) = val(b) + val(µ) > val(b) + δ. Conversely, if val(a − b) > val(b) + δ,
one can write a = b(1 + (a−b)

b ).

As a group quotient, the sort RVδ is endowed with a multiplication. As we will see, it also inherits
from the field some kind of addition.

Notation. Let 0 ≤ δ1, δ2, δ3 be three elements of Γ and x ∈ RVδ1 , y ∈ RVδ2 , z ∈ RVδ3 three variables.
Then we define the following formulas:

⊕δ1,δ2,δ3(x,y, z) ≡ ∃a, b ∈ K rvδ1(a) = x ∧ rvδ2(b) = y ∧ rvδ3(a+ b) = z

In our study of valued fields, we will consider the structures RV and RV<ω, that we define now:

Definition 1.43. The RV-sort of a valued field K is the first order leading term structure

RV = (RV0, ·,⊕0,0,0,0,1)

endowed with its natural structure of abelian group and the ternary predicate described above. Fol-
lowing the usual convention, we drop the index 0, and write RV,⊕ and rv instead of RV0,⊕0,0,0 and
rv0.
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Fact 1.44 ( Flenner, [17, Proposition 2.8]). The three-sorted structure
{(RV,1, ·,0,1), (k, 0, 1,+, ·), (Γ, 0,+, <), ι, valrv} and the one-sorted structure {RV,0, ·,⊕} are
bi-interpretable on unary sets.

This will mean, in the context of this paper, that these two points of view are equivalent, and we
will swap between one to the other indifferently (see Fact 1.18).

We defined the leading term language LRV as the multisorted language with

• a sort for K and RV.

• the ring language for K,

• the (multiplicative) group language as well as the symbol 0 for RV.

• the ternary relation symbol ⊕ and the function symbols rv.

The structure K = (K,RV, rv) becomes a structure in this language where all symbols are interpreted
as before. This language is also bi-interpretable (without parameters) with the usual languages of
valued fields, e.g. with Ldiv (see [17, Proposition 2.8]).

Also, notice that the symbol ⊕ suggests a binary operation. Occasionally, we will indeed write
rv(a)⊕ rv(b) for a, b ∈ K to denote the following element:

rv(a)⊕ rv(b) :=

{
rv(a+ b) if val(a+ b) = min(val(a), val(b)),

0 otherwise.

It is not hard to see that this is independent of the choice of representatives of rv(a) and rv(b). We
will write

⊕
i∈I ai for I a set of indices and ai ∈ RV, when such a sum does not depend on any choices

of parentheses. Notice that even if we denote this law ⊕ with an addition symbol, this operation is
not associative. Also, if a, b ∈ K with val(a) < val(b), we have that rv(a)⊕ rv(b) = rv(a) = rv(a+ b).
It is not true in general that rv(a+ b) = rv(a)⊕ rv(b) (choose a, b ∈ K such that rv(a) = − rv(b) and
a 6= −b). When we have indeed that rv(a + b) = rv(a) ⊕ rv(b), we say that the sum rv(a) ⊕ rv(b) is
well-defined.

In the specific context of mixed characteristic Henselian valued fields, we might have to consider a
larger structure:

Definition 1.45. Assume that K is a valued field of characteristic 0 and residue characteristic p ≥ 0.
We reserve now the notation δn for δn = val(pn). We write RV<ω for the union of sorts leading
term structure of finite order {(RVδn)n<ω, (⊕δl,δm,δn)n<l,m, (rvδn→δm)m<n<ω} endowed with ternary
predicates ⊕δl,δm,δn and a projective system of maps (rvδn→δm)m<n<ω. We also write valrv<ω : RV<ω →
Γ ∪ {∞} for

⋃
n<ω(valrvδn : RVδn → Γ ∪ {∞}), etc.

Remark 1.46. In equicharacteristic 0, we have that δn := val(pn) = 0 for all n < ω. This leads to
identifying

⋃
n<ω RVδn with RV = RV0.

In Section 3.3, we will have to use another language to describe the induced structure on RV<ω:

Fact 1.47 ( Flenner, [17, Proposition 2.8]). The structure

{(RVδn)n<ω, (⊕δl,δm,δn)n<l,m, (rvδn→δm)m<n<ω}

and the structure {
(RVδn)n<ω, (Oδn , ·,+, 0, 1)n<ω, (Γ,+, 0, <), (valrvδn )n<ω,

(O×δn → RV×δn)n<ω, (rvδn→δm)m<n<ω
}

are bi-interpretable on unary sets.
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As before, this is only to say that one can recover the valuation using the symbols ⊕ (see [17,
Proposition 2.8]). And again, this fact means that we will be able to swap between one language to
the other indifferently (see Fact 1.18).

We defined the language LRV<ω as the multisorted language with

• sorts for K and RVδn for n < ω.

• the ring language for K,

• for all n < ω, the (multiplicative) group language as well as the symbol 0 for RVδn .

• relation symbols ⊕δl,δm,δn for n ≤ l,m integers, function symbols rvδn : K → RVδn and
rvδn→δm : RVδn → RVδm for n > m.

The structure K = (K, (RVδn)n<ω, (⊕δl,δm,δn)n<l,m, (rvδn)n<ω, (rvδn→δm)m<n<ω) becomes a structure
in this language where all symbols are interpreted as before. This language is also bi-interpretable
(without parameters) with the usual languages of valued fields, e.g. with Ldiv (see [17, Proposition
2.8]).

Let K be any valued field. Let us state few lemmas.
Notation. Let δ1, δ2, δ3 ∈ Γ be three values. We write:

WDδ1,δ2,δ3(x,y) ≡ ∃!z ∈ RVδ3 ⊕δ1,δ2,δ3(x,y, z).

If the context is clear and in order to simplify notations, we will write:

• WDδ3 instead of WDδ1,δ2,δ3 ,

• for any formula φ(z) with z ∈ RVδ3 , x ∈ RVδ1 and y ∈ RVδ2 :

φ(rvδ3(x) + rvδ3(y))

or
φ(rvδ3(x) + rvδ3(y)) ∧WDδ3(x,y)

instead of
∃z ∈ RVδ3 ⊕δ1,δ2,δ3(x,y, z) ∧ φ(z) ∧WDδ1,δ2,δ3(x,y).

Example. Take K = R((t)) the field of power series over the reals endowed with the t-adic valuation.
Consider x = t2 + t3 + t4 + t5, x′ = t2 + t3 + t4 + 2t5 ∈ K, y = −t2 − t3 + t4 − t5 ∈ K and
z = 2t4, z′ = 2t4 + t5 ∈ K.

Then, we have rv2(x) = rv2(x′) since val(x − x′) = 5 > val(x) + 2 but rv1(z) 6= rv1(z′) since
val(z − z′) = 5 ≯ val(z) + 1. We have:

|= ⊕2,2,1(rv2(x), rv2(y), rv1(z)), |= ⊕2,2,1(rv2(x), rv2(y), rv1(z′)),

Hence, the sum is not well-defined in RV1:

|= ¬WD2,2,1(rv2(x), rv2(y))

We need to pass to RV3 in order to get a well-defined sum in RV1:

|= ⊕3,3,1(rv3(x), rv3(y), rv1(z)), ¬ |= ⊕3,3,1(rv3(x), rv3(y), rv1(z′)),

|= WD3,3,1(rv3(x), rv3(y)).
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More generally, we have the following proposition:

Proposition 1.48. Let 0 ≤ γ ≤ δ be two elements of Γ≥0 and ε = δ−γ ≥ 0. Then for every a, b ∈ K?:

WDγ(rvδ(a), rvδ(b)) if and only if val(a+ b) ≤ min{val(a), val(b)}+ ε.

val(a+ b)

val(a) = val(b)

val(a) + δ

l ε

l γ

0a+ ba −b

Proof. Assume val(a + b) ≤ min{val(a), val(b)} + ε. Let a′ ∈ K such that rvδ(a
′) = rvδ(a). This is

equivalent to val(a− a′) > val(a) + δ, thus we have:

val
(
a+ b− (a′ + b)

)
= val(a− a′) > val(a) + δ = val(a) + ε+ γ ≥ val(a+ b) + γ.

Hence, rvγ(a′ + b) = rvγ(a+ b). We have proved the implication from right to left.

Conversely, assume that val(a + b) > min{val(a), val(b)} + ε and min{val(a), val(b)} = val(a).
Let η = val(a + b) + γ and take any c ∈ K of valuation η. Then rvδ(a) = rvδ(a + c) since
val(a+ c− a) = η > val(a) + δ and rvγ(a+ b) 6= rvγ(a+ c+ b) since val (a+ c+ b− (a+ b)) = η =
val(a+ b) + γ.

Remark 1.49. To prove val(a + b) ≤ min{val(a), val(b)} + ε with ε ≥ 0, it is enough to show that
val(a + b) ≤ val(a) + ε (or val(a + b) ≤ val(b) + ε). Indeed, if val(a) = val(b) then this is clear. If
val(a) < val(b) or val(b) < val(a), this is also clear since we have val(a + b) = val(a) ≤ val(a) + ε in
the first case and val(a+ b) = val(b) < val(a) + ε in the second.

The following lemma is immediate:

Lemma 1.50. Let a, b and c = a− b be elements of K and let γ ∈ Γ≥0. At least one of the following
holds:

|= WDγ(rvγ(a), rvγ(b− a)) (1)
|= WDγ(rvγ(b), rvγ(a− b)) (2)

Proof. Notice that exactly one of the following occurs:

1. val a = val c < val b,

2. val b = val c < val a,

3. val a = val b < val c,

4. val a = val b = val c.
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Γ Γ

Γ Γ

1. 3.

2. 4.
0aa− b b 0b a− ba

0ba a− b 0a− ba b

Let a = rvγ(a),b = rvγ(b) and c = rvγ(c). In cases 2,3 and 4, the difference between a and c is
well-defined.

|= WDγ(a,−c).

In cases 1,3 and 4, the sum of b and c is well-defined:

|= WDγ(b, c).

Benign theory of Henselian valued fields Later in this text, we prove transfer principles for
some rather nice Henselian valued fields, that we called here ‘benign’ (see Definition 1.58 below). The
goal of this paragraph is to discuss some essential properties that these benign Henselian valued fields
share and that we will use for proving Theorem 3.12.

Let T be a (possibly incomplete) theory of Henselian valued fields. We need first to recall the
definition of an angular component (or ac-map) . It is a group homomorphism usually denoted by
ac : (K?, ·)→ (k?, ·) such that ac O× = res O× . We also set ac(0) = 0. We have the following diagram:

1 // O× //

res
��

K?
val

//

rv

��

ac

��

Γ // 0

1 // O×/1 + m ' k? // RV?
acrvzz

valrv // Γ // 0

One remarks that an angular component gives a section acrv : RV? → k? and, as a consequence,
the sort RV? becomes isomorphic as a group to the direct product Γ × k?. Such a map always exists
in an ℵ1-saturated valued field K: as O× is a pure subgroup of K?, there is a section s : Γ → K? of
the valuation (see Fact 1.73). Then, the function ac : a 7→ res(a/s(v(a))) is an ac-map. Any theory
T of Henselian valued fields in a language LΓ,k admits a natural expansion – denoted by Tac – in the
language LΓ,k,ac = LΓ,k ∪ {ac : K → k} by adding the axiom saying that ac is an angular component.

An important model theoretic property is relative quantifier elimination:

Tac has quantifier elimination (resplendently)
relatively to Γ and k in the language LΓ,k,ac.

((EQ)Γ,k,ac)

T has quantifier elimination (resplendently)
relatively to RV in the language LRV.

((EQ)RV)

Notice that according to the terminology in Paragraph 1.1.1, {Γ}, {k} and {RV} are closed sets of
sorts. Then resplendency automatically follows from relative quantifier elimination (Fact 1.5).

28



Observation 1.51. (EQ)RV implies (EQ)Γ,k,ac.

We include a proof of this observation for completeness.

Proof. We sketch a proof using the usual back-and-forth criterion. We assume (EQ)RV. Consider
two models M = {KM ,ΓM , kM} and N = {KN ,ΓN , kN} of T in the language LΓ,k,ac, and a partial
automorphism f = (fK , fΓ, fk) : A = (KA,ΓA, kA) → B = (KB,ΓB, kB) between a substructure
A ⊆ M and a substructure B ⊆ N . Moreover, we assume fk and fΓ to be elementary as morphisms
respectively of fields and of ordered abelian groups. We want to extend f to an elementary embedding
of M into N . By elementarity, we may extend fΓ (resp. fk) to an elementary embedding of ordered
abelian groups f̃Γ : ΓM → ΓN (resp. to an elementary embedding of fields f̃k : kM → kN ). Then, by
studying quantifier-free formulas, one sees that f̃ = f∪f̃Γ∪f̃k is a partial isomorphism of substructures.
Without loss, assume that ΓA = ΓM and kA = kM and reset the notation. As the ac-map induces a
splitting of the exact sequence

1→ k?
ι→ RV? valrv→ Γ→ 0,

we have the bijections RV?
M ' k?M×ΓM and RV?

N ' k?N×ΓN . Hence, the partial isomorphism f induces
an elementary embedding of RV-structure fRV : (RVM ,⊕, ·,1,0)→ (RVN ,⊕, ·,1,0), and fK ∪ fRV is
a partial isomorphism of substructures in the language LRV. By relative quantifier elimination down
to RV, fK ∪ fRV extends to an elementary embedding f̃ = (f̃K , fRV) of {M,RVM} into {N,RVN}.
One sees that f̃K ∪ fΓ ∪ fk :M→ N is an embedding extending the original partial isomorphism f .
By back-and-forth, T satisfies (EQ)Γ,k,ac.

More specifically, we will have to study 1-dimensional definable sets D ⊂ K. Flenner showed in
[17] that in Henselian valued fields of characteristic 0, definable sets can be written with field-sorted
linear terms (see Fact 1.64). This property will be of essential use. Let us give it also an abbreviation:

Definition 1.52. Let T be the theory of a Henselian valued fieldK in the language LRV. We denote by
(Lin)RV the following property: any formula φ(x) with parameters in K and with |x| = 1 is equivalent
to a formula of the form

φRV(rv(x− a1), . . . , rv(x− ar), α) (3)

where r ∈ N and φRV is an RV-formula with a tuple of parameters α ∈ RV(K) and a1, . . . , ar ∈ K1.

Notice that it is an improvement of a relative quantifier elimination down to RV for unary-definable
sets: the term inside rv is linear in x where (EQ)RV gives only a polynomial in x.

Its algebraic counterpart seems to be the following:

Definition 1.53. A valued field is called algebraically maximal if it admits no immediate algebraic
extension.

In particular, Henselian valued fields of equicharacteristic 0 are algebraically maximal (by the
fundamental equality) as well as algebraically closed valued fields. Delon proved that this is actually a
first order property. For details, we refer to Delon’s thesis [13] and a recent work of Halevi and Hasson
in [18].

We show now that algebraically maximal valued fields with quantifier elimination relative to RV
enjoy the property (Lin)RV. This fact was suggested by Yatir Halevi. Notice that a similar statement
has been proved by Peter Sinclair for valued fields in the Denef-Pas language LΓ,k,ac (see [36, Theorem
2.1.1.]). We thank both of them for their enlightenment.

Let K = {(K, ·,+, 0, 1), (RV,0,1, ·,⊕), rv : K? → RV?} be a Henselian valued field viewed as a
structure in the language LRV. Let K � K be a monster model. Let x ∈ K \K. We denote by IK(x)
the set of values {val(x− a)| a ∈ K}. We deduce the following well-known fact from [24, Theorem 1
& 2]:
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Fact 1.54 (Kaplansky). Assume that K is algebraically maximal. Then IK(x) has no maximum if and
only if the extension K(x)/K is immediate.

Lemma 1.55. Assume that K is algebraically maximal. Let x ∈ K \K.

• If IK(x) has no maximum, let (γi = val(x − ai))i∈I be a co-final sequence of values in IK(x).
Then the quantifier-free type qftp(x/K) is implied by the type {val(x− ai) = γi}i∈I .

• If IK(x) has a maximum, then there is a ∈ K such that tp(rv(x − a)/RV(K) determined
qftp(x/K). Moreover, RV(K(x)) is generated by RV(K) and rv(x− a).

Proof. Assume that IK(x) has no maximum, and let (γi = val(x − ai))i∈I be a co-final sequence of
values in IK(x). Then, the sequence (ai)i∈I is a pseudo-Cauchy sequence in K, with no pseudo-limit
in K and which pseudo-converges to x. The extension is immediate and K is algebraically maximal.
By [24], the pseudo-Cauchy sequence (ai)i∈I is of transcendental type. Then, if x′ ∈ K is another
pseudo-limit of (ai)i∈I , the two extensions K(x) and K(x′) are isomorphic over K. In other words,
the quantifier-free type of x over K is uniquely determined by {val(x− ai) = γi}i∈I .
Assume that IK(x) has a maximum γ = val(x− a). Then, we distinguish two cases.
Case 1: We have that val(x− a) ∈ ΓK .
Then, we have that rv(x− a) /∈ RV(K), as otherwise, it would exist b ∈ K such that val(x− a− b) >
val(x− a), contradicting the maximality of val(x− a). Let c ∈ K such that val(x− a) = val(c). Then,
since kK is relatively algebraically closed in kK (as K is an elementary extension ofK) and since rv(x−ac )
is in kK \kK , we have that res(x−ac ) is transcendental over kK . Without loss of generality, assume that
x−a
c = x. The extension K(x) is the Gauss extension, thus it is unique up to K-isomorphism (see e.g.

[15]). In particular, the quantifier-free type of x over K is uniquely determined by tp(rv(x)/RV(K)).
We show now that RV(K(x)) is generated by RV(K) and rv(x) in the following sense: Consider
P (X) :=

∑
i<n aiX

i a non-trivial polynomial in K, and assume that ai0 , . . . , aik−1
are the coefficient

of minimum value. Since rv(xn) ∈ k?K for all n, and since rv(x) is transcendental over kK , we have:

rv

(
P (x)

ai0

)
=
∑
j<k

rv(aij )

rv(ai0)
rv(xij ) ∈ k?K,

and so
rv(P (x)) =

⊕
j<k

rv(aij ) rv(x)ij =
⊕
i<n

rv(ai) rv(x)i.

Case 2: We have that val(x−a) /∈ ΓK . Then for all n ∈ N?, n ·val(x−a) /∈ ΓK , as K is an elementary
extension of K. Then, for any polynomial P (x) ∈ K(x), val(P (x − a)) can be expressed in terms of
val(x−a). The isomorphism type of K(x) over K is uniquely determined by rv(x−a) = α, or in other
words the quantifier-free type of x over K is uniquely determined by tp(rv(x− a)/RV(K)). Without
loss of generality, we may assume that x = x − a. One sees as well that RV(K(x)) is generated by
RV(K) and rv(x): consider P (X) :=

∑
i<n aiX

i a non-trivial polynomial in K. As n · val(x) is not in
ΓK for all n, we have that:

rv(P (x)) =
⊕
i<n

rv(ai) rv(xi).

Theorem 1.56. Assume that K is algebraically maximal and admits quantifier elimination relative to
RV. Then it also satisfies the property (Lin)RV.

Proof. By compactness, it is enough to show that any (complete) 1-type p(x) = tp(b/K) over K is
determined by formulas of the form 3.
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• If p(x) = tp(b/K) is a realised type, i.e. b ∈ K, then the type is determined by {rv(x− b) = 0}.

• If K(b)/K is immediate, then by the previous lemma, qftp(b/K) is determined by the type
{val(x− ai) = γi}i∈I , where γi and ai are given by the previous lemma. This can be written in
the language LRV: for i ∈ I choose ci ∈ K of value γi. Then

val(x− ai) = γi ⇔ rv(x− ai)⊕ rv(ci) 6= rv(x− ai) ∧ rv(x− ai)⊕ rv(ci) 6= rv(ci).

As RV(K(b)) = RV(K), and by quantifier elimination relative to the RV-sort, {val(x − ai) =
γi}i∈I ∪ tp(∅/RV(K)) determines p(x) = tp(b/K).

• If K(b)/K is non-immediate, then by the previous lemma, there is an a ∈ K such that qftp(b/K)
is determined by q(rv(x−a)) where q = tp(rv(b−a)/RV). As RV(K(x)) is generated by RV(K)
and rv(b− a), and by quantifier elimination relative to RV, we got that q(rv(x− a)) determines
p(x) = tp(b/K).

Definition 1.57. A valued field of equicharacteristic p > 0 is said Kaplansky if the value group is
p-divisible, the residue field is perfect and does not admit any finite separable extensions of degree
divisible by p.

Definition 1.58. Any {Γ}-{k}-enrichment of one of the following theories of Henselian valued fields
is called benign:

1. Henselian valued fields of characteristic (0, 0),

2. algebraically closed valued fields,

3. algebraically maximal Kaplansky Henselian valued fields.

A model of a benign theory will be called a benign Henselian valued field.

As promised, we have:

Fact 1.59. Benign theories satisfy (EQ)RV and (Lin)RV.

By the discussion above, they also satisfy (EQ)Γ,k,ac.

Proof. We just give examples of references for (EQ)RV and (EQ)Γ,k,ac. Notice that we might not refer to
original proofs. The fact that Henselian valued fields of characteristic (0, 0) has property (EQ)Γ,k,ac is
the classical theorem of Pas. The proof that it has (EQ)RV is in [17]. Algebraically closed valued fields
(in any characteristic) eliminate quantifiers by the theorem of Robinson. One deduces the property
(EQ)Γ,k,ac from it. One can find a proof that algebraically closed valued fields of any characteristic
have (EQ)RV in [20]. Algebraically maximal Kaplansky valued fields have (EQ)Γ,k,ac and (EQ)RV by
[18]. As all these fields are algebraically maximal, they satisfy the condition of Theorem 1.56, and thus
enjoy the property (Lin)RV.

Finally, all these properties hold for any {Γ}-{k}-enrichment, as it is a particular case of {RV}-
enrichment, and as the sorts Γ, k and RV are closed (Fact 1.5).

We will complete our study with some transfer principle for unramified mixed characteristic
Henselian valued fields with perfect residue field. As it requires further techniques, it needs to be
treated independently. We first need to introduce the Witt vector construction.

31



Witt vectors In the theory of unramified mixed characteristic Henselian valued fields, we will un-
derstand RVδn-structures thanks to the well known Witt vector construction. We only introduce some
standard notation. For a definition and basic property, one can see [31]. Let k be a field of characteristic
p.

Notation (Witt vectors). The ring of Witt vectors over k, is denoted by W (k). It admits kω as a base
set. The residue map π is simply the projection to the first coordinate. The natural section of the
residue map, the so called Teichmüller lift, is defined as follows:

τ : k −→ W (k)
a 7−→ [a] := (a, 0, 0, . . .)

.

These notions make sense if we restrict the base-set to kn. One gets then the truncated ring of Witt
vectors of length n denoted by Wn(k), as well as its Teichmüller map τn : k →Wn(k).

Observation 1.60. (Wn(k),+, ·, π) is interpretable in the field (k,+, ·, 1, 0), with base set kn. It is
clear that bdn(Wn(k)) := κ1

inp(Wn(k)) ≤ κninp(k) (we will show that they are in fact equal).

Recall that a p-ring is a complete local ring A of maximal ideal pA and perfect residue field A/pA.
It is strict if pn 6= 0 for every n ∈ N. Here are some basic facts about Witt vectors:

Fact 1.61 (see e.g. [39, Chap. 6]). Recall that the field k is perfect.

1. The ring of Witt vectors W (k) is a strict local p-ring of residue field k, unique up to isomorphism
with these properties.

2. The Teichmüller map is given by the following: let a ∈ k, then τ(a) is the limit (for the topology
given by the maximal ideal pW (k) ) of any sequence (ap

n

n )n<ω such that π(an)p
n

= a for all n.

3. In particular τn is definable in the structure (Wn(k),+, ·, π). Indeed τn(a) is the (unique) element
ap

n−1

n−1 ∈Wn such that π(an−1)p
n−1

= a.

4. for x = (xn)n<ω ∈W (k), one has x =
∑

n<ω[xp
−n
n ]pn.

5. In particular, the map χi : W (k) → k, x = (x0, x1, . . .) 7→ xi is definable in the structure
(W (k),+, ·, π). One has indeed

xi = π

(
x− pi−1[xp

1−i

i−1 ]− · · · − p[xp
−1

1 ]− [x0]

pi

)pi
.

Similarly, for 0 ≤ i ≤ n− 1 the map χn,i : Wn(k)→ k, x = (x0, x1, . . . , xn−1) 7→ xi is definable
in (Wn(k),+, ·, π).

We deduce the following:

Corollary 1.62. • The structure (Wn(k),+, ·, π : Wn(k) → k) is bi-interpretable on unary sets
with the structure (kn, k,+, ·, pi, i < n), where pi : kn → k, (x0, . . . , xn−1) 7→ xi is the projection
map. In other words, there is a bijection Wn(k) ' kn which leads to identify definable sets.

• Similarly, the structure (W (k),+, ·, π : W (k) → k) is bi-interpretable on unary sets (with no
parameters) with the structure (kω, k,+, ·, pi, i < ω) where pi : kω → k, (x0, x1, . . .) 7→ xi.

This corollary, coupled with Fact 1.18, will be one of the main argument to treat our reduction
principle in the context of unramified mixed characteristic valued fields with perfect residue field.
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Unramified mixed characteristic Henselian valued fields We give a short overview on unram-
ified valued fields, by presenting the similarities with benign valued fields. The (partial) theory of
Henselian valued fields of characteristic 0 does not satisfy either (EQ)Γ,k,ac or (EQ)RV. We indeed
need to get ‘information’ modulo mδn in a quantifier-free way. Let us recall the leading term language
of finite order:

LRV<ω = {K, (RVδn)n<ω, (⊕δl,δm,δn)n<l,m, (rvδn)n<ω, (rvδn→δm)m<n<ω} ,

where ⊕n are ternary relation symbols and δn = val(pn). Let us just define all the analogous properties:

K,K′ |= T,K ⊆ K′, we have K � K′ ⇔ RV<ω � RV′<ω . (AKE)RV<ω

Let us cite two main results in [17]. First we have:

Fact 1.63. [17, Proposition 4.3] Let T be the theory of characteristic 0 Henselian valued fields in the
language LRV<ω . Then T eliminates field-sorted quantifiers.

K

RV<ω

This result was already proved in [5]. Again, an important consequence is that the multisorted
substructure ((RVδn)n<ω, (⊕δl,δm,δn)n<l,m, (rvδn→δm)m<n<ω) is stably embedded and pure. Secondly,
we have its one-dimensional improved version:

Fact 1.64. [17, Proposition 5.1] Let T be the theory of Henselian valued fields K of characteristic 0
in the language LRV<ω . It has the following property denoted by (Lin)RV<ω : any formula φ(x) with
parameters in K and with |x| = 1 is given by a formula of the form

φRVδn
(rv(x− a1), . . . , rv(x− ar), α) (4)

where φRVδn
(x1, . . . ,xr,y) is an RVδn-formula, with a tuple of parameters α ∈ RVδn(K) and

a1, . . . , ar ∈ K and r ∈ N.

Again, notice that the improvement comes from the fact that the term inside rvδn is linear in x where
Fact 1.63 gives only a polynomial in x. These theorems also include the case of equicharacteristic 0,
and it gives the same result as cited above. Indeed, in equicharacteristic 0, we may identify

⋃
n<ω RVδn

with RV = RV0 (Remark 1.46). We continue with a remark on enrichment.

Remark 1.65. Fact 1.63 above holds in any RV<ω-enrichment of LRV. Indeed, first note that the
RV<ω-sort is closed in the language LRV<ω , i.e. any relation symbol involving a sort RVδn or any
function symbol with a domain involving a sort RVδn only involves such sorts. By Fact 1.5, the theory
T of Henselian valued fields of characteristic 0 also eliminates quantifiers resplendently relative to
RV<ω. In other words, given an RV<ω-enrichment LRV<ω ,e, any complete LRV<ω ,e-theory Te ⊃ T
eliminates field-sorted quantifiers. A careful reading of Flenner’s proof give us that Fact 1.64 holds
resplendently as well.

Now, let us discuss more specifically on the unramified mixed characteristic cases. We denote by
T the theory of unramified mixed characteristic Henselian valued fields with perfect residue field. We
assume now that K is such a valued field. There is by definition a smallest positive value val(p) = δ1,
that we denote by 1.
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Notation: Notice that m = pO and in general that mδn = mn+1 = pn+1O for all n ≥ 0. We will
write mn+1 instead of mδn , On+1 instead of Oδn and RVn+1 instead of RVδn = K?/1 + pn+1O . The
projection map resδn : O → Oδn is written resn+1 : O → On+1 etc. The idea is to denote by RVn the
nth RV-sort, as this makes sense in unramified (or finitely ramified) mixed characteristic valued fields.
The purpose is also to fit with the usual notation, and it will help to simplify the notation, although
this convention contradicts the previous one (RV0 where 0 stands for the value 0 ∈ Γ is now RV1, the
first RV-sort).

In this context, let us define the angular component of degree n:

Definition 1.66. Let n be an integer greater than 0. An angular component of order n is a ho-
momorphism acn : K? → O×n such that for all u ∈ O×, acn(u) = resn(u). A system of an-
gular component maps (acn)n<ω is said to be compatible if for all n, πn ◦ acn+1 = acn where
πn : On+1 → On ' On+1/p

nOn+1 is the natural projection.

O×n O×5

O×4

O×3

O×2

O×1 = k?

O×n+1

K?

acn+1

acn
ac5

ac4

ac3

ac2

ac1 = ac

πn π4

π3

π2

π1 = π

The convention is to contract ac1 to ac and π1 to π. Then, let us complete the diagram given in
Paragraph 1.2.1:

1 // O× //

resn
��

K?
val

//

rvn
��

acn

��

Γ //
syy

0

1 // O×/(1 + mn) ' O×n // RV?
n

valrvn // Γ // 0

A section s : Γ→ K? of the valuation gives immediately a compatible system of angular components
(defined as acn := a ∈ K? 7→ resn(a/s(v(a)))). As O× is a pure subgroup of K?, such a section exists
when K is ℵ1-saturated (see Fact 1.73). As always, we assume that K is sufficiently saturated and we
fix a compatible sequence (acn)n of angular components.

We denote by Tac<ω the extension of T to the language LΓ,k,ac<ω := LΓ,k∪{On, acn : K → On, n ∈
N} where acn are interpreted as compatible angular components of degree n (see for instance [2]).

The following proposition is well known and has been used for example in [6, Corollary 5.2]. It
states how the structure RVn and the truncated Witt vectors Wn are related.

Proposition 1.67. 1. The residue ring On of order n is isomorphic to Wn(k), the set of truncated
Witt vectors of length n .

2. The kernel of the valuation val : RV?
n → Γ is given by O×/(1+mn) ' (O/mn)×. It is isomorphic

to Wn(k)×, the set of invertible elements of Wn(k).

Proof. It is clear that (2) follows from (1) as O×/(1 + mn) ' (O/mn)×.
Now, we prove (1) for any discrete value group Γ. Consider

W ′ := lim←−
n<ω

On ⊂
∏
n<ω

On
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the inverse limit of the On’s. It is:

• strict, i.e. pn 6= 0 in W ′ for every n < ω, as πn+1(pn) 6= 0 in On+1 = O/pn+1O,

• local, as a projective limit of the local rings On,

• a p-ring. Its maximal ideal is pW ′, it is complete as projective limit, and its residue field is the
perfect field k.

By uniqueness, W ′ is isomorphic to W (k), the ring of Witt vectors over k. One just has to notice that
W ′/pnW ′ ' O/pnO and it follows easily that On 'Wn(k) for every n < ω.

Note. In the above proof, one can also recover W (k) by considering the coarsening K̇ of K by the
convex subgroup Z ·1. Indeed, if we denote by K◦ the residue field of the coarsening, as K is saturated
enough, one has lim←−n<ωOn ' O(K◦) (see [5]).

Fact 1.68 (Bélair [6]). The theory Tac<ω of Henselian mixed characteristic valued fields with perfect
residue field and with angular components eliminates field-sorted quantifiers in the language LΓ,k,ac<ω

4

.

Notice that in [6], Bélair doesn’t assume that the residue field k is perfect, but it is indeed necessary
in order to identify the ring On := O/mn with the truncated Witt vectors Wn(k). This implies as well
that the residue field k and the value group Γ are pure sorts, and are orthogonal. This can be seen by
analysing field-sorted-quantifier-free formulas, and by noticing that On ' Wn(k) is interpretable in k
(Corollary 1.62).

By analogy with the previous paragraph, we name the following properties:

Tac<ω eliminates K-sorted quantifiers in the language Lac<ω . (EQ)Γ,k,ac<ω

T has quantifier elimination (resplendently) relatively to RV<ω. (EQ)RV<ω

Again, notice that RV<ω =
⋃
n<ω RVn is a closed set of sorts.

To sum up, we have:

Fact 1.69. The theory of unramified mixed characteristic Henselian valued fields with perfect residue
field satisfies (EQ)RV<ω , (EQ)Γ,k,ac<ω , (Lin)RV<ω .

1.2.2 Abelian groups

We conclude these preliminaries with some facts on abelian groups. They will be used in Section 2. We
are specifically interested in abelian groups for one main reason: we have to understand the structure
of pure short exact sequences of abelian groups in order to produce our reduction principles for benign
Henselian valued fields. As we obtain also reduction principles for such short exact sequences, we will
take the occasion to apply it on explicit examples.

Notation. We recall some standard notation:

• Z(pn) is the cyclic group of pn elements,

• Z(p) is the additive group of the integers localised in (p),

• Z(p∞) is the Prüfer p-group, .
4The Ax-Kochen-Ershov property and relative quantifier elimination for Henselian unramified mixed characteristic

valued fields (with possibly imperfect residue field) has been proved in [2].
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For an abelian group A, we denote by A(ω) the direct product of ω copies of A.
We have:

Fact 1.70 ( [29, Theorem 2 Z 1 ] ). Let A be an abelian group. Let Pn be a predicate for n-divisibility
in A. Then {A,+,−, 0, Pn, n ∈ N>1} eliminates quantifiers.

The burden (or equivalently by stability, the dp-rank) of pure abelian groups has been computed
in terms of their Szmielew invariants by Halevi and Palacín in [19]. We borrow from their work the
following proposition, which says that a useful criterion to witness inp-patterns is a characterisation
in the case of one-based groups (and in particular, in the case of unenriched abelian groups):

Proposition 1.71 ([19, Proposition 3.4]). A stable one-based group admits an inp-pattern of depth κ
if and only if there exists acleq(∅)-definable subgroups (Hα)α<κ such that for any i0 < κ, one has: ⋂

α 6=i0

Hα :
⋂
α

Hα

 =∞.

If (bα,j)j<ω are representatives of pairwise distinct classes of
⋂
α 6=i0 Hα modulo

⋂
αHα, an inp-pattern

of depth κ is given by {x ∈ bα,jHα}α<κ,j<ω.

We will use this criterion to provide examples to Theorem 2.2.

Quantifier elimination result in pure short exact sequences

Definition 1.72. Let B a group and A a subgroup. We say that A is a pure subgroup of B if for all
a in A, n ∈ N, a is n-divisible in B if and only if a is n-divisible in A.

We recall the following fundamental fact:

Fact 1.73. Let M be an ℵ1-saturated structure, and let A,B be two definable abelian groups, and
assume that A is a pure subgroup of B. Then the exact sequence of abelian groups 0 → A → B →
B/A → 0 splits: there is a group homomorphism α : B → A such that α A is the identity on A. In
such case, B is isomorphic as a group to A×B/A.

More precisely, it is an immediate corollary of a more general statement on pure-injectivity. See [7,
Theorem 20 p.171].

Assume that we have a pure short exact sequence of abelian groups

0 // A
ι // B

ν // C // 0 .

(meaning that ι(A) is a pure subgroup of B). We treat it as a three-sorted structure (A,B,C, ι, ν),
with a group structure for all sorts. In fact, in our main applications, we will consider such a sequence
with more structure on A and C. Let us explicitly state all results resplendently, by working in an
enriched language. So, let M = (A,B,C, ι, ν, . . .) be an {A}-enrichment of a {C}-enrichment (for
short: an {A}-{C}-enrichment) of the exact sequence in a language that we will denote by L, and we
denote its theory by T . We will always assume thatM is sufficiently saturated (ℵ1 saturated will be
enough).
Hypothesis of purity implies the exactness of the following sequences for n ∈ N:

0 // A/nA
ιn // B/nB

νn // C/nC // 0 .

One has indeed that
A+ nB

nB
' A

A ∩ nB
=

A

nA
.

We consider for n ≥ 0 the following maps:
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• the natural projections πn : A→ A/nA,

• the map
ρn : B → A/nA

b 7→

{
0A/nA if b /∈ ν−1(nC)

ι−1
n (b+ nB) otherwise,

where 0A/nA is the zero element of A/nA (often denoted by 0). Then let us consider the language

Lq = L ∪ {A/nA, πn, ρn}n≥0,

and let Tq be the natural extension of the theory T . By < A >, we denote the set of sorts containing
A, A/nA and the new sorts possibly coming from the A-enrichment. Similarly, let < C > be the set
of sorts containing C and the new sorts possibly coming from the C-enrichment. By A or A-sort and
C or C-sort, we will abusively refer to < A > and < C > respectively, and similarly for A-formulas
and C-formulas. Aschenbrenner, Chernikov, Gehret and Ziegler prove the following result:

Fact 1.74 ([3, Theorem 4.2]). The theory Tq (resplendently) eliminates B-sorted quantifiers.

M

A C

More precisely, all Lq-formulas φ(x) with a tuple of variables x ∈ B|x| are equivalent to boolean
combinations of formulas of the form:

1. φC(ν(t0(x)), . . . , ν(ts−1(x))) where ti(x)’s are terms in the group language, and φC is a C-
formula,

2. φA(ρn0(t0(x)), . . . , ρns−1(ts−1(x))) where the ti(x)’s are terms in the group language, where
s, n0, n1, . . . , ns−1 ∈ N, and where φA is an A-formula.

In particular there is no occurrence of the symbol ι.

In particular, notice that the formula t(x) = 0 is equivalent to ν(t(x)) = 0 ∧ ρ0(t(x)) = 0 and
∃y ny = t(x) is equivalent to ∃yC nyC = ν(t(x)) ∧ ρn(t(x)) = 0.

We have:

Corollary 1.75. In the theory Tq, < A > and < C > are stably embedded, pure (see Definition 1.7)
and orthogonal to each other.

In fact, it can be easily deduced from the existence of a section. The following proof is more
technical but highlights the fact that one does not need the function ι in order to express definable
sets in

⋃
n<ω A/nA.

Proof. In this proof, A (resp. C) abusively refer to the union of the sorts < A > (resp. < C >). The
C-sort is pure and stably embedded by Fact 1.74 and closedness of C. It is also clear for the sort A,
even if A is not a closed sort5: one only needs to deal with the map ι : A→ B. If D is a definable set
in A|xA|, it is given by a disjunction of formulas of the form

φ(xA) =φA
(
ρn0(k0ι(t0(xA)) + b0), . . . , ρns−1(ks−1ι(ts−1(xA)) + bs−1), a

)
∧ φC (ν(ι(t0(xA))), . . . , ν(ι(ts−1(xA))), c) .

5The proof shows that one does not need the function ι : A → B in order to describe definable sets in A. In a
certain sense, < A > is a ‘closure’ of A, as it describes the induced structure on A, with no resort to any symbol from
Lq \ Lq <A>.
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where xA is a tuple of A-variables, the ti(xA)’s are terms in the group language, s, k0, . . . , ks−1 ∈ N,
b0, . . . , bs−1 ∈ B, and a ∈ A and c ∈ C are tuples of parameters (notice that we also used that ι and ν
are morphisms). We apply now the following transformation in order to get a new formula φ′(xA):

• For l < s, if ν(bl) /∈ nlC, then replace ρn(klι(tl(xA)) + bl) by 0A/nlA.

• For l < s, if ν(bl) ∈ nlC, replace ρnl(klι(tl(xA)) + bl) by klπnl(tl(xA)) + ρnl(bl).

• Replace ν(ι(tl(xA)) by 0C .

We obtain a pure A-formula φ′(xA) such that φ′(A|xA|) = φ(A|xA|). Orthogonality can also be proved
similarly.

2 Burden of pure short exact sequences of abelian groups

We prove in this section that the burden of a pure short exact sequence of abelian groups

0→ A→ B → C → 0

can be computed in A and C (Theorem 2.2). This result is motivated by valued fields, as an RV-
structure can be seen as an enrichment of such. It is one of the main element for our proof of Theorem
3.12 and Theorem 3.21.

2.1 Reduction

As in the paragraph 1.2.2, we consider a pure exact sequenceM of abelian groups

0 // A
ι // B

ν // C // 0 ,

in an {A}-{C}-enriched language L. In the following paragraph, we compute the burden of the structure
M in terms of burden of A and that of C (in their induced structure). By bi-interpretability on unary
sets, one can also consider it as a one-sorted structure A ⊂ B where A is given by a predicate. It
follows indeed from Fact1.18 that bdn(A → B → C) = bdn(B,A). We often prefer the point of view
of an exact sequence as it is more relevant for the computation of the burden. We write indifferently
bdn(M), bdn(A→ B → C) or bdn(B), as the sort B is understood as a sort ofM with its full induced
structure.

Notice that in the case where B/nB and B[n] are finite for all n and C is torsion free, a straight
forward generalisation of [11, Proposition 4.1] gives that bdn(A → B → C) = max(bdn(A),bdn(C)).
We will see that one can get rid of these hypothesis and obtain a more general result using Fact 1.74.
We first show a trivial bound:

Fact 2.1 (Trivial bound). Assume there is a section of the group morphism ν : B → C. Consider Ls
the language L augmented by a symbol s, and interpret it by this section of ν.

0 // A
ι // B

ν // C //

s
{{

0 ,

We have bdnL(C) = bdnLs(C) and bdnL(A) = bdnLs(A) as well as the following:

max{bdnL(A), bdnL(C)} ≤ bdnL(B) ≤ bdnLs(B) = bdnL(A) + bdnL(C).
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Proof. The two first equalities are clear since A and C are stably embedded (and orthogonal) in both
languages. The inequality max{bdnL(A),bdnL(C)} ≤ bdnL(B) is obvious. As the burden only grows
when we add structure, the inequality bdnL(B) ≤ bdnLs(B) is also clear. The last equality come from
the fact that in the language Ls, the structure A → B → C and the structure {A × C,A,C, πA :
A × C → A, πC : A × C → C} are bi-interpretable on unary sets. We conclude by Proposition 1.24
and Fact 1.18.

Theorem 2.2. Consider an {A}-{C}-enrichment of a pure exact sequenceM of abelian groups

0 // A
ι // B

ν // C // 0 ,

in a language L. Let D = D(x) be the set of formulas in the pure language of groups which are
conjunction of formulas of the form ∃y nx = my for n,m ∈ N. For D(x) ∈ D and A an abelian group,
D(A) is an subgroup of A, and we have

bdnM = max
D∈D

(bdn(A/D(A)) + bdn(D(C))).

In particular:

• If A/nA is finite for all n ≥ 1, then

bdn(M) = max
k∈N

(bdn(kA) + bdn(C[k])),

where C[k] := {c ∈ C | kc = 0} is the subgroup of k-torsion.

• If C has finite k-torsion of all k ≥ 1, then

bdn(M) = max
n∈N

(bdn(A/nA) + bdn(nC)).

• If C has finite n-torsion and A/nA is finite for all n ≥ 1, then

bdnM = max(bdn(A), bdn(C)).

To clarify, for D(x) ∈ D, bdn(A/D(A)) can be computed in A/D(A) endowed with its induced
structure, i.e. it is the supremum of depth of patterns P (xD) with xD an A/D(A) variable within the
structure {(A, 0,+, · · · ), (A/D(A), 0,+), πD : A→ A/D(A)}, where · · · denotes the enriched structure
in A.

Remark 2.3. • This result is also valid with the Adler’s convention (see Definition 1.31):

bdn?(M) = max
D∈D

(bdn?(A/D(A)) + bdn?(D(C)))

• If bdn(A) or bdn(C) is infinite (or equals ℵ0−), then this is simply the trivial bound in Fact 2.1
(as then max(bdn(A),bdn(C)) = bdn(A)+bdn(C)). Recall that a section exists in a ℵ1-saturated
model as A is pure in B (Fact 1.73).

• The maximum is always attained by at least one D ∈ D: if bdn(A) and bdn(C) are finite, this is
trivial. If bdn(A) or bdn(C) is infinite, then bdn(A) or bdn(C) (corresponding terms for resp.
D ≡ x = 0 and D ≡ x = x ) realises the maximum by the previous point.

• By Fact 1.26, if C has finite n-torsion for n ∈ N, one has bdn(nC) = bdn(C).
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• If m|n, then A/mA can be seen as a quotient of A/nA and naturally, one has bdn(A/mA) ≤
bdn(A/nA).

In the case that the sequence is unenriched, this can gives us absolute results: assume that the
induced structures on A/D(A) and D(C) are the structures of groups for every D ∈ D. Then,
Proposition [19, Theorem 1.1.] together with Theorem 2.2 gives us a computation of bdn(A→ B → C)
in term of Szmielew invariants of A and C. We don’t attempt to write a closed formula. Nonetheless,
here are some examples:

Examples. We consider the following pairs of abelian groups (A ⊂ B) with quotient C:

• B = Z(ω)
(2) ⊕ Z

(ω)
(3) and A = Z(ω)

(2) ⊕ {0}. One has bdn(A/nA) + bdn(nC) = 0 + 1 = 1 for all 2 - n,
and bdn(A/2nA) + bdn(2nC) = 1 + 1 = 2, which leads to bdnM = 2. This can already be
deduced from Halevi and Palacín’s work: the sort B, equipped only with its group structure, is
already of burden 2. By the trivial bound, the structureM is also of burden 2.

• B = Z(ω)
(2) ⊕ Z(2)(ω) and A = Z(ω)

(2) ⊕ 0. Then bdn(M) = 2 (take D(C) = C[2] in Theorem 2.2).
Again, by [19], the burden of B as a pure abelian group is already 2.

• B = Z(ω)
(2) ⊕ Z

(ω)
(3) ⊕ Z

(ω)
(2) ⊕ Z

(ω)
(3) and A = Z(ω)

(2) ⊕ Z
(ω)
(3) ⊕ {0} ⊕ {0}. Then bdn(M) = 4 (take

D(C) = 6C in Theorem 2.2). In term of subgroups, one can consider the subgroups A + 4B,
A+ 9B, 2B and 3B. The intersection is

2Z(ω)
(2) ⊕ 3Z(ω)

(3) ⊕ 4Z(ω)
(2) ⊕ 9Z(ω)

(3) .

One may see that these groups satisfy Proposition 1.71.

• A = Z(2∞), C = Z(ω)
(2) ⊕Z

(ω)
(3) and B = A×C. One can see that bdn(C → B → A) = bdn(C,B) =

3. This equality is witnessed by the subgroups 2B, 3B and C +B[2]. However, by Theorem 2.2,
bdn (A→ B → C) = bdn(C) = 2 as A/nA = {0} for all n ≥ 1 and C[k] = 0 for all k ≥ 1.

Proof of Theorem 2.2. By Fact 1.18, we can work in the language Lq and use Fact 1.74. Recall that
we abusively refer the union of sorts {A/nA}n∈N as the sort A.

The purity of the exact sequence

0 // A
ι // B

ν // C // 0 ,

implies for all n the following exact sequences:

0 // A/nA
ιn // B/nB

νn // C/nC // 0 ,

0 // A[n]
ι[n] // B[n]

ν[n] // C[n]
// 0 ,

and
0 // A/A[n]

ιn // B/B[n]
νn // C/C[n]

// 0 .

All these sequences are again pure, and we can keep going. We get more generally the following:

Fact 2.4. For all D ∈ D we have the following pure exact sequences:

0 // D(A)
ιD // D(B)

νD // D(C) // 0 ,

and
0 // A/D(A)

ιD // B/D(B)
νD // C/D(C) // 0 .
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Proof. By Fact 1.73, an ℵ1-saturated extension 0 → A′ → B′ → C ′ → 0 splits. Then we clearly have
the exactness of the following sequence:

0 // D(A′) // D(B′) // D(C ′) // 0 ,

and
0 // A′/D(A′) // B′/D(B′) // C ′/D(C ′) // 0 .

As they are first order properties in the language L, we deduce the fact.

It follows that if ν(b) ∈ D(C), there is a unique a + D(A) ∈ A/D(A) such that i(a) + D(B) =
b+D(B). We denote by ρD the following map:

ρD : B → A/D(A)

b 7→

{
ιD
−1(b+D(B)) if ν(b) ∈ D(C)

0 otherwise.

Notice that it is interpretable in the language L.
By Lemma 1.26, if A is finite, we get that bdn(B) = bdn(C) and of course bdn(A/D(A)) = 0 for

all D ∈ D. Assume that A is infinite. As A and C are orthogonal, so are in particular A/D(A) and
D(C) for all D ∈ D. It follows by Fact 1.24 that bdn(A/D(A)×D(C)) = bdn(A/D(A))+bdn(D(C)).
The interpretable (and surjective) map

ρD × ν : ν−1(D(C)) → A/D(A)×D(C)
b 7→ (ρD(b), ν(b))

gives us that
bdn(B) ≥ max

D∈D
(bdn(A/D(A)) + bdn(D(C))).

It remains to show that bdnB ≤ maxD∈D(bdn(A/D(A)) + bdn(D(C))). By Remark 2.3, we may
assume that bdn(A) and bdn(C) are both finite. As A is infinite, bdnA ≥ 1. If bdn(M) = 1, the
equality is clear. Assume that bdn(M) > 1 and let P (x) = {φi(x, yi), (ai,j)j<ω, ki}i<M be an inp-
pattern of finite depth M ≥ 2, with (ai,j)i,j mutually indiscernible and |x| = 1. We need to show
that M ≤ bdn(A/D(A)) + bdn(D(C)) for some D ∈ D. If x is a variable in the sort A (resp. in the
sort C), P (x) is an inp-pattern in A (resp. C) of depth bounded by bdn(A) (resp. bdn(C)) by purity
(Corollary 1.75). Then, the inequality holds if we take D ≡ x = x (respect D ≡ x = 0 ).

Assume x is a variable in the sort B. Consider a line {φ(x, y), (aj)j<ω} of P (x) (we drop the index
i < M for the sake of clarity). By Fact 1.74, and by the fact that one can "eliminate" disjunctions in
inp-patterns (see Lemma 1.23), we may assume that the formula φ(x, aj) is of the form

φA(ρn0(t0(x, βj)), . . . , ρns−1(ts−1(x, βj)), αj) (5)
∧φC(ν(r0(x, βj)), . . . , ν(rk−1(x, βj)), γj), (6)

where φA is an A-formula, φC a C-formula, and for j < ω, αj ∈ A, βj ∈ B, γj ∈ C are parameters,
s, k, n0, n1, . . . , ns−1 ∈ N and the tl’s and rl’s are terms in the group language (one needs to keep in mind
that s,k, nl, tl, rl, βj , αj and γj depend on the line i). Also, notice that ρn0(t0(x, βj)) 6= 0 ∈ A/n0A
implies ν(t0(x, βj)) ∈ n0C (a formula of the form (6)). We may write

φA(ρn0(t0(x, βj)), . . . , ρns−1(ts−1(x, βj)), αj) '(
φA(ρn0(t0(x, βj)), . . . , ρns−1(ts−1(x, βj)), αj) ∧ ν(t0(x, βj)) ∈ n0C

)∨(
φA(0, ρn1(t1(x, βj)), . . . , ρns−1(ts−1(x, βj)), αj) ∧ ν(t0(x, βj)) /∈ n0C

)
,

and use once again Lemma 1.23 to eliminate the disjunction. We have then one of these two cases:
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• either the first part of the disjunction remains, and we have an occurrence of the term
ρn0(t0(x, βj)) and of the atomic formula ν(t0(x, βj)) ∈ n0C,

• or the second part of the disjunction remains, and the term ρn0(t0(x, βj)) does not occur anymore,
as it has been replaced by 0. In that case, we reset the notation: ρn1(t1(x, βj)) becomes our new
first term ‘ρn0(t0(x, βj))’; and ρn2(t2(x, βj)) becomes ‘ρn1(t1(x, βj))’ etc.

It follows that we can assume that φ(x, aj) (or more specifically, the formula
φC(ν(t0(x, βj), . . . , ν(ts−1(x, βj)), γj) ) implies t0(x, βj) ∈ ν−1(n0C) . We do the same for all
terms tl(x, βj), l < s. This means in particular that the list of terms {tl}l<s is included in {rl}l<k.

Let M ′ ≥ 0 be the number of rows such that{
φC(ν(r0(x, βj)), . . . , ν(rk−1(x, βj)), γj)

}
j<ω

is consistent. Without loss, they are the M ′ first rows of the pattern P (x), and we denote by P ′(x)
the sub-pattern consisting of these rows. For now, we work with the sub-pattern P ′(x).

Terms t(x, βj) in the group language are of the form kx+m · βj , with k ∈ N, m ∈ N|βj |.

Claim 2. Assume that, in a line {φ(x, y), (aj)j<ω} of P ′(x), a term ρn(kx + m · βj) occurs. Then
ν(m · βj) mod nC is constant for all j < ω.

Proof. Assume not. By indiscernibility, ν(m · βj) are in distinct classes modulo nC. As

φC(ν(r0(x, βj)), . . . , ν(rs−1(x, βj)), γj) ` ν(kx+m · βj) ∈ nC,

the φC part of the line {
φC(ν(r0(x, βj)), . . . , ν(rs−1(x, βj)), γj)

}
j<ω

is 2-inconsistent, contradicting the fact we chose one of the first M ′ lines.

Claim 3 (Main claim). We may assume that all formulas in P ′(x) are of the form

φA(ρn0(k0(x− d)), . . . , ρns−1(ks−1(x− d)), αj)

∧ φC(ν(x− d), γj).

for certain integer n0, · · · , ns−1,k0, · · · , ks−1 and a certain parameter d ∈ B.

Proof. Take any realisation d of the first column:

d |= {φi(x, ai,0)}i<M .

We fix an i < M ′, and consider the ith line {φ(x, aj)}j<ω, (again, we drop the index i for a simpler
notation).

Step 1: We may assume that all terms tl(x, βj) = klx+ml · βj , l < s are of the form kl(x− d).
We change all terms one by one, starting with t0(x, βj) = k0x+m0 · βj . We write

ρn0(k0x+m0 · βj) = ρn0(k0(x− d) + k0d+m0 · βj).

Replace it by ρn0(k0(x−d))+ρn0(k0d+m0 ·βj). This doesn’t change the formula φ(x, aj) as φ(x, aj) `
ν(k0(x − d)) ∈ n0C. Indeed, φ(x, aj) ` ν(k0x + m0 · βj) ∈ n0C and ν(k0d + m0 · βj) ∈ n0C since d
is a solution of the first column and ν(m0 · βj) mod n0C is constant by the previous claim. Then,
ρn0(k0d −m0 · βj) is seen as a parameter in A/n0A, and it is added to αj . We do the same for all
terms tl(x, βj), l < s.
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Step 2: We may assume that all terms rl(x, βj) = klx+ml · βj , l < k, are of the form x− d.
This is immediate, as ν is a morphism. Indeed, replace ν(rl(x, βj)) by klν(x − d) + ν(kld + ml · βj),
where ν(kld+ml · βj) is seen as a parameter in C, and is added to the parameters γj . In other words,
we may assume that the formula in the ith line of the pattern P ′(x) has the required form.

Let us recall finally that d has been chosen independently of the row. We can apply these steps for
all rows i < M ′.

Let D be the conjunction of the formulas ∃y kx = ny for each term ρn(k(x − d)) which occurs
in any line of P ′(x). Notice that {φi(x, ai,f(i))}i<M ′ implies that ν(x − d) ∈ D(C) for any choice of
function f : M ′ → ω. If xA is a variable in A, notice also that the truth value of the formula

φA(πn0(k0xA), . . . , πns−1(ks−1xA), αj)

evaluated in a ∈ A is independent of the class of a modulo D(A). In other words, it interprets a
definable set in A/D(A).

As now the pattern P ′(x) is centralised, one can remark that for every line{
φ(x, aj) ≡ φA(ρn0(k0(x− d)), . . . , ρns−1(ks−1(x− d)), αj) ∧ φC(ν(x− d), γj)

}
j<ω

,

at most one of the following sets:

{φA(πn0(k0xA), . . . , πns−1(ks−1xA), yA), (αj)j<ω} (LA)

where |yA| = |αj | and xA is a variable in A or

{φC(xC , yC), (γj)j<ω} (LC)

(where |yC | = |γj |) is consistent. Indeed, this follows immediately from the fact that in the monster
model, the sequence splits and B ' A×C. By definition of P ′(x), we deduce that (LA)– the φA-part
of the line– is inconsistent. Now, take a path f : M ′ → ω and b a solution of

{φi(x, ai,f(i))}i<M ′

As b− d ∈ D(C), there is an a such that ι(a) +D(B) = b− d+D(b). This give us that

a |= {φi,A(πn0(k0xA), . . . , πns−1(ks−1xA), αi,f(i))}i<M ′ .

This show that every path of the following pattern P ′A(xA) is consistent:

P ′A(xA) := {φi,A(πn0(k0xA), . . . , πns−1(ks−1xA), yA), (αi,j)j<ω}i<M ′ .

Thus, this is an inp-pattern in A and more precisely, it interprets an inp-pattern in A/D(A) by the
remark above. This means that M ′ ≤ bdn(A/D(A)).

Then, the φC-part (LC) of any of the M −M ′ last lines of P (x) is inconsistent by definition of
P ′(x) and M ′. One gets as well an inp-pattern of depth M −M ′ in C. As any realisation r of P ′(x)
(in particular, of P (x)) satisfies ν(r− d) ∈ D(C), one gets actually an inp-pattern in D(C). It follows
that M −M ′ ≤ bdn(D(C)). At the end, we get that M ≤ bdn(A/D(A)) + bdn(D(C)).

To conclude, we treat the particular cases. Assume that C has finite n-torsion for every n ∈ N?.
Then infinite subgroups in D(C) := {D(C) | D ∈ D} are of the form nC. We deduce that

bdnM = max
n∈N

(bdn(A/nA) + bdn(nC)).
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Similarly assume that A/nA is finite for all n ∈ N?. Then bdn(A/nA[k]) is equal to bdn(A/A[k]).
Indeed, this can be deduced from Fact 1.26, as we have the exact sequence

0→ A[k]/nA[k] → A/nA[k] → A/A[k] → 0,

and as A[k]/nA[k] is finite. Since bdn(C[k]) ≥ bdn(nC[k]) and A/A[k] ' kA, we may deduce that

bdnM = max
k∈N

(bdn(kA), bdn(C[k])).

2.2 Application

As main application of Theorem 2.2, we will deduce Theorem 3.12. This is the aim of the next section.
For now, we want to emphasise the advantage of working resplendently by giving one straightforward
generalisation of Theorem 2.2.

Corollary 2.5. LetM be an exact sequence of ordered abelian groups

0 // A
ι // B

ν // C // 0 ,

where (A,<) is a convex subgroup of (C,<). We consider it as a three sorted structure, with a structure
of ordered abelian group for each sort, and function symbols for ι and ν. Then, we have:

bdnM = max
n∈N

(bdn(A/nA) + bdn(nC))

= max

(
bdn(A),max

n∈N?
(bdn(A/nA)) + bdn(C)

)
.

Proof. As C is torsion free, ι(A) is pure in B. As for b ∈ B, b > 0 if and only if ν(b) > 0 or ν(b) = 0
and ι−1(b) > 0,M is an {A}-{C}-enrichment of a short exact sequence of abelian groups. It remains
to apply Theorem 2.2. Notice that for all n > 0, we have bdn(nC) = bdn(C) (as the multiplication
by n in C is a definable injective morphism).

3 Burden of Henselian valued fields

We compute the burden of benign Henselian valued fields and of unramified mixed characteristic
Henselian valued fields with perfect residue field in terms of the burden of the value group and that
of the residue field. The first subsection is common for both cases and treats the reduction from the
valued field to the sort RV (resp. the sorts RV<ω). For the reduction to the value group and residue
field, we treat (separately) the case of benign Henselian valued fields in Subsection 3.2 and the case
of unramified mixed characteristic henselian valued fields with perfect residue field in Subsection 3.3.
They are both deduced from the computation of burden in short exact sequences of abelian groups
(Section 2).

3.1 Reductions to RV and RV<ω

We compute here the burden of Henselian valued fields of characteristc 0 in terms of burden of RV<ω.
As we explained in Paragraph 1.2.1, mixed characteristic Henselian valued fields satisfy (EQ)RV<ω

(quantifier elimination relative to the union of sorts RV<ω.), but do not satisfy in general (EQ)RV

(elimination of quantifiers relative to RV). Our result includes naturally the case of unramified mixed
Henselian valued fields, and also equicharacteristic 0 Henselian valued fields. In the former case, we
have a computation of the burden in term of the burden of RV, as in equicharacteristic 0 the structures
RV and RV<ω can be identified (Remark 1.46). In fact, the proof that we are going to present can be
adapted for all benign valued fields.
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3.1.1 Reductions

The aim of this paragraph is to prove the following:

Theorem 3.1. Let K be a Henselian valued field of characteristic (0, p), p ≥ 0. Let M be a positive
integer and assume K is of burden M . Then, the sort RV<ω with the induced structure is also of burden
M . In particular, K is inp-minimal if and only if RV<ω is inp-minimal.

The demonstration (below) follows Chernikov and Simon’s proof for the case of equicharacteristic
0 and burden 1 (see [11]). As we said, this statement also cover the case of equicharacteristic 0. One
can also generalise the proof for infinite burden (see Corollary 3.3 for details). A careful reading of
the proof shows that one only uses properties (EQ)RV<ω and (Lin)RV<ω . Of course, the proof can be
written for equicaracteristic 0 fields only (it becomes simpler), and then it only uses Property (EQ)RV

and (Lin)RV. As algebraically maximal Kaplansky valued fields and algebraically closed valued fields
satisfy these property, we obtain in fact:

Theorem 3.2. Let K be a benign Henselian valued field. Let M be a positive integer and assume K
is of burden M . Then, the sort RV with the induced structure is also of burden M . In particular, K is
inp-minimal if and only if RV is inp-minimal.

Proof of Theorem 3.1. We denote by Z̄ the set of natural numbers with extremal points Z ∪ {±∞}.
Let {φ̃i(x, yi), (ci,j)j∈Z̄, ki}i<M be an inp-pattern in K of finite depth M ≥ 2 with |x| = 1, where
ci,j = ai,jbi,j ∈ Kk1 × RVk2

<ω. Notice that the set of indices is Z̄, as we will make use of one of the
extreme elements {ai,−∞, ai,+∞}) later. We have to find an inp-pattern of depthM in RV<ω. Without
loss of generality, we take (ci,j)i,j mutually indiscernible. By Fact 1.64 and mutual indiscernibility, we
can assume the formulas φ̃i are of the form

φ̃i(x, ci,j) = φi(rvδn(x− ai,j;1), . . . , rvδn(x− ai,j;k1);bi,j),

for some integer n and where φi are RV<ω-formulas. Also recall that δn denotes the value val(pn). The
arguments inside symbols rvδn are linear terms in x. In some sense, difficulties coming from the field
structure have been already treated and it only remains to deal with the structure coming from the
valuation.

Let d |= {φi(rvδn(x−ai,0;1), . . . , rvδn(x−ai,0;k1);bi,0)}i<M be a solution of the first column. Before
we give a general idea of the proof, let us reduce to the case where only one term rvδn(x− ai,j) occurs
in the formula φ̃i.

Claim 4. We may assume that for all i < M , φ̃i(x, ci,j) is of the form φi(rvδn(x − ai,j;1);bi,j), i.e.
|ai,j | = k1 = 1.

Proof. We will first replace the formula φ̃0(x, c0,j) by a new one with an extra parameter.
By Lemma 1.50, at least one of the following two cases occurs

1. WDδn (rvδn(d− a0,0;1), rvδn(a0,0;1 − a0,0;2)) or

2. WDδn (rvδn(d− a0,0;2), rvδn(a0,0;2 − a0,0;1)) .

According to the case, we respectively define a new formula ψ0(x, c0,j ^ rvδn(a0,j;2 − a0,j;1)) by:

1.

φ0(rvδn(x− a0,j;1), rvδn(x− a0,j;1) + rvδn(a0,j;1 − a0,j;2), rvδn(x− a0,j;3), . . . ,

rvδn(x− a0,j;k);b0,j) ∧WDδn(rvδn(x− a0,j;1), rvδn(a0,j;1 − a0,j;2)),
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2.

φ0(rvδn(x− a0,j;2) + rvδn(a0,j;2 − a0,j;1), rvδn(x− a0,j;2), . . . , rvδn(x− a0,j;k);b0,j)

∧WDδn(rvδn(x− a0,j;2), rvδn(a0,j;2 − a0,j;1)).

We will prove that the pattern where φ̃0 is replaced by ψ0:

{ψ0(x, y0 ^ z), (c0,j ^ rvδn(a0,j;2 − a0,j;1))j∈Z̄, k0} ∪ {φ̃i(x, yi), (ci,j)j∈Z̄, ki}1≤i<M

is also an inp-pattern. First note that we have added rvδn(a0,j;2 − a0,j;1) to the parameters b0,j , and
it still forms a mutually indiscernible array. Clearly, d is still a realisation of the first column:

d |= {ψ0(x, c0,0 ^ rvδn(a0,0;2 − a0,0;1))} ∪ {φ̃i(x, ci,0) | 1 ≤ i < M}.

By mutual indiscernibility of the parameters, every path is consistent. Since ψ0(K) ⊆ φ̃0(K), incon-
sistency of the first row is also clear. By induction, it is clear that we may assume that φ0 is of the
desired form. We can do the same for all formulas φi, 0 < i < M .

If the array (ai,j)i<M,j<ω is constant equal to some a ∈ K, then we obviously get an inp-pattern of
depth M in RV<ω: {φi(x, zi), (bi,j)j∈Z̄, ki}i<M , where x is a variable in RVδn (such a pattern is said
to be centralised ). Indeed, consistency of the path is clear. If a row is satisfied by some d ∈ RVδn

, any d ∈ K such that rvδn(d − a) = d will satisfy the corresponding row of the initial inp-pattern,
which is absurd. Hence, the rows are inconsistent.

The idea of the proof is to reduce the general case (where the ai,j ’s are distinct) to this trivial case
by the same method as above: removing the parameters ai,j ∈ K, adding new parameters from RV<ω

to bi,j and adding a term of the form WD(rv(x − a), rv(a − ai,j)). The main challenge is to find a
suitable a ∈ K for a center.

Recall that d |= {φi(rvδn(x− ai,0); bi,0)}i<M is a solution to the first column.

Claim 5. For all j < ω, and i, k < M with k 6= i, we have val(d− ai,j) ≤ val(d− ak,0) + δn.

Proof. Assume not: for some j < ω, and i, k < M with k 6= i:

val(d− ai,j) > val(d− ak,0) + δn.

Then, rvδn(ai,j − ak,0) = rvδn(d− ak,0). By mutual indiscernibility, we have

ai,j |= {φk(rvδn(x− ak,l);bk,l)}l<ω.

This contradicts inconsistency of the row k.

In particular, for all i, k < M , we have | val(d− ak,0)− val(d− ai,0)| ≤ δn. For i < M , let us denote
γi := val(d− ai,0) and let γ be the minimum of the γi’s. By definition, we have the following for all
i, k < M :

val(ai,0 − ak,0) ≥ min{val(d− ai,0), val(d− ak,0)} ≥ γ. (?)

The following claim give us a correct centre a.

Claim 6. We may assume that there is i < M such that for all k < M , the following holds:

γk = val(d− ak,0) ≤ min{val(d− ai,∞), val(ai,∞ − ak,0)}+ δn.

In particular, by Proposition 1.48, we have:

WDδn(rv2δn(d− ai,∞), rv2δn(ai,∞ − ak,0)).
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Proof. By Remark 1.49, it is enough to find i < M such that the following holds for all k < M :

γk ≤ val(d− ai,∞) + δn or γk ≤ val(ai,∞ − ak,0) + δn.

We will actually find i such that one of the following holds:

1. γk ≤ val(d− ai,∞) + δn for all k < M

2. γk ≤ val(ai,∞ − ak,0) + δn for all k < M

The first case will correspond to Case A, the second to Case B.

Case A : There are 0 ≤ i, k < M with i 6= k such that val(ai,j − ak,l) is constant for all j, l ∈ ω,
equal to some ε. Note that (?) gives ε ≥ γ.

val(ai,j − ak,l) = ε ≥ γ

ak,∞ai,0 ak,0ai,∞

Then, we have:
val(d− ai,∞) ≥ min{val(d− ai,0), val(ai,0 − ai,∞)} ≥ γ

Indeed, val(ai,0 − ai,∞) ≥ min{val(ai,0 − ak,0), val(ak,0 − ai,∞)} = ε ≥ γ. Hence, we have for every
0 ≤ l < M :

val(d− ai,∞) + δn ≥ γ + δn ≥ val(d− al,0) = γl.

Case B: For all 0 ≤ i, k < M with i 6= k, (val(ai,j − ak,l))j,l is not constant.
By Lemma 1.40 (2) and Lemma 1.41, there is i < M such that for every k < M and k 6= i, (ak,l)l<ω⇒ai,0
or (ak,−l)l<ω⇒ai,0. If needed, one can flip the indices and assume that for all k 6= i, (ak,l)l<ω⇒ai,0.
Note that only (ai,j)j could be a fan in this case.

ai,0 ak,∞ ak,0
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Then we have
val(ak,0 − ai,∞) = val(ak,0 − ai,0) ≥ γ,

since (ak,l)⇒ai,∞ as well. So
val(ak,0 − ai,∞) + δn ≥ γk,

It remains to prove the inequality for k = i. Take l 6= i, l < M . We have:

val(ai,0 − ai,∞) ≥ min{val(ai,0 − al,0), val(al,0 − ai,∞)} ≥ γ.

Hence, val(ai,0 − ai,∞) + δn ≥ γi.

Assume i = 0 satisfies the conclusion of the previous claim. For every k < M , we have

WDδn(rv2δn(d− a0,∞), rv2δn(a0,∞ − ak,0)).

Set b̃i,j := bi,j ^ rv2δn(a0,∞ − ai,j) for i < M, j < ω and

ψi(x̃, b̃i,j) := φi (rvδn(x̃+ rv2δn(a0,∞ − ai,j)); bi,j) ∧WDδn(x̃, rv2δn(a0,∞ − ai,j))

where x̃ is a variable in RV2δn .
This is an inp-pattern. Indeed, clearly, rv2δn(d−a0,∞) |= {ψi(x̃, b̃i,0)}i<M . By mutual indiscernibil-

ity of (b̃i,j)i<M,j<ω, every path is consistent. It remains to show that, for every i < M , {ψi(x̃, b̃i,j)}j<ω
is inconsistent. Assume there is α? |= {ψi(x̃, b̃i,j)}j<ω for some i < M , and let d? be such that
rv2δn(d? − a0,∞) = α?. Then, since WDδn(α?, rv2δn(a0,∞ − ai,j)) holds for every j < ω, d? satisfies
{φi(rvδn(x− ai,j), bi,j)}j<ω, which is a contradiction. All rows are inconsistent, which concludes our
proof.

With minor modifications, the proof goes through in the case of infinite burden λ. However,
one must be careful regarding the precise statement of this generalisation. Assume we are in mixed
characteristic (0, p), and the burden λ is of cofinality cf(λ) = ω. Then the very first argument of the
proof is no longer true: one cannot necessary assume that there are λ-many formulas φ̃i(x, yi) in the
inp-pattern of the form

φ̃i(x, ci,j) = φi(rvδn(x− ai,j;1), . . . , rvδn(x− ai,j;k);bi,j),

for a certain n < ω. This depends of course of the cofinality of λ. Nonetheless, this is the only problem.
One gets the following statement:

Corollary 3.3. Let λ be an infinite cardinal in Card?.

• Let K be a mixed characteristic Henselian valued field. Assume that the union of sorts RV<ω

with the induced structure is of burden λ. Then, the field K is of burden λ if cf(λ) > ω, and of
burden λ or act(λ) if cf(λ) = ω.

• Let K be a benign Henselian valued field. Assume that the sort RV with the induced structure
is of burden λ. Then the field K is of burden λ.

Proof. We treat the case of mixed characteristic Henselian valued field. We prove similarly the case of
benign Henselian valued fields. Let κ ≥ λ be the burden of K, and let

{φ̃i(x, yi), (ci,j)j<ω}i<κ
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be an inp-pattern of depth κ. If κ is of cofinality cf(κ) > ω, then there are κ-many formulas φ̃i(x, yi)
in the inp-pattern of the form

φ̃i(x, ci,j) = φi(rvδn(x− ai,j;1), . . . , rvδn(x− ai,j;k);bi,j),

for a certain n < ω. We deduce an inp-pattern of depth κ in the RV<ω-sort. Indeed, we follow the
exact same proof with few changes in Claim 6:

• The minimum of {γk}k<λ may not exist, but one can pick γ in an extension of the monster model,
realising the cut {γ ∈ Γ | γ < γk for all k < λ} ∪ {γ ∈ Γ | γ > γk for some k < λ}. By Claim 5,
we have for all a ∈ K, val(a) > γ implies val(a) + δn > γk for all k < λ.

• Case A stays the same.

• Case B is slightly different, since an i such that for all k, (ak,l)l<ω⇒ai,∞ or (ak,−l)l<ω⇒ai,∞ does
not necessarily exist either. We may distinguish three subcases:

1. there is i such that for λ-many k, (ak,l)l<ω or (ak,−l)l<ω pseudo-converge to ai,0. We conclude
as in the proof.

2. there is i < λ such that (ai,j)j<ω pseudo-converges to ak,0 for λ-many k. For such a k, we
have val(ak,0 − ai,∞) > val(ak,0 − ai,0) ≥ γ, and thus val(ak,0 − ai,∞) + δn > γk. We may
conclude as well.

3. there is i < λ such that (ai,−j)j<ω pseudo-converges to ak,0 for λ-many k . This is an
analogue to Subcase (2) just above, where ai,−∞ is taking the place of ai,∞.

Hence, we get λ = κ.
If κ is of cofinality ω, let (λk)k∈ω be a sequence of successor cardinals cofinal in κ. By the previous
discussion, we find an inp-pattern in RV<ω of depth λk for each λk. Hence, λk ≤ λ and κ = λ or
κ = act(λ).

Remark 3.4. • Consider now an enriched Henselian valued field K = (K,RV<ω, . . .) of charac-
teristic (0, p), p ≥ 0 in an RV<ω-enrichment LRV<ω ,e of LRV<ω . Then, the above proof still
holds. The burden of K is equal (modulo the same subtleties when we consider the burden in
Card?) to the burden of RV<ω ∪Σe with the induced structure, where Σe is the set of new sorts
in LRV<ω ,e \ LRV<ω .

• Similarly, an RV-enriched benign Henselian valued field has the same burden as RV∪Σe where
Σe is the set of new sorts in LRV,e \ LRV.

3.1.2 Applications to p-adic fields

In this paragraph, p is a prime number. We will deduce from Theorem 3.2, as an application, that any
finite extension of Qp is dp-minimal. This is already known (in fact, all local fields of characteristic 0
are dp-minimal). One can refer to the classification on dp-minimal fields by Will Johnson [22]. The
fact that Qp is dp-minimal is due to Dolich, Goodrick and Lippel [14, Section 6] and Aschenbrenner,
Dolich, Haskell, Macpherson and Starchenko in [4, Corollary 7.9.]. In Section 3.3, we will study more
generally unramified mixed characteristic Henselian valued fields.

Theorem 3.5. The theory of any finite extension of Qp in the language of rings is dp-minimal.
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A characterisation of dp-minimality is the following: for any mutually indiscernible sequences
(ai)i<ω and (bi)i<ω and any point c, one of these two sequences is indiscernible over c. As we already
mention earlier, a theory is dp-minimal if and only if it is NIP and inp-minimal (see [34, Lemma 1.4]
). Since finite extensions of Qp are NIP, we have to prove that they are inp-minimal. Recall first that
the valuation in a finite extension of Qp is definable in the language of rings:

val(x) ≥ 0 ⇔ ∃y 1 + πxq = yq,

where π is an element of minimal positive valuation and q is a prime with q 6= p. We can safely consider
Qp in the two-sorted language of valued fields L = LMac∪LPres∪{val}, where LMac = LRings∪{Pn}n≥2

is the language of Macintyre with a predicate Pn for the subgroup of nth-power of Qp and where LPres
is the language of Presburger arithmetic. We have the following well known result, that we already
discussed in the example below Proposition 1.10:

Fact 3.6. The theory Th(Qp) eliminates quantifiers. In particular, the value group is a pure sort.

Let K = (K,Γ) be a finite extension of Qp and let π ∈ K be an element of minimal positive
valuation. By interpretability, we obtain:

Remark 3.7. The value group Γ is purely stably embedded in K. Since Γ is a Z-group (as a finite
extension of a Z-group), it is in particular inp-minimal.

Fix some n ∈ N. We have the following exact sequence

1 // O×/(1 + mδn) // RV?
δn

valrvδn // Γ // 0 ,

where δn = val(pn) and mδn = {x ∈ K | val(x) > val(pn)}. One sees that (O/mδn)× ' O×/(1 + mδn)
is finite, or in other words, that the valuation map valrvδn is finite to one. It follows by Lemma 1.26
that RVδn is also inp-minimal. Since this holds for arbitrary n ∈ N, RV =

⋃
n RVδn is inp-minimal.

We conclude by using Theorem 3.2.

The next application is a anticipation of the next paragraph. We provide a new proof of the non-
uniform definability of an angular component. It can in fact already be deduced from [11]. Recall that
an angular component is a group homomorphism ac : (K?, ·)→ (k?, ·) such that ac O× = res O× .

1 // O× //

res
��

K?
val

//

rv

��

ac

��

Γ // 0

1 // O×/1 + m ' k? // RV?
acrvzz

valrv // Γ // 0

Consider any theory Tac of a valued field endowed with an ac-map, and assume that both the value
group Γ and residue field k are infinite. Then by Fact 1.25 and bi-interpretability on unary sets, on
sees that the RV-sort is of burden at least 2. The set RV? is indeed in definable bijection with the
direct product Γ× k?.

In the field of p-adics Qp, an angular component ac is definable in the language of rings. We can
show now easily that this definition cannot be uniform:

Corollary 3.8. There is no formula which gives a uniform definition of an ac-map in Qp for every
prime p.

Notice that this has already been observed by Pas in [28].

Proof. By Chernikov-Simon [11], we know that the ultraproduct of p-adic F =
∏
U Qp, where U ⊂ P

is an ultrafilter on the set of primes, is inp-minimal in the language of rings (recall that the p-adic
valuation is uniformly definable in LRings). The residue field and the value group are infinite since they
are respectively a pseudo-finite field and a Z-group. By the above discussion, the ac-map cannot be
defined in the language of rings, as it would contradict inp-minimality.
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3.2 Benign Henselian Valued Fields

Let K = (K,Γ, k) be a saturated enough benign Henselian valued field. We will compute the burden
of RV := K?/1 + m in terms of the burden of k and Γ. As the RV-sort is stably embedded, we will
consider it as a structure on its own. By Fact 1.47, the induced structure is given by:

{RV, (k, ·,+, 0, 1), (Γ,+, 0, <), valrv : RV→ Γ, k? → RV} .

Notice in particular that there is no need of the symbol ⊕ as we consider the sort k and Γ instead.
The language is denoted by L. In other words the sort RV is no more than an enriched exact sequence
of abelian groups:

1→ k? → RV? valrv→ Γ→ 0,

where k = k?∪{0} is endowed with its field structure and Γ is endowed with its ordered abelian group
structure. As Γ is torsion free, k? is a pure subgroup of RV?. The idea to consider RV as an enrichment
of abelian groups is already present in [11] and has been developed in [3].

3.2.1 Reduction of burden to Γ and k

Let us recall a result of Chernikov and Simon:

Theorem 3.9 ([11, Theorem 1.4]). Assume K is a Henselian valued field of equicharacteristic 0.
Assume the residue field k satisfies

k?/(k?)p is finite for every prime p. (Hk)

Then K is inp-minimal if and only if RV with the induced structure is inp-minimal if and only if k and
Γ are both inp-minimal.

It will now be easy to extend this theorem. We have already seen the reduction to the RV-sort
for any benign Henselian valued field, without the assumption (Hk). For the reduction to Γ and k,
one can give first an easy bound, also independent of the assumption (Hk). Indeed, recall that in
an ℵ1-saturated model, any pure exact sequence of abelian groups splits (Fact 1.73). In particular,
there exists a section acrv : RV? → k? of the valuation valrv or equivalently, there exists an angular
component ac : K? → k? (as we already discussed in Paragraph 3.1.2).

1 // O× //

res
��

K?
val

//

rv

��

ac

��

Γ // 0

1 // O×/1 + m ' k? // RV?
acrvww

valrv // Γ // 0

Recall that Lac is the language L extended by a unary function acrv : k → RV. A direct translation
of Fact 2.1 gives:

Fact 3.10 (Trivial bound). We have bdnL(Γ) = bdnLac(Γ) and bdnL(k) = bdnLac(k) as well as the
following:

bdnL(RV) ≤ bdnLac(RV) = bdnL(Γ) + bdnL(k).

A valued field Kac together with an angular component ac can be considered as an RV-enrichment
of K. Using the enriched version of Theorem 3.2 (see Remark 3.4), we get:

Theorem 3.11. Let Kac = (K,Γ, k, val, ac) be a benign Henselian valued field endowed with an ac-map.
Then:

bdn(Kac) = bdn(k) + bdn(Γ).
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If we do not want to consider an ac-map, we can also compute the burden using the torsion-free
case of Theorem 2.2 together with Theorem 3.2. We get:

Theorem 3.12. Let K be a benign Henselian valued field. Then:

bdn(K) = max
n≥0

(bdn(k?/k?n) + bdn(nΓ)) .

Using Adler’s convention, we have the same formula:

bdn?(K) = max
n≥0

(bdn?(k?/k?n) + bdn?(nΓ)) .

This gives a full answer to [11, Problem 4.3] and [11, Problem 4.4]:

Corollary 3.13. Let K = (K,RV, k,Γ) be a benign Henselian valued field. Assume that:

k?/(k?)p is finite for every prime p. (Hk)

Then we have the equalities

bdn(K) = bdn(RV) = max(bdn(k),bdn(Γ)).

Also, in the case that K is not trivially valued, the value group Γ is necessary of burden bdn(Γ) > 0.
It follows that a non-trivially valued benign Henselian field K is inp-minimal if and only if Γ, k are
inp-minimal and k satisfies (Hk).

Similarly to the proof of non-existence of a uniform definition of the angular component of Qp, we
can notice the following:

Remark 3.14. Let K be a benign Henselian valued field of finite burden. Assume that the residue field
is infinite and satisfies (Hk). Then, no angular component is definable in the language of valued fields
Ldiv.

The reason is of course that in such a case, the two terms max(bdn(k),bdn(Γ)) and bdn(k)+bdn(Γ)
are distinct.

All these results hold resplendently. In fact by definition, a benign Henselian valued field can have
an enriched value group and residue field. Let us clarify by stating the previous theorem in an enriched
language:

Remark 3.15. If K = (K,RV, k,Γ, . . .) is a {Γ}-{k}-enriched benign Henselian valued field in a
{Γ}-{k}-enrichment LΓ,k,e of LΓ,k, then

bdn(K) = bdn(RV∪Σe) = max
n

(bdn(k?/k?n) + bdn(nΓ), bdn(Σe)),

where Σe is the set of new sorts in LΓ,k,e \ LΓ,k.

To conclude this short subsection, let us discuss more on the hypothesis (Hk) and bounded fields.

3.2.2 Bounded fields and applications

A bounded field is a field with finitely many extensions of degree n for every integer n. The absolute
Galois group is called small if it contains finitely many open subgroups of index n. These two conditions
are equivalent for perfect fields: a perfect field is bounded if and only if its absolute Galois group is
small. Such a field K satisfies in particular the following:

K?/(K?)p is finite for every prime p, (H)
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(see for example [16, Proposition 2.3]), and it’s clear that (H) implies (Hk). It also implies:

Γ/pΓ is finite for every prime p, (HΓ)

The condition Hk might be restrictive but it allows various burdens for the residue field. However,
the conditionHΓ implies inp-minimality for the value group. Indeed, an abelian group Γ satisfying (HΓ)
is called non-singular. In the pure structure of ordered abelian groups, non-singular ordered abelian
groups are exactly the dp-minimal ones (see [21, Theorem 5.1]). We have the following examples :

Examples. • The Hahn field Falgp ((Z[1/p])) is algebraically maximal Kaplansky Henselian. By
Jahnke, Simon and Walsberg, the value group Z[1/p] is inp-minimal as it satisfies (HΓ). The
residue field Falgp satisfies (Hk) and is inp-minimal. By Theorem 3.12, this Hahn field is inp-
minimal.

• In general, a bounded benign Henselian valued field K with residue field k has burden
max(bdn(k), 1).

Montenegro has computed the burden of some theories of bounded fields, namely bounded pseudo
real closed fields (PRC fields) and pseudo p-adicaly closed fields (PpC fields). We recall here these
theorems (see [27, Theorems 4.22 & 4.23]):

Theorem 3.16. Let k be a bounded PRC field. Then Th(k) is NTP2, strong and of burden the (finite)
number of orders in k.

Theorem 3.17. Let k be an PpC field. Then Th(k) is NTP2 if and only if Th(k) is strong if and only
if k is bounded. In this case, the burden of Th(k) is the (finite) number of p-adic valuations in k.

3.3 Unramified mixed characteristic Henselian Valued Fields

Let K = (K,RV<ω,Γ, k) be an unramified Henselian valued field of characteristic (0, p), p ≥ 2 with
perfect residue field k. We denote by 1 the valuation of p. The value group Γ contains Z · 1 as a
convex subgroup. Recall that in this context, it is more convenient to denote the nth RV-sort by
RV?

n := K?/(1 + mn) where m = {x ∈ K | val(x) > 0} is the maximal ideal of the valuation ring
O. Notice that mn = pnO for every integer n. Similarly to the previous section, we will compute the
burden of RV<ω = ∪n∈N RVn in terms of the burden of k and Γ.

3.3.1 Reduction from RV<ω to Γ and k

Now we can look for the burden of RVn. We start with a harmless observation:

Observation 3.18. Let m < n be integers. The element pm is of valuation m. By [17, Proposition
2.8], RVm is ∅-interpretable in RVn, with base set RVn quotiented by an equivalence relation. Hence
the burden of RVn can only grow with n: for m < n, bdn(RVm) ≤ bdn(RVn).

Recall that in this context of unramified mixed characteristic Henselian valued fields with perfect
residue field, the nth residue ring On := O/pnO is isomorphic to the n-truncated ring of Witt vectors
(see Proposition 1.67). We work now in the following languages:

L = {K,Γ, (RVn)n<ω, (Wn(k))n<ω, val : K? → Γ,

(resn : O →Wn(k))n<ω, (rvn : K? → RVn)n<ω},

which is a little variation of (and bi-interpretable with) the language LRV<ω , where the structure
of the RVn’s is described with exact sequences. We can also add the ac-maps to this language:

Lac<ω = L ∪ {(acn : K? →Wn(k))n<ω}.
Here is a consequence of Corollary 1.62, Remark 1.16 and Fact 1.18:
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Corollary 3.19. We have:

• bdn(Wn(k)) = κ1
inp(Wn(k)) = κninp(k).

• bdn((W (k),+, ·, π : W (k)→ k)) = κℵ0inp(k).

Recall that we have the following inequalities (see Paragraph 1.1.2):

n · κ1
inp(k) ≤ κninp(k) κninp(k) + 1 ≤ (κ1

inp(k) + 1)n.

In particular, if k is infinite then the burden of (Wn(k),+, ·, π) is at least n.
In the language Lac<ω , a consequence of Proposition 1.67 is that, for every n < ω the sort Wn(k) is

pure (in particular stably embedded) and orthogonal to Γ, as it is ∅-bi-interpretable with (kn,+, ·, pi, i <
n), which is a pure sort orthogonal to Γ. It follows that Wn(k) doesn’t have more structure in Lac<ω

than in L. Similarly, the burden of Γ is the same in any of the above languages. Hence, we actually
have the following equalities:

bdnL(Wn(k)) = bdnLac<ω
(Wn(k)), (7)

bdnL(Γ) = bdnLac<ω
(Γ). (8)

We are now able to give a relationship between bdn(RVn) and bdn(Wn(k)).

Proposition 3.20. [Trivial bound] We have

max(bdnL(Wn(k)), bdnL(Γ)) ≤ bdnL(RVn) ≤ bdnLac<ω
(RVn)

= bdnL(Wn(k)) + bdnL(Γ).

Proof. By Proposition 1.67, we have the exact sequence of abelian groups:

1→Wn(k)× → RV?
n → Γ→ 0.

The first inequality is clear if one shows that bdnL(Wn(k)) = bdnL(Wn(k)×) where Wn(k)× is
endowed with the induced structure. The second inequality is also clear, as adding structure can only
make the burden grow. Let {φi(x, yi), (ai,j)j<ω}i∈λ be an inp-pattern in Wn(k), with (ai,j)i<λ,j<ω
mutually indiscernible. Let d |= {φ(x, ai,0)}i∈λ be a realisation of the first column. In the case where
d ∈Wn(k)×, there is nothing to do. Otherwise, 1 + d ∈Wn(k)× and {φi(x− 1, yi), (ai,j)j<ω}i∈λ is an
inp-pattern in Wn(k)× of depth λ. This concludes the proof of the first inequality.

We work now in Lac<ω , where we interpret (acn)n as a compatible sequence of angular compo-
nents (it exists by ℵ1-saturation). Recall that the burden may only increase. Then, the above exact
sequences (definably) split in Lac<ω , as we add a section. By the previous discussion, Wn(k)× and Γ
are orthogonal and stably embedded. We apply now Fact 1.25: the burden bdnLac<ω

(RV?
n) is equal to

bdnLac<ω
(Wn(k)×) + bdnLac<ω

(Γ) = bdnL(Wn(k)) + bdnL(Γ).

Combining Corollary 3.3, Corollary 3.19 and Proposition 3.20, one gets:

Theorem 3.21. Let K = (K, k,Γ) be an unramified mixed characteristic Henselian valued field. We
denote by Kac<ω = (K, k,Γ, acn, n < ω) the structure K endowed with compatible ac-maps. Assume the
residue field k is perfect. One has

bdn(K) = bdn(Kac<ω) = max(ℵ0 · bdn(k), bdn(Γ)).

And its enriched version:
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Remark 3.22. Let Le be a {Γ}-{k}-enrichment of L. Let K = (K, k,Γ, . . .) be an enriched unramified
mixed characteristic Henselian valued field in the language Le. Assume the residue field k is perfect.
We denote by Kac<ω = (K, k,Γ, acn, n < ω, . . .) the structure K endowed with compatible ac-maps. One
has

bdn(K) = bdn(Kac<ω) = max(ℵ0 · bdn(k), bdn(Γ),bdn(Σe)),

where Σe is the set of new sorts in Le \ L.

This is a simple calculation, unless we want to consider burden in Card?.

Remark 3.23. Let K and Kac<ω as above. We consider the second definition of burden (Definition
1.29). We have

bdn?(K) = bdn?(Kac<ω) = max(ℵ0 ·? bdn?(k),bdn?(Γ)).

It follows that an unramified mixed characteristic valued field with an infinite perfect residue field
is never strong.

This is what we will prove now.

Proof. We use the same notation as before in this section. Unfortunately, due to the ambiguity in Corol-
lary 3.3 concerning bdn?(K) ∈ {bdn?(RV<ω), act(bdn?(RV<ω))} in the case that cf(bdn(RV<ω)) = ω,
we have to go back to the proof of Theorem 3.2.

We first show that bdn?(K) is at least ℵ0 ·? bdn?(k). Recall that Wn(k) ' On := O/mn is
interpretable (with one-dimensional base set O ⊂ K), and so is the projective system {Wn(k), πn,m :
Wn(k) → Wm(k), n > m} and the projection maps χn,n : Wn(k) → k, x = (x1, . . . , xn) 7→ xn. If
cf(bdn(k)) > ℵ0, there is nothing to do as bdn?(k) = ℵ0 ·? bdn?(k). Assume cf(bdn(k)) ≤ ℵ0. We
write bdn?(k) = supn<ω λn with λn ∈ Card. Let Pn(xk) be an inp-pattern with xk ∈ k, |xk| = 1, of
depth λn for every n ∈ ω. Then, the pattern P (x) = ∪n∈ωPn(χn,n(πn(x))) is an inp-pattern in K of
depth ℵ0 ·? bdn?(k). One gets:

bdn?(K) ≥ max(ℵ0 ·? bdn?(k),bdn?(Γ)).

We now prove that max(ℵ0 ·? bdn?(k),bdn?(Γ)) is an upper bound for bdn?(Kac<ω).
Case 1: ℵ0 ·? bdn?(k) ≥ bdn?(Γ).
Subcase 1.A: cf(bdn(k)) > ℵ0. By Corollary 3.3, bdn?(Kac<ω) = bdn?(RV<ω) =
supn(κninp(k), bdn?(Γ)) = bdn?(k) = ℵ0 · bdn?(k). We used the submultiplicativity of the burden,
which gives here κn?inp(k) = κ1?

inp(k) = bdn?(k) for all n ∈ N.
Subcase 1.B: cf(bdn(k)) ≤ ℵ0. Then act(bdn?(RV<ω)) = ℵ0 · bdn(k). By Corollary 3.3, we have
bdn?(Kac<ω) ≤ ℵ0 · bdn(k).
Case 2: bdn?(Γ) > ℵ0 ·? bdn?(k). If bdn?(Γ) is in Card, this is clear by Corollary 3.3. Assume
bdn?(Γ) is of the form λ− for a limit cardinal λ ∈ Card. Notice that this case occurs only if the sort
Γ is enriched. We work in the corresponding enrichment of language LRV<ω together with acn-maps.
We have to show that λ− is an upper bound for bdn?(Kac<ω). Let P (x) = {θi(x, yi,j), (ci,j)j∈Z̄}i∈λ be
an inp-pattern in K of depth λ with |x| = 1 and (ci,j)i<λ,j∈Z̄ be a mutually indiscernible array. Then,
by Fact 1.64, one can assume that each formula θi(x, ci,j) in P (x) (i ≤ λ, j ∈ Z̄) is of the form

θ̃i(rvni(x− α1
i,j), . . . , rvni(x− αmi,j), βi,j),

for some integers ni and m, and where α1
i,j , . . . , α

m
i,j ∈ K, βi,j ∈ RVni and θ̃i is an RVni-formula. As

in the proof of Theorem 3.2, we may assume with no restriction that m = 1. As RVni = Wni(k)× × Γ
is the direct product of the orthogonal and stably embedded sorts Wni(k)× and Γ, we may assume
θi(x, ci,j) is equivalent to a formula of the form

φi(acni(x− αi,j), ai,j) ∧ ψi(val(x− αi,j), bi,j)
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where φi(xWni
, ai,j) is a Wni-formula and ψi(xΓ, bi,j) is a Γ-formula. By Claim 6 in Theorem 3.2 (or

more precisely, by a generalisation of Claim 6 to infinite depth M = λ), one may assume that there is
k < λ such that for all i < λ,

val(d− αi,0) ≤ min{val(d− αk,∞), val(αk,∞ − αi,0)}+ max(ni, nk).

It follows that, if val(d−αk,∞) = val(αk,∞−αi,0), val(d−αi,0) is equal to val(d−αk,∞) +n′i for some
0 ≤ n′i ≤ max(ni, nk). Otherwise, one has val(d − αi,0) = min{val(d − αk,∞), val(αk,∞ − αi,0)}. We
can centralise P (x) in αk,∞, i.e. we can assume that each formula in P (x) is of the form

φi(ac2ni(x− αk,∞), ai,j) ∧ ψi(val(x− αk,∞), bi,j)

(we add new parameters val(αk,∞−αi,j) and ac2ni(αk,∞−αi,j). Notice that once the difference of the
valuation is known, acni(d−αi,j) can be computed in terms of ac2ni(d−αk,∞) and ac2ni(αi,j−αk,∞)).
By indiscernibility, at least one of the following sets

{φi(xW2ni
, ai,j)}j<ω

and
{ψi(xΓ, bi,j)}j<ω

is inconsistent. Since λ > supn bdn?(Wn(k)), we may assume that

{ψi(xΓ, yi), (bi,j)j∈Z̄)}i<λ

is an inp-pattern in Γ. This is a contradiction. Hence, we have bdn?(K) = λ−.

We end now with examples:

Examples. 1. Assume that k is an algebraically closed field of characteristic p, and Γ is a Z-group.
Then Γ is inp-minimal, i.e. of burden one (as it is quasi-o-minimal), and one has κninp(k) = n.
By Theorem 3.21, any Henselian mixed characteristic valued field of value group Γ and residue
field k has burden ℵ0. In particular, the quotient field Q(W (k)) of the Witt vectors W (k) over
k is not strong.

2. Consider once again the field of p-adics Qp. We have κninp(Fp) = 0 for all n, and bdn(Z) = 1.
Then Theorem 3.21 gives bdn(Qp) = 1.
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