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Abstract. For important cases of algebraic extensions of valued fields, we de-
velop presentations of the associated Kähler differentials of the extensions of
their valuation rings. We compute their annihilators as well as the associated
Dedekind differentials. We then apply the results to Galois defect extensions of
prime degree. Defects can appear in finite extensions of valued fields of positive
residue characteristic and are serious obstructions to several problems in positive
characteristic. A classification of defects (dependent vs. independent) has been
introduced by the second and the third author. It has been shown that perfectoid
fields and deeply ramified fields only admit extensions with independent defect.
We give several characterizations of independent defect, using ramification ideals,
Kähler differentials and traces of the maximal ideals of valuation rings. All of
our results are for arbitrary valuations; in particular, we have no restrictions on
their rank or value groups.

1. Introduction

A central goal of this paper is to give for important cases of algebraic extensions of
valued fields a presentation of the associated Kähler differentials of the extensions
of their valuation rings. This is crucial not only for applications in the present
paper, but also in the subsequent paper [6].

By (L|K, v) we denote a field extension L|K where v is a valuation on L and K
is endowed with the restriction of v. The valuation ring of v on L will be denoted
by OL , and that on K by OK . Similarly,ML andMK denote the unique maximal
ideals of OL and OK . The value group of the valued field (L, v) will be denoted by
vL, and its residue field by Lv. The value of an element a will be denoted by va, and
its residue by av. The rank of a valued field (K, v) is the order type of the chain of
proper convex subgroups of its value group vK. All of our results are for arbitrary
valuations; in particular, we have no restrictions on their rank or value groups.
Ranks higher than 1 appear in a natural way when local uniformization, the local
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form of resolution of singularities, is studied. Deeply ramified fields of infinite rank
appear in model theoretic investigations of the tilting construction, as presented
by Jahnke and Kartas in [12]. Therefore, we do not restrict our computations to
rank 1, thereby indicating how Kähler differentials and their annihilators, as well
as Dedekind differentials, can be computed in higher rank.

By ΩB|A we denote the Kähler differentials, i.e., the module of relative differen-
tials, when A is a ring and B is an A-algebra. In Section 4.1, we prove:

Theorem 1.1. Let L|K be an algebraic field extension of degree n and suppose that
A is a normal domain with quotient field K and B is a domain with quotient field
L such that A ⊂ B is an integral extension. Suppose that there exist generators
bα ∈ B of L|K, which are indexed by a totally ordered set S, such that A[bα] ⊂ A[bβ]
if α ≤ β and ⋃

α∈S

A[bα] = B.

Further suppose that there exist aα, aβ ∈ A such that aβ | aα if α ≤ β and for
α ≤ β, there exist cα,β ∈ A and expressions

(1) bα =
aα
aβ
bβ + cα,β .

Let hα be the minimal polynomial of bα over K. Let U and V be the B-ideals

U = (aα | α ∈ S) and V = (h′α(bα) | α ∈ S).

Then we have a B-module isomorphism

(2) ΩB|A ∼= U/UV .

For the case where A = OK and B = OL , we compute V in (44) and for arbitrary
γ ∈ S, we obtain a B-module isomorphism

(3) ΩOL|OK
∼= U/b†γU

n with b†γ :=
h′γ(bγ)

an−1
γ

.

We determine the annihilator of U/UV and thus of ΩOL|OK in Proposition 4.2.
For information on the Dedekind different D(OL|OK), see Theorems 1.6 and 5.4.

We define the defect and defect extensions in Section 2.1. For the construction
of a large number of different defect extensions and the role the defect plays in deep
open problems in positive characteristic, see [16]. The defect can be understood
through jumps in the construction of limit key polynomials and in the construc-
tion of pseudo-convergent sequences. A couple of recent references explaining this
phenomenon are [25] and [7].

We are generally interested in the study of defect extensions of arbitrary finite
degree. As explained in Section 2.1, via ramification theory this can be reduced
to the investigation of purely inseparable extensions and of Galois extensions of
degree p = charKv > 0.

We find explicit realizations for the assumptions of Theorem 1.1 for Galois defect
extensions of prime degree and deduce the next theorem by combining Theorems 4.5
and 4.6. For the definition of higher ramification groups and ramification ideals,
see Section 2.7.
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Theorem 1.2. Let E = (L|K, v) be a Galois defect extension of prime degree p.
If charK = 0, then assume that K contains all p-th roots of unity. Then E has a
unique ramification ideal IE , and there is an OL-module isomorphism

(4) ΩOL|OK
∼= IE/I

p
E .

In [26], Novacoski and Spivakovsky use the theory of key polynomials to derive a
presentation of ΩOL|OK for finite extensions (L|K, v) under the condition vL = vK
(which holds for all extensions covered by the above theorem). The presentation of
ΩOL|OK for Galois defect extensions (L|K, v) is also studied by Thatte in [29, 30].

Galois defect extensions of degree p of valued fields of characteristic p > 0 (valued
fields of equal positive characteristic) have first been classified by the second
author in [15]. In [20] the classification was extended to the case of Galois defect
extensions of degree p of valued fields of characteristic 0 with residue fields of
characteristic p > 0 (valued fields of mixed characteristic), as follows. Take a
Galois defect extension E = (L|K, v) of prime degree p. For every σ in its Galois
group Gal (L|K), with σ 6= id, we set

(5) Σσ :=

{
v

(
σb− b
b

)∣∣∣∣ b ∈ L×, σb 6= b

}
.

This set is a final segment of vL = vK and independent of the choice of σ; we
denote it by ΣE . The OL-ideal IE := (a ∈ L | va ∈ ΣE) is the unique ramification
ideal of E . Detailed information on ΣE and IE is given in Sections 2.7 and 2.8.

We say that E has independent defect if

(6)

{
ΣE = {α ∈ vL | α > HE} for some proper convex subgroup H

of vL such that vL/H has no smallest positive element.

If (6) holds, then we will write HE for H. If there is no such subgroup H, we
will say that E has dependent defect. If vL = vK is archimedean (i.e., order
isomorphic to a subgroup of R), then condition (6) just means that ΣE consists of
all positive elements in vL.

In [11], Gabber and Ramero define deeply ramified fields (K, v) by the property

(7) ΩOKsep |OK = 0 ,

where Ksep denotes the separable-algbraic closure of K. For a valuative definition,
which they prove to be equivalent to theirs, and a generalization thereof, see e.g.
[20]. In [6] we present a simplified version of their proof. The following is a
consequence of the more general part 1) of Theorem 1.10 in [20]:

Theorem 1.3. Every Galois defect extension of prime degree of a deeply ramified
field has independent defect.

Property (7) together with Theorem 1.3 led us to investigate the connection
between Kähler differentials and independent defect. In the present paper we apply
the results stated at the beginning of the introduction to the following situation:

(8)

{
(L|K, v) is a Galois defect extension of prime degree p = charKv
and if charK = 0 , then K contains all p-th roots of unity.

In this situation we have vL = vK, and L|K is an Artin-Schreier extension if
charK = p, and a Kummer extension if charK = 0. We obtain that their defect is
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independent if and only if ΩOL|OK = 0; this is the equivalence of assertions a) and
d) in Theorem 1.4 below.

Our results for extensions of the form (8) will be complemented in [6] by ap-
plying Theorem 1.1 to Galois extensions of prime degree without defect. Using
this together with the results of the present paper, it is shown that a valued field
is deeply ramified if and only if the Kähler differentials of all Galois extensions
of prime degree are zero; moreover, we compute Kähler differentials for all finite
Galois extensions.

Another way to characterize independent defect of Galois extensions (L|K, v) of
prime degree is through the trace Tr L|K (ML) where Tr L|K denotes the trace of
L|K. Note that if (L|K, v) is unibranched, then Tr (OL) ⊆ OK .

The following theorem summarizes various characterizations of independent de-
fect. The convex subgroups H of vL are in one-to-one correspondence with the
coarsenings vH of v on L in such a way that vHL = vL/H. The maximal ideal of
the valuation ring of vH on L is MvH = (a ∈ L | va > H). If H is a subgroup of
some ordered abelian group Γ, then we call it a strongly convex subgroup if it
is a proper convex subgroup such that Γ/H has no smallest positive element.

If charK = 0 and charKv = p > 0, then we denote by (vK)vp the smallest
convex subgroup of vK that contains vp (cf. [20]). If charK > 0, then we set
(vK)vp = vK.

Theorem 1.4. Assume that the extension E = (L|K, v) satisfies (8). Then the
following assertions are equivalent:

a) E has independent defect,

b) the ramification ideal IE of E is equal toMvH for some strongly convex subgroup
H of vL,

c) IpE = IE ,

d) ΩOL|OK = 0,

e) Tr L|K (ML) =MvH ∩K for some strongly convex subgroup H of vK.

If assertions b) or e) hold, then H = HE , and the valuation ring of vH is the
localization of OL with respect to the ramification ideal IE . The value group of the
corresponding coarsening of v does not have a smallest positive element.

If vK is archimedean, or more generally, if (vK)vp is archimedean, then HE can
only be equal to {0} and if the ramification ideal is a prime ideal, then it can only
be equal to ML .

If ΩOL|OK is annihilated by ML, then ΩOL|OK = 0.

For more equivalent conditions, see part 1) of Proposition 2.10.
The equivalence of assertions a) and b) follows from the definition of independent

defect and the fact that IE = (a ∈ L | va ∈ ΣE). The equivalence of assertions
a) and c) will be proved in part 1) of Proposition 2.10. The equivalence of asser-
tions c) and d) follows from Theorem 1.2. The equivalence of assertions a) and e)
follows from the next theorem. The last assertion follows from part 2) of Propo-
sition 4.2. The remaining assertions, in particular the equality H = HE , will be
proven together with the next theorem in Section 5.2.
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Theorem 1.5. Assume that the extension E = (L|K, v) satisfies (8). Then

(9) Tr L|K (OL) = Tr L|K (ML) = (b ∈ K | vb ∈ (p− 1)ΣE) = (IE ∩K)p−1 .

The extension E has independent defect if and only if for some strongly convex
subgroup H of vL,

(10) Tr L|K (OL) = Tr L|K (ML) = MvH ∩K = (b ∈ K | vb > H) .

In particular, if H = {0} (which is always the case if vK is archimedean, or more
generally, if (vK)vp is archimedean), then this means that

Tr L|K (ML) = MK .

In the mixed characteristic case,MvH will always contain p, so that charKvH = p.

In [4] the authors introduce the notion of deeply ramified extensions (L|K, v)
where (K, v) is a local field and L|K is algebraic. It follows from [4, Proposition
2.9] that under the conditions above, (L|K, v) is a deeply ramified extension if and
only if Tr F |L (MF ) =ML for every finite extension F |L (note that as an algebraic
extension of a local field, (L, v) is henselian, and so the extension of v to F is
uniquely determined); see also [10, Theorem 1.1]. Theorem 1.5 shows that the
latter condition will in general not characterize deeply ramified fields, unless they
have rank 1 (as is the case for algebraic extensions of local fields).

The Dedekind different of (L|K, v) is D(OL|OK) := OL :L C(OL|OK), where
C(OL|OK) := (z ∈ L | Tr (zOL) ⊂ OK) is the fractional OL-ideal called the
complementary ideal. For b ∈ OL and hb its minimal polynomial over K, the
element h′b(b) ∈ OL is called the different of b. We denote the annihilator of an
OL-ideal I by ann I.

In Proposition 4.4 of Section 4.3 and in Section 5.3, we will prove:

Theorem 1.6. Assume that the extension E = (L|K, v) satisfies (8). Then Ip−1
E

is equal to the OL-ideal generated by the differents of all elements of OL \OK and
equal to the OL-ideal generated by the elements of Tr L|K (OL).

We have that D(OL|OK) = Ip−1
E if and only if vIp−1

E has no infimum in vL. If

vIp−1
E has infimum α in vL, then D(OL|OK) = (a ∈ L | va ≥ α) and Ip−1

E =
MLD(OL|OK). If (K, v) has rank 1, then D(OL|OK) = ann ΩOL|OK .

If the extension E has independent defect, then D(OL|OK) = OL = ann ΩOL|OK
if HE = {0}, and D(OL|OK) =MvHE

( OL = ann ΩOL|OK otherwise. Conversely,

if D(OL|OK) is equal to OL or to MvH for a nontrivial strongly convex subgroup
H of vL, then E has independent defect.

The reader may note that in rank higher than 1, D(OL|OK) is not necessarily
equal to the annihilator of ΩOL|OK . For the computation of annihilators in rank
higher than 1, see Propositions 4.1 and 4.2. For the Dedekind different of a finite
unibranched extension (L|K, v) with vL = vK, see Theorem 5.4.

Finally, let us give further characterizations of independent defect, and in par-
ticular show that it can be characterized by a simple condition in (K, v) (which is
an important point in [12]). If z is an element and S a subset of some valued field
(L, v), then we set

v(z − S) := {v(z − c) | c ∈ S}.
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We will write ℘(X) for the Artin-Schreier polynomial Xp −X.

Theorem 1.7. Assume that E = (L|K, v) is an Artin-Schreier defect extension
generated by ϑ ∈ L with ϑp − ϑ = a ∈ K. Then v(ϑ − c) < 0 and v(a − ℘(c)) =
pv(ϑ− c) for all c ∈ K, and therefore,

(11) v(a− ℘(K)) = pv(ϑ−K) .

Further, the following are equivalent:

a) E has independent defect,

b) v(ϑ−K) = −{α ∈ vK | α > H} for some strongly convex subgroup H of vK,

c) v(a − ℘(K)) = −{α ∈ pvK | α > H} for some strongly convex subgroup H of
vK,

d) there is some strongly convex subgroup H of vK such that for all b ∈ K such
that vb > H there is c ∈ K satisfying v(a− ℘(c)) ≥ −vb.
If vK is p-divisible, then these properties are also equivalent to

e) pv(ϑ−K) = v(ϑ−K),

f) v(a− ℘(K)) = v(ϑ−K).

If (K, v) has rank 1, then condition d) is equivalent to:

g) for all b ∈ OK there is c ∈ K satisfying v(a− ℘(c)) ≥ −vb.

Theorem 1.8. Assume that E is a Kummer defect extension of prime degree p.
Then it is generated by a 1-unit η ∈ L with ηp = a ∈ K. We have v(η− c) < 1

p−1
vp

and v(a− cp) = pv(η − c) for all c ∈ K, and therefore,

(12) v(a−Kp) = pv(η −K) .

Further, the following are equivalent:

a) E has independent defect,

b) v(η−K) = 1
p−1

vp−{α ∈ vK | α > H} for some strongly convex subgroup H of
vK,

c) v(a−Kp) = p
p−1

vp− {α ∈ pvK | α > H} for some strongly convex subgroup H

of vK,

d) there is some strongly convex subgroup H of vK such that for all b ∈ K such
that vb > H there is c ∈ K satisfying v(a− cp) ≥ p

p−1
vp− vb.

If vK is p-divisible, then these properties are also equivalent to

e) pv(η −K) = vp+ v(η −K),

f) v(a−Kp) = vp+ v(η −K).

If (K, v) has rank 1, then condition d) is equivalent to:

g) for all b ∈ OK there is c ∈ K satisfying v(a− cp) ≥ p
p−1

vp− vb.

Remark 1.9. Assume the situation of this theorem. Since K contains a primitive
root ζp of unity and v(1− ζp) = 1

p−1
vp, assertion b) is equivalent to

b’) v( η
1−ζp −K) = −{α ∈ vK | α > H} for some strongly convex subgroup H of

vK.
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We note that conditions g) in the two theorems are elementary in the language
of valued rings. It has been pointed out to us by Arno Fehm that in fact also
conditions d) are elementary, as it can be stated in the language of valued rings
that in the setting of Theorem 1.7, the set

{α ∈ vK | v(a− ℘(K)) < α < −v(a− ℘(K))}
and in the setting of Theorem 1.8, the set{

α ∈ vK
∣∣∣∣ v(a−Kp)− p

p− 1
vp < α < −v(a−Kp) +

p

p− 1
vp

}
is a strongly convex subgroup H of vK.

The following can be deduced from Theorems 1.7 and 1.8; for details, see [21].
Take a deeply ramified field (K, v) of rank 1 (e.g. a perfectoid field) with charKv =
p > 0. If it is of equal characteristic, then it satisfies the sentence

∀a, b ∈ OK ∃c ∈ K : v(a− ℘(c)) ≥ −vb ;

likewise, if it is of mixed characteristic, then it satisfies the sentence

∀a, b ∈ OK ∃c ∈ K : v(a− cp) ≥ p

p− 1
vp− vb .

Hence the same holds for every elementary extension (K∗, v∗) of (K, v). Assume
that v∗ admits a proper nontrivial coarsening w. Then (K∗, w) satisfies the sentence

∀a ∈ O(K∗,w) ∃c ∈ K∗ : w(a− ℘(c)) ≥ 0

or

∀a ∈ O(K∗,w) ∃c ∈ K∗ : w(a− cp) ≥ p

p− 1
wp ,

respectively, which shows that every Artin-Schreier extension or Kummer extension
of degree p, respectively, either lies in the henselization of (K∗, w) or is tame (see the
definition given in [20]); in particular, they are defectless. This is also a consequence
of results obtained in [12], by methods different from those used in [21].

In [21] we will give constructions that will show that all the situations mentioned
in the above theorems can appear. To conclude this introduction, let us give two
examples of interesting extensions with independent defect.

Example 1.10. Choose a prime p and let Fp denote the field with p elements.
Consider the rational function field Fp(t), equipped with the t-adic valuation vt,
and its perfect hull K = Fp(t)(t1/p

n | n ∈ N), equipped with the unique extension
of vt . Take a root ϑ of the Artin-Schreier polynomial

Xp −X − 1

t
.

The extension (K(ϑ)|K, vt) was presented by Shreeram Abhyankar in [1]. It be-
came famous since it shows that there are elements algebraic over Fp(t) with a
power series expansion in which the exponents do not have a common denomina-
tor. However, this extension is also an important example for an extension with
nontrivial defect. The situation remains the same if we replace Fp(t) by the field
Fp((t)) of formal Laurent series (see [16, Example 3.12]).
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In both cases, (K, vt) is a deeply ramified field, as it is perfect of positive charac-
teristic. Hence by Theorem 1.3, the extension (K(ϑ)|K, vt) has independent defect.
Now Theorem 1.4 shows that ΩOK(ϑ)|OK = 0.

An analoguous construction in the mixed characteristic case is given in [16,
Example 3.20]. Consider L = Q(p1/pn | n ∈ N), equipped with the unique extension
of the p-adic valuation vp of Q. Take a root ϑ of the polynomial

Xp −X − 1

p
.

Then (L(ϑ)|L, vp) is a defect extension. The situation remains the same if we
replace Q by Qp . In both cases, (L, vp) is known to be a deeply ramified field (cf.
also [21]), hence as before, the extension has independent defect and we have that
ΩOL(ϑ)|OL = 0.

2. Preliminaries

2.1. Defect.

A valued field extension (L|K, v) is unibranched if the extension of v from K to
L is unique. Note that a unibranched extension is automatically algebraic, since
every transcendental extension always admits several extensions of the valuation.

If (L|K, v) is a finite unibranched extension, then by the Lemma of Ostrowski
[32, Corollary to Theorem 25, Section G, p. 78]),

(13) [L : K] = p̃ν · (vL : vK)[Lv : Kv] ,

where ν is a non-negative integer and p̃ the characteristic exponent of Kv, that
is, p̃ = charKv if it is positive and p̃ = 1 otherwise. The factor d(L|K, v) := p̃ν

is the defect of the extension (L|K, v). We call (L|K, v) a defect extension if
d(L|K, v) > 1, and a defectless extension if d(L|K, v) = 1. Nontrivial defect
only appears when charKv = p > 0, in which case p̃ = p. A valued field (K, v)
is henselian if it satisfies Hensel’s Lemma, or equivalently, if all of its algebraic
extensions are unibranched. A henselian field (K, v) is called a defectless field if
all of its finite extensions are defectless.

Throughout this paper, when we talk of a defect extension (L|K, v) of prime
degree, we will always tacitly assume that it is a unibranched extension. Then it
follows from (13) that [L : K] = p = charKv and that (vL : vK) = 1 = [Lv : Kv];
the latter means that (L|K, v) is an immediate extension, i.e., the canonical
embeddings vK ↪→ vL and Kv ↪→ Lv are onto.

In order to reduce arbitrary finite defect extensions to purely inseparable exten-
sions and Galois extensions of degree p = charKv > 0, we fix an extension of v
from K to its algebraic closure K̃. The absolute ramification field of (K, v)
(with respect to the chosen extension of v), denoted by (Kr, v), is the ramification
field of the normal extension (Ksep|K, v). If a ∈ K̃ is such that (K(a)|K, v) is
a defect extension, then (Kr(a)|Kr, v) is a defect extension with the same defect
(see [20, Proposition 2.12]). On the other hand, Ksep|Kr is a p-extension (see [15,
Lemma 2.7]), so Kr(a)|Kr is a tower of purely inseparable extensions and Galois
extensions of degree p.
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2.2. Final segments.

We recall basic notions and facts connected with final segments in ordered abelian
groups, and how they relate to elements in valued field extensions. For the details
and proofs see Section 2.3 of [15] and Section 3 of [22].

Take a totally ordered set (T,<). For a nonempty subset S of T and an element
t ∈ T we will write t < S if t < s for every s ∈ S, and similarly for > in place of
<. A set S ⊆ T is called an initial segment of T if for each s ∈ S every t < s
also lies in S. Similarly, S ⊆ T is called a final segment of T if for each s ∈ S
every t > s also lies in S. By definition, final and initial segments are convex. If S
is a final segment of T , then T \ S is an initial segment, and vice versa.

For a subset M of T we define

M+ := {t ∈ T | t > M} and M− := {t ∈ T | ∃m ∈M t ≥ m} .
Take a subset S in an ordered abelian group Γ, an element γ ∈ Γ, and n ∈ N.

We set −S := {−s | s ∈ S}, γ + S := {γ + s | s ∈ S}, and nS := {ns | s ∈ S}.
We note that if S is a final segment of Γ, then −S is an initial segment of Γ, and
γ + S is a final segment of Γ. If Γ is divisible by n and S is a final segment of Γ,
then also nS is a final segment of Γ. Further, we note that

(14) (γ + S)+ = γ + S+ and (γ + S)− = γ + S− .

2.3. Strongly convex subgroups.

Lemma 2.1. Take an ordered abelian group (Γ, <), a nonempty final segment Σ
of Γ≥0 := {γ ∈ Γ | γ ≥ 0}, and m ∈ N, m ≥ 2. Assume that Σ 6= Γ≥0. Then the
following assertions are equivalent:

a) there is a convex subgroup ∆ of Γ such that Σ = Γ≥0 \∆,

b) Σ = (mΣ)−.

Proof. a)⇒b): Since Σ is a final segment of Γ≥0, we know that (mΣ)− ⊆ Σ. Hence
in order to prove that Σ = (mΣ)−, we have to show the reverse inclusion. For this,
we will show that for every α ∈ Σ there is β ∈ Σ such that mβ < α. The equality
Σ = Γ≥0 \∆ implies that Σ = {γ ∈ Γ | γ > ∆}, hence we have α+ ∆ > 0 in Γ/∆.
As Γ/∆ has no smallest positive element, the positive elements cannot be bounded
away from 0 by an element in the divisible hull of Γ/∆, and so there must be β ∈ Γ
such that 0 < β+ ∆ < 1

m
(α+ ∆). This implies mβ+ ∆ < α+ ∆, whence mβ < α,

as desired.

b)⇒a): Since Σ 6= Γ≥0 is a nonempty final segment of Γ≥0, we see that Γ≥0 \ Σ
is nonempty and convex. We prove that Γ≥0 \ Σ is additively closed. Take γ, γ′ ∈
Γ≥0 \ Σ; we may assume that γ′ ≤ γ. Hence 0 ≤ γ + γ′ ≤ mγ. Suppose that
mγ ∈ Σ. Then by the statement of b), there is β ∈ Σ such that mβ ≤ mγ,
whence β ≤ γ. From the convexity of Σ it follows that γ ∈ Σ, contradiction. Thus
mγ ∈ Γ≥0 \ Σ, and by the convexity of Γ≥0 \ Σ, we obtain that γ + γ′ ∈ Γ≥0 \ Σ.
This proves our claim.

Since Γ≥0 \Σ is convex, also ∆ := {γ,−γ | γ ∈ Γ≥0 \Σ} is convex. Since Γ≥0 \Σ
is additively closed, it follows by convexity that ∆ is additively closed, hence a
convex subgroup of Γ.
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Take any α ∈ Γ such that 0 < α + ∆. It follows that 0 < α /∈ ∆, hence
α ∈ Σ. Take β ∈ Σ such that mβ ≤ α. We have that β + ∆ < mβ + ∆
since otherwise, (m − 1)β ∈ ∆ and by convexity, β ∈ ∆, contradiction. Thus
0 < β + ∆ < mβ + ∆ ≤ α+ ∆. This shows that α+ ∆ is not the smallest positive
element of Γ/∆. As α + ∆ was arbitrary, we conclude that Γ/∆ has no smallest
positive element. �

2.4. Immediate and unibranched extensions.

Take a valued field (K, v). A henselization of (K, v) is an algebraic extension
of (K, v) which admits a valuation preserving embedding in every other henselian
extension of (K, v). Henselizations always exist and are unique up to valuation
preserving isomorphism over K; therefore we will talk of the henselization of (K, v)
and denote it by (K, v)h = (Kh, vh). The henselization of (K, v) is an immediate
separable-algebraic extension.

In what follows, we will need the following result, which is [3, Lemma 2.1]:

Lemma 2.2. A finite extension (L|K, v) is unibranched if and only if L|K is
linearly disjoint from some (equivalently, every) henselization of (K, v).

Let us consider an immediate but not necessarily algebraic extension (K(x)|K, v).
Then by [15, Theorem 2.19] the set v(x − K) ⊆ vK is a final segment of vK; in
particular, it has no maximal element. If g ∈ K[X] and there is α ∈ v(x−K) such
that for all c ∈ K with v(x − c) ≥ α the value vg(c) is constant, then we will say
that the value of g is ultimately fixed over K. We call (K(x)|K, v) pure in
x if the value of every g(X) ∈ K[X] of degree smaller than [K(x) : K] is ultimately
fixed over K. Note that we set [K(x) : K] =∞ if x is transcendental over K.

Lemma 2.3. Every unibranched immediate extension (K(x)|K, v) of prime degree
is pure in x.

Proof. By the Lemma of Ostrowski, every such extension must have a defect equal
to its degree, which must be equal to its residue characteristic p > 0.

In the case of a henselian field (K, v), the assertion follows from [22, Proposition
6.5]. We have to consider the general case. Since (K(x)|K, v) is unibranched,
Lemma 2.2 shows thatK(x)|K is linearly disjoint fromKh|K. Hence (Kh(x)|Kh, v)
is a unibranched extension of degree p, and it is immediate since Kh(x) = K(x)h

and henselizations are immediate extensions. By what we have said above, the
extension (Kh(x)|Kh, v) is pure.

Further, it follows from [17, Theorem 2] that there is no element b ∈ Kh such
that v(x − b) > v(x − K). Thus, if there were a polynomial g ∈ K[X] of degree
less than p whose value is not ultimately fixed over K, then its value would also
not be ultimately fixed over Kh, contradiction. �

The next lemma follows from [13, Lemma 8] and [22, Lemma 5.2]. Note that
if (K(x)|K, v) is an extension such that v(x − K) has no maximal element, then
by the proof of [13, Theorem 1], x is limit of a pseudo Cauchy sequence in (K, v)
without limit in K, or equivalently, by [22, part a) of Lemma 4.1] its approximation
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type over (K, v) is immediate. We use the Taylor expansion

(15) f(X) =
n∑
i=0

∂if(c)(X − c)i

where ∂if denotes the i-th Hasse-Schmidt derivative of f .

Lemma 2.4. Take an immediate extension (K(x)|K, v) that is pure in x. Let
p be the characteristic exponent of Kv. Then for every nonconstant polynomial
f ∈ K[X] of degree smaller than [K(x) : K] there is some γ ∈ v(x−K) such that
for all c ∈ K with v(x− c) ≥ γ and all i with 1 ≤ i ≤ deg f ,

the values v∂if(c) are fixed, equal to v∂if(x), and

the values v∂if(c) + i · v(x− c) are pairwise distinct.

2.5. Artin-Schreier and Kummer extensions.

Every Galois extension of degree p of a field K of characteristic p > 0 is an Artin-
Schreier extension, that is, generated by an Artin-Schreier generator ϑ which
is the root of an Artin-Schreier polynomial Xp −X − b with b ∈ K. For every
c ∈ K, also ϑ − c is an Artin-Schreier generator as its minimal polynomial is
Xp − X − b + cp − c. Every Galois extension of prime degree n of a field K of
characteristic different from n which contains all n-th roots of unity is a Kummer
extension, that is, generated by a Kummer generator η which satisfies ηn ∈ K.
For these facts, see [23, Chapter VI, §6].

A 1-unit in a valued field (K, v) is an element of the form u = 1+b with b ∈MK ;
in other words, u is a unit in OK with residue 1. Take a Kummer extension
(L|K, v) of degree p of fields of characteristic 0 with any Kummer generator η.
Assume that vη ∈ vK, so that there is c1 ∈ K such that vc1 = −vη, whence
vc1η = 0. Assume further that c1ηv ∈ Kv, so that there is c2 ∈ K such that
c2v = (c1ηv)−1. Then vc2c1η = 0 and c2c1ηv = 1. Furthermore, K(c2c1η) = K(η)
and (c2c1η)p = cp2c

p
1η
p ∈ K. Hence c2c1η is a Kummer generator of (L|K, v) and a 1-

unit. This shows that in particular, if (L|K, v) is an immediate Kummer extension,
it always admits a Kummer generator which is a 1-unit.

We note that if η is a 1-unit and if v(η − c) > vη = 0, then also c and c−1 are
1-units; conversely, if c is a 1-unit, then v(η − c) > 0.

We will need the following facts.

Lemma 2.5. Take a valued field (K, v), n ∈ N, and a primitive n-th root of unity
ζ ∈ K. Then

(16)
n−1∏
i=1

(1− ζ i) = n .

If in addition n is prime, then

(17) v(1− ζ) =
vn

n− 1
.

Proof. Let f(X) = Xn − 1 =
∏n

i=1(X − ζ i). Then f ′(X) = nXn−1 and
∏n−1

i=1 (1−
ζ i) = f ′(1) = n. This proves equation (16).
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If n is prime, then all powers ζk 6= 1 are also primitive n-th roots of unity. We
may assume that ζ is chosen among the primitive n-th roots of unity such that
v(1− ζ) is maximal. Take any k ∈ N such that ζk 6= 1. Then

1− ζk = (1− ζ)(1 + ζ + . . .+ ζk−1) .

Since vζ = 0, we have v(1 + ζ + . . .+ ζk−1) ≥ 0, whence v(1− ζk) ≥ v(1− ζ). By
our choice of ζ, this yields v(1 − ζk) = v(1 − ζ). Consequently, all factors of the
product in (16) have equal value. This proves equation (17). �

2.6. Ideals and final segments.

Take a valued field (L, v). The function

(18) v : I 7→ vI := {vb | 0 6= b ∈ I}
is an order preserving bijection from the set of all proper ideals of OL onto the set
of all final segments of vL>0 (including the final segment ∅). The set of these final
segments is linearly ordered by inclusion, and the function (18) is order preserving:
J ⊆ I holds if and only if vJ ⊆ vI holds. The inverse of the above function is the
order preserving function

(19) Σ 7→ IΣ := (a ∈ L | va ∈ Σ) = {a ∈ L | va ∈ Σ} ∪ {0} .
The following facts from general valuation theory are well known:

Lemma 2.6. The following statements are equivalent:

a) IΣ is a prime ideal of OL ,

b) Σ = vL≥0 \H for some convex subgroup H of vL.

If b) holds, then IΣ =MvH for the coarsening vH of v on L whose value group is
vL/H.

We note that for each S ⊂ vL≥0, we have the following equalities of OL-ideals:

(20) (a ∈ L | va ∈ S) = (a ∈ L | va ∈ S−) = IS− .

Lemma 2.7. Take a nonempty final segment Σ of vL≥0 and m ∈ N.

1) We have

ImΣ = (b ∈ L | vb ∈ mΣ) = (b ∈ L | vb ∈ (mΣ)−) .

2) We have IΣ = ImΣ if and only if Σ = (mΣ)−.

Proof. 1): We have

ImΣ = (am | a ∈ IΣ) = (am | a ∈ L and va ∈ Σ) = (b ∈ L | vb ∈ mΣ)

= (b ∈ L | vb ∈ (mΣ)−) ,

where the fourth equality follows from (20), and the third equality is seen as follows.
The inclusion ⊆ is obvious. Assume that b ∈ L with vb ∈ mΣ, i.e., there is α ∈ Σ
such that mα = vb. Choose a ∈ L such that va = α. Then vam = vb, hence
b ∈ (am | a ∈ L and va ∈ Σ). This proves the inclusion ⊇.

2): This follows immediately from part 1). �
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2.7. Ramification jumps and ramification ideals.

Take a valued field (K, v). Assume that L|K is a Galois extension, and let G =
Gal (L|K) denote its Galois group. For proper ideals I of OL we consider the
(upper series of) higher ramification groups

(21) GI :=

{
σ ∈ G

∣∣∣∣ σb− bb
∈ I for all b ∈ L×

}
(see [32, §12]). Note that GML

is the ramification group of (L|K, v). For every
ideal I of OL , GI is a normal subgroup of G ([32, (d) on p. 79]). The function

(22) ϕ : I 7→ GI

preserves ⊆, that is, if I ⊆ J , then GI ⊆ GJ . As OL is a valuation ring, the
set of its ideals is linearly ordered by inclusion. This shows that also the higher
ramification groups are linearly ordered by inclusion. Note that in general, ϕ will
neither be injective nor surjective as a function to the set of normal subgroups of G.

Using the function (19), the higher ramification groups can be represented as

GΣ := GIΣ =

{
σ ∈ G

∣∣∣∣ v σb− bb
∈ Σ ∪ {∞} for all b ∈ L×

}
,

where Σ runs through all final segments of vL>0.
Like the function (22), also the function Σ 7→ GΣ is in general not injective. We

call Σ a ramification jump if

Σ′ ( Σ ⇒ GΣ′ ( GΣ

for all final segments Σ′ of vL>0. If Σ is a ramification jump, then IΣ is called
a ramification ideal. It follows from the definition that an ideal I of OL is a
ramification ideal if and only if for some subgroup G′ of G, I is the smallest ideal
such that G′ = GI (cf. [9, §21]).

In this paper we are particularly interested in the case where E = (L|K, v) is
a Galois extension of prime degree p. Then G = Gal (L|K) is a cyclic group of
order p and thus has only one proper subgroup, namely {id}, and this subgroup
is equal to GΣ for Σ = ∅. If in this case G itself is the ramification group of the
extension, then there must be a unique ramification jump ΣE , and we will call
IE = IΣE the ramification ideal of (L|K, v). As we will show in the next section,
ramification jump and ramification ideal carry important information about the
extension (L|K, v).

2.8. Galois defect extensions of prime degree.

The following is part of Theorem 3.5 of [20]:

Theorem 2.8. Take a Galois defect extension E = (L|K, v) of prime degree with
Galois group G. Then G is the ramification group of E. The set Σσ does not depend
on the choice of the generator σ of G. Writing ΣE for Σσ , we have that the final
segment ΣE of vK>0 is the unique ramification jump of the extension E. Further,
IE = IΣE is the unique ramification ideal of the extension E.
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If (L|K, v) is an Artin-Schreier defect extension with any Artin-Schreier gener-
ator ϑ, then

(23) ΣE = −v(ϑ−K) .

If K contains a primitive root of unity and (L|K, v) is a Kummer extension with
Kummer generator η of value 0, then

(24) ΣE =
1

p− 1
vp− v(η −K) .

Corollary 2.9. Let the assumptions be as in the preceding theorem. Then for every
c ∈ K,

v(ϑ− c) < 0 and v(η − c) <
1

p− 1
vp .

Proof. Our assertions follow from (23), (24), and the fact that ΣE ⊆ vK>0 by
Theorem 2.8. �

Proposition 2.10. Assume that the extension E = (L|K, v) satisfies (8).

1) The following assertions are equivalent:

a) the extension E has independent defect,

b) ΣE = (pΣE)
− ,

c) IpE = IE .

d) (IE ∩K)p = IE ∩K.

If vK is p-divisible, then these properties are also equivalent to ΣE = pΣE .

2) If E has independent defect, then the corresponding convex subgroup HE of vL
does not contain vp.

Proof. 1): By definition, E has independent defect if and only if ΣE = vL≥0 \ HE
for some strongly convex subgroup HE of vL. By Lemma 2.1, this holds if and only
if ΣE = (pΣE)

− . By part 2) of Lemma 2.7, this in turn is equivalent to IpE = IE
since IE = IΣE . It is also equivalent to (IE ∩K)p = IE ∩K because vL = vK and
therefore, IE ∩K = (a ∈ K | va ∈ ΣE).

The last assertion of part 1) holds since if vK is p-divisible, then pΣE is again a
final segment, whence (pΣE)

− = pΣE .

2): If charK = p, then vp = ∞ and the assertion is trivial. In the mixed charac-
teristic case, where E is a Kummer extension and admits a Kummer generator η of
value 0, we know that 0 = v(η−0) ∈ v(η−K), hence also 0 ∈ −v(η−K). It follows
from (24) that 1

p−1
vp ∈ ΣE . Therefore, vp /∈ HE since otherwise 1

p−1
vp ∈ HE by

convexity; but this is a contradiction. �

3. Generation of immediate unibranched extensions of valuation
rings

In this section we will assume that (L|K, v) is an immediate extension, and in
various cases determine generators for the valuation ring OL as an OK-algebra.
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3.1. The general case.

In this section we consider an immediate but not necessarily algebraic extension
(K(x)|K, v). Then the set v(x − K) has no maximal element. For this and the
definition of “pure extension”, see Section 2.4.

For every γ ∈ vK we choose tγ ∈ K such that vtγ = −γ. For every c ∈ OK
we know that v(x − c) ∈ vK since the extension is immediate, so we may set
tc := tv(x−c) and

xc := tc(x− c) ∈ O×K(x) .

We use the Taylor expansion (15).

Lemma 3.1. Assume that the immediate extension (K(x)|K, v) is pure. Then for
every g(x) ∈ OK(x) ∩K[x] there is c ∈ K such that g(x) ∈ OK [xc]. If in addition
K(x)|K is algebraic, then

OK(x) =
⋃
c∈K

OK [xc] .

Proof. From Lemma 2.4 we infer that whenever for c ∈ K the value v(x − c) is
large enough, then the values v∂ig(c)(x− c)i, 0 ≤ i ≤ deg g, are pairwise distinct.
It follows that

vg(x) = min
i
v∂ig(c)(x− c)i = min

i
v∂ig(c)t−ic x

i
c .

Since g(x) ∈ OK(x) and vxc = 0, we find that ∂ig(c)t−ic ∈ OK for all i and therefore,
g(x) ∈ OK [xc].

If K(x)|K is algebraic, then K(x) = K[x] and the last assertion of our lemma
follows from what we have already proved. �

Lemma 3.2. Take c1, c2 ∈ K. If v(x − c1) = v(x − c2), then OK [xc1 ] = OK [xc2 ].
If v(x− c1) < v(x− c2), then OK [xc1 ] ⊆ OK [xc2 ], and if in addition xc1 is integral
over K, then OK [xc1 ] ( OK [xc2 ].

Proof. Assume that v(x− c1) = v(x− c2). Then tc1 = tc2 and

v(c1 − c2) ≥ min{v(x− c1), v(x− c2)} = −vtc1 ,
whence tc1(c1 − c2) ∈ OK . It follows that

OK [xc1 ] = OK [xc1 + tc1(c1− c2)] = OK [tc1(x− c2)] = OK [tc2(x− c2)] = OK [xc2 ] .

Now assume that v(x−c1) < v(x−c2). Then v(c1−c2) = min{v(x−c1), v(x−c2)} =
v(x−c1) = −vtc1 < −vtc2 , whence tc1/tc2 ∈MK and tc1(c1−c2) ∈ O×K . This shows
that

(25) xc1 =
tc1
tc2
· tc2(x− c2) + tc1(c2 − c1) ∈ OK [xc2 ] ,

whence OK [xc1 ] ⊆ OK [xc2 ].

Suppose that xc2 ∈ OK [xc1 ] and xc1 is integral over K. Then xc2 can be written
in the form

xc2 = a0 + a1xc1 + a2x
2
c1

+ . . .+ ap−1x
n−1
c1

with n = [K(x) : K] and coefficients in OK . Since the powers of xc1 appearing in
this expression form a basis of K(x)|K, this representation of xc2 is unique even
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if one allows the coefficients to be in K. However, according to (25) we can write
xc1 = axc2 + b, where a ∈MK and b ∈ O×K . This yields the unique representation

xc2 = a−1(xc1 − b) ,
which does not have its coefficients inOK . This contradiction shows thatOK [xc1 ] 6=
OK [xc2 ]. �

From Lemmas 3.1 and 3.2, we obtain:

Proposition 3.3. Assume that the immediate algebraic extension (K(x)|K, v) is
pure. Then the rings OK [xc], c ∈ OK , form a chain under inclusion whose union
is OK(x) .

3.2. The case of immediate Artin-Schreier and Kummer extensions.

An extension of prime degree is a defect extension if and only if it is immediate
and unibranched.

Theorem 3.4. 1) Assume that (L|K, v) is an Artin-Schreier defect extension with
Artin-Schreier generator ϑ. The rings OK [ϑc], where ϑc = tv(ϑ−c)(ϑ − c) and c
runs through all elements of K, form a chain under inclusion whose union is OL .
The same holds for the rings OK [tvϑϑ] when ϑ runs through all Artin-Schreier
generators of the extension.

For c1, c2 ∈ K,

(26) OK [ϑc1 ] ( OK [ϑc2 ] ⇔ v(ϑ− c1) < v(ϑ− c2) .

2) Assume that (L|K, v) is a Kummer defect extension of degree p and that η is a
Kummer generator which is a 1-unit. The rings OK [ηc], where ηc = tv(η−c)(η − c)
and c runs through all 1-units of K, form a chain under inclusion whose union is
OL . If c1, c2 ∈ K are 1-units, then

(27) OK [ηc1 ] ( OK [ηc2 ] ⇔ v(η − c1) < v(η − c2) .

Proof. From Lemma 2.3 and Proposition 3.3 we know that OL is the union of the
chain (OK [ϑc])c∈K in the Artin-Schreier extension case, and of the chain (OK [ηc])c∈K
in the Kummer extension case. Further, (26) and (27) follow from Lemma 3.2.

It remains to prove the additional assertion for the Artin-Schreier extension case.
By [15, Lemma 2.26], ϑ′ ∈ L is another Artin-Schreier generator of L|K if and only
if ϑ′ = iϑ− c for some i ∈ F×p and c ∈ K. In particular, ϑ− c is an Artin-Schreier

generator for all c ∈ K. Moreover, if ϑ′ = iϑ−c, then vϑ′ = v(iϑ−c) = v(ϑ− i−1c)
and therefore, tvϑ′ = ti−1c and

OK [tvϑ′ϑ
′] = OK [tvϑ′i

−1ϑ′] = OK [tv(ϑ−i−1c)(ϑ− i−1c)] = OK [ϑi−1c] .

This shows that the ring OK [tvϑ′ϑ
′] is already a member in the chain constructed

above. �

Let us consider the Artin-Schreier case a bit further, keeping the assumptions
of part 1) of Theorem 3.4. We set tc := tv(ϑ−c). Take any elements c1, c2 ∈ K. It
follows from (25) that

(28) ϑc1 =
tc1
tc2
ϑc2 + tc1(c2 − c1) .
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If v(ϑ − c1) ≤ v(ϑ − c2), then tc1/tc2 ∈ OK and tc1(c2 − c1) ∈ OK , as shown in
the proof of Lemma 3.2.

Now we turn to the Kummer case, keeping the assumptions of part 2) of
Theorem 3.4. We choose a primitive p-th root ζp of unity and set

χ := (ζp − 1)−1 .

According to equation (17), the element χ satisfies:

(29) vχ = − 1

p− 1
vp .

Hence by Corollary 2.9,

vχ(η − c) < 0

for all c ∈ K. In the following we will use the abbreviations

Tc := tvχ(η−c) and η<c> := Tcχ(η − c)
in order to simplify our formulas; we observe that

(30) vTc =
1

p− 1
vp− v(η − c) > 0 .

Corollary 3.5. Assume that (L|K, v) is a Kummer defect extension of degree p.
Then for every Kummer generator η which is a 1-unit, the rings OK [η<c>], where
c runs through all 1-units of K, form a chain under inclusion whose union is OL .

We have that

(31) OK [η<c>] = OK [ηc] .

Hence if c1 and c2 are 1-units, then

(32) OK [η<c1>] ( OK [η<c2>] ⇔ v(η − c1) < v(η − c2) .

Proof. It suffices to prove (31). We compute:

v
Tc

χ−1tc
= v

tvχ(η−c)

tvχtv(η−c)
= 0 .

Hence,

OK [η<c>] = OK
[

Tc
χ−1tc

χ−1tc χ(η − c)
]

= OK [tc(η − c)] = OK [ηc] .

Now the assertion of our corollary follows from part 2) of Theorem 3.4. �

Take any elements c1, c2 ∈ K. Similarly as in the Artin-Schreier case, one derives
the equation

(33) η<c1> =
Tc1
Tc2

η<c2> + Tc1χ(c2 − c1) .

Assume that v(η − c1) ≤ v(η − c2). Then vTc1 ≥ vTc2 and

v(c2 − c1) ≥ min{v(η − c1), v(η − c2)} = v(η − c1) = −vTc1χ ,
whence Tc1/Tc2 ∈ OK and Tc1χ(c2 − c1) ∈ OK .
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3.3. Values of derivatives of minimal polynomials.

In the case of Artin-Schreier extensions and Kummer extensions (K(x)|K, v) of
prime degree we have sufficient information about the minimal polynomials f of the
various generators x we have worked with in the previous sections, or equivalently,
about their conjugates, to work out the values vf ′(x). In order to do this, we can
either compute f ′ explicitly, or we can use the formula

(34) f ′(x) =
∏

σ∈G\{id}

(x− σx) ,

where G is the Galois group of K(x)|K.
We keep the notations from the previous sections.

3.3.1. Artin-Schreier extensions.

Take an Artin-Schreier polynomial f with ϑ as its root. Then f(X) = Xp −X −
ϑp + ϑ and f ′(X) = −1, whence

(35) f ′(ϑ) = −1 .

This is also obtained from (34) since {ϑ−σϑ | σ ∈ G\{id}} = F×p and the product
of all elements of F×p is −1.

For t ∈ K×, denote by ft the minimal polynomial of tϑ. Then

(36) f ′t(tϑ) =
∏

σ∈G\{id}

(tϑ− σtϑ) = tp−1f ′(ϑ) = −tp−1 .

Lemma 3.6. Take an Artin-Schreier defect extension E = (L|K, v) of prime degree
p with Artin-Schreier generator ϑ. Denote by gc the minimal polynomial of ϑc .
Then the OL-ideal (g′c(ϑc) | c ∈ K) is equal to

Ip−1

where

(37) I = (tc | c ∈ K) = (a ∈ L | va ∈ −v(ϑ−K)) = IE

is the ramification ideal of the extension (L|K, v).

Proof. Applying (36) to ϑc = tc(ϑ − c) and keeping in mind that ϑ − c is an
Artin-Schreier generator, we obtain:

(38) g′c(ϑc) = −tp−1
c .

This shows that (g′c(ϑc) | c ∈ K) = (tc | c ∈ K)p−1 = Ip−1 .
The second equality in (37) holds since vtc = −v(ϑ− c) by definition. The third

equality follows from equation (23) of Theorem 2.8. �



GALOIS EXTENSIONS WITH INDEPENDENT DEFECT 19

3.3.2. Kummer extensions.

Take f(X) = Xp − ηp. Then f ′(X) = pXp−1, whence

(39) f ′(η) = pηp−1 .

This is also obtained from equations (34) and (16) using that {ση | σ ∈ G} =
{ζ ipη | i ∈ {0, . . . , p− 1}}.

Lemma 3.7. Take a Kummer defect extension E = (L|K, v) of prime degree p
with Kummer generator η which is a 1-unit. Denote by fc the minimal polynomial
of η<c> over K. Then the OL-ideal (f ′c(η<c>) | c ∈ K a 1-unit) is

Ip−1

where

(40) I = (Tc | c ∈ K) =

(
a ∈ L | va ∈ 1

p− 1
vp− v(η −K)

)
= IE

is the ramification ideal of the extension (L|K, v).

Proof. We use (34) to compute:

f ′c(η<c>) =
∏
σ∈G

(η<c> − ση<c>) =
∏
σ∈G

Tcχ(η − ση) = (Tcχη)p−1

p−1∏
i=1

(1− ζ ip) ,

whence by equations (16) and (29), and the fact that vη = 0,

(41) f ′c(η<c>) = p(Tcχη)p−1 = T p−1
c u

with u a unit in OL . This shows that

(f ′c(η<c>) | c ∈ K a 1-unit) = (Tc | c ∈ K)p−1 = Ip−1 .

The second equality in (40) follows from (30). The assertion that I = IE in the
Kummer case follows from equation (24) of Theorem 2.8. �

4. Kähler differentials and their annihilators for algebraic field
extensions

4.1. Proof of Theorem 1.1.

Let (L|K, v) be a unibranched algebraic field extension. Let A ⊆ K be a normal
domain whose quotient field is K. Assume that z ∈ L is integral over A and let
f(X) be the minimal polynomial of z over K. Then f(X) ∈ A[X] (see [31, Theorem
4, page 260]). By the Gauss Lemma (see [28, Theorem A]), A[z] ∼= A[X]/(f(X)).
Thus,

(42) ΩA[z]|A ∼= [A[X]/(f(X), f ′(X))]dX ∼= [A[z]/(f ′(z))]dX

by [24, Example 26.J, page 189] and [24, Theorem 58, page 187]. There is a
canonical derivation dA[z]|A : A → ΩA[z]|A defined by g(z) 7→ g′(z)dX for g(X) ∈
A[X].

We will now proced under the assumptions of Theorem 1.1. Before proving the
theorem, we derive a formula that we will need in its proof. Let n = [L : K]. Then
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for all α ∈ S, n = deg hα(X) where hα(X) is the minimal polynomial of bα over
K. Suppose that α < β. Then(

aβ
aα

)n
hα

(
aα
aβ
X + cα,β

)
is a monic polynomial of degree n in K[X] which has bβ as a root, so it is the
minimal polynomial hβ(X) of bβ. By the chain rule,

dhβ
dXβ

(bβ) =

(
aβ
aα

)n
dhα
dX

(bα)

(
aα
aβ

)
,

and so

(43) h′α(bα) =

(
aα
aβ

)n−1

h′β(bβ).

Proof of Theorem 1.1:
From the natural A-algebra isomorphisms A[bα] ∼= A[Xα]/(hα(Xα)), where hα(Xα)
is the minimal polynomial of bα over K, we have that for α ≤ β, the natural
inclusion of A-algebras A[bα] ⊂ A[bβ] is induced by sending bα to aα

aβ
bβ + cα,β.

By (42), for α ∈ S we have a natural isomorphism of A[bα]-modules

ΩA[bα]|A ∼= [A[bα]/(h′α(bα))] dXα ,

and so
ΩA[bα]|A ⊗A[bα] B ∼= [B/(h′α(bα))] dXα .

For α < β, by the universal property of derivations (Proposition on page 182 [24]),
there is a unique B-module homomorphism

λα,β : ΩA[bα]|A ⊗A[bα] B → ΩA[bβ ]|A ⊗A[bβ ] B

such that there is a commutative diagram of B-module homomorphisms

ΩA[bα]|A ⊗A[bα] B
λα,β→ ΩA[bβ ]|A ⊗A[bβ ] B

↑ ↑
A[bα]⊗A[bα] B → A[bβ]⊗A[bβ ] B

where the vertical arrows are the respective maps

dA[bα]/A ⊗ 1 : A[bα]⊗A[bα] B → ΩA[bα]|A ⊗A[bα] B

and
dA[bβ ]/A ⊗ 1 : A[bβ]⊗A[bβ ] B → ΩA[bβ ]|A ⊗A[bβ ] B.

Suppose that z ∈ A[bα]. Then there exists g(Xα) ∈ A[Xα] such that z = g(bα),

hence dA[bα]/A(z) = dg
dXα

(bα)dXα. We have that z =
(
g(aα

aβ
Xβ + cα,β)

)
(bβ) so that

by the chain rule,

dA[bβ ]/A(z) =

(
d

dXβ

g

(
aα
aβ
Xβ + cα,β

))
(bβ)dXβ =

dg

dXα

(bα)
aα
aβ
dXβ.

Thus λα,β is the B-module homomorphism defined by mapping dXα to aα
aβ
dXβ .

In order to compute the direct limit of the directed system of B-module ho-
momorphisms λα,β : ΩA[bα]|A ⊗A[bα] B → ΩA[bβ ]|A for α < β, we will introduce an
equivalent directed system, which is a little simpler. For α ∈ S, let Mα be the
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B-module Mα = B/(h′α(bα)). The Mα are a family of B-modules. We have iso-
morphisms of B-modules τα : ΩA[bα]|A ⊗A[bα] B → Mα defined by mapping dXα

to 1.
For all α, β ∈ S with α < β, we have commutative diagrams of B-module

homomorphisms

ΩA[bα]|A ⊗A[bα] B
λα,β→ ΩA[bβ ]|A ⊗A[bβ ] B

↓ τα ↓ τβ
Mα

τβλα,βτ
−1
α→ Mβ.

and we see that τβλα,βτ
−1
α is just multiplication by aα

aβ
. Thus the directed systems

ΩA[bα]|A ⊗A[bα] B
λα,β→ ΩA[bβ ]|A ⊗A[bβ ] B for α < β and Mα

aα
aβ→Mβ for α < β

are equivalent.
We have isomorphisms of B-modules

ΩB|A ∼= lim
→

[
ΩA[bα]|A ⊗A[bα] B

] ∼= lim
→
Mα

by [8, Corollary 16.7, page 394], where the direct limits are over α ∈ S.
Write Mα = Rα/Tα where Rα is the directed system of B-modules Rα = B

for α ∈ S, with B-module homomorphisms aα
aβ

: Rα → Rβ for α < β, and Tα
is the directed system of B-modules Tα = h′α(bα)Rα for α ∈ S, with B-module
homomorphisms aα

aβ
: Tα → Tβ for α ≤ β. We have short exact sequences of

B-modules

0→ Tα → Rα →Mα → 0

which are compatible with multiplication by aα
aβ

for α < β. Thus

lim
→
Mγ
∼= lim
→
Rγ/ lim

→
Tγ

by [27, Theorem 2.18].

We now compute lim
→
Rγ . For α ∈ S, we have B-module homomorphisms Rα

aα→
B which give commutative diagrams

Rα

aα
aβ→ Rβ

aα ↘ ↙ aβ
B

for α < β. By the universal property of direct limits ([5, Proposition 11.1] or [2,
Exercise 18, page 33]) there exists a unique B-module homomorphism Ψ : lim

→
Rγ →

B giving commutative diagrams of B-module homomorphisms

Rα
aα
aβ
↓ ↘ φα

Rβ

φβ→ lim
→
Rγ

aβ ↓ ↙ Ψ
B
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for α < β. Here φα : Rα → lim
→
Rγ are the canonical maps of the direct product.

As we will now show, it follows from some standard properties of direct limits
([5, Proposition 11.3] or [2, Exercise 15, page 33]) and some diagram chasing that
as B-ideals,

lim
→
Rγ
∼= (aα | α ∈ S) = U .

Suppose that u ∈ lim
→
Rγ. Then there exist α ∈ S and b ∈ Rα = B such that

u = φα(b). Thus Ψ(u) = aαb ∈ U . Given α ∈ S, Ψ(φα(1)) = aα. Thus the image
of Ψ is U . Suppose that 0 6= u ∈ lim

→
Rγ. Then there exist α ∈ S and 0 6= b ∈ Rα

such that φα(b) = u so Ψ(u) = aαb 6= 0. Thus Ψ is an isomorphism and so

lim
→
Rγ
∼= U.

Similarly,

lim
→
Tγ ∼= (aαh

′
α(bα) | α ∈ S).

By (43), we have that for α, β < γ,

aαh
′
β(bβ) =

aα
aγ

(
aβ
aγ

)n−1

aγh
′
γ(bγ).

Thus (aαh
′
α(bα) | α ∈ S) = UV and so ΩB|A ∼= U/UV . �

If we choose any γ ∈ S, then we will still have⋃
γ≤α∈S

A[bα] = B

since (A[bα])α∈S is an increasing chain. Hence we can always assume that S has a
minimal element.

From now on we consider the case of A = OK and B = OL . Assume that

α ≤ β. Then aβ | aα, so that aα
aβ
,
(
aα
aβ

)n−1

∈ OK . From (1) and (43) it thus

follows that bα ∈ (bβ) and h′α(bα) ∈ (h′β(bβ)). This shows that OL-ideals (bα)α∈S
and (h′α(aα))α∈S form increasing chains.

Now let γ be the minimal element of S. Using (43) with β = γ, we obtain:

(44) V = (h′α(bα) | α ∈ S) =

((
aα
aγ

)n−1

h′γ(bγ) | α ∈ S

)
=

h′γ(bγ)

an−1
γ

Un−1 .

This proves (3).

4.2. The annihilator.

We take an arbitrary valued field (L, v) with valuation ring OL , an OL-ideal U ,
an element b ∈ OL , and n ≥ 2. We set V := bUn−1. We will now compute the
annihilator of the OL-ideal U/UV . We note that V is contained in annU/UV ,
which is the largest OL-ideal V ′ such that UV ′ = UV .

We use the order preserving bijection (18). We have vIn = nvI; recall that
for every final segment S of vL, nS is the n-fold sum of S, which is equal to the
smallest final segment containing nα for all α ∈ S. Thus, vV = vb+(n−1)vU and
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vUV = vb + nvU . Note that for each α ∈ vL there are two associated principal
final segments:

α− := {α}− = {β ∈ vL | β ≥ α} and α+ := {α}+ = {β ∈ vL | β > α} .
In order to find V ′, we have to find the maximal final segment Σ of vL≥0 such

that vU + Σ = vUV .
For a final segment S of vL, we define its invariance group to be

G(S) := {α ∈ vL | α + S = S} .
It is straightforward to show that this is a convex subgroup of vL, that it is a
proper subgroup if S 6= vL, and that for any two final segments S1 and S2 ,

G(S1 + S2) = G(S1) ∪ G(S2) = max{G(S1),G(S2)} .
Further, for each α ∈ vL, G(α−) = G(α+) = {0}. For this and more properties of
G(S), see [18, 19]. It follows that

G(vU) = G((n− 1)vU) = G(nvU) = G(vb+ nvU) = G(vb+ (n− 1)vU) = G(vV ) .

Let us first consider the case where G(vU) = {0} (which for instance holds in
rank 1). Denote by Γ the divisible hull of vL. For any final segment S of vL, let
SΓ be the smallest final segment of Γ containing S.

Assume first that vUn−1 has an infimum α0 in vL (that is, vV has infimum
α = vb + α0 in vL. Then (vU)Γ has infimum α1 := α0/(n − 1) in Γ and vUn−1

has infimum (n − 1)α1 = α0 in Γ. Since n − 1 ≥ 1, we have that (n − 1)α−1
is the largest final segment Σ of Γ such that α−1 + Σ = nα−1 . Further, we have
(n− 1)α−1 +α+

1 = nα+
1 , and as (n− 1)α1 +α1 = nα1 is the infimum of nα+

1 in Γ, it
follows that the largest final segment Σ of Γ such that α+

1 +Σ = nα+
1 cannot contain

any element smaller than (n − 1)α1; hence it is again equal to (n − 1)α−1 = α−0 .
Consequently, α−0 is the largest final segment Σ of Γ such that (vU)Γ +Σ = (vUn)Γ .
Intersecting all sets with vL, we find that α−0 (now understood as a final segment
in vL) is the largest final segment Σ of vL such that vU +Σ = vUn. Hence vb+α−0
is the largest final segment Σ of vL such that vU + Σ = vUV .

Now assume that vUn−1 (or equivalently, vV = vb+ vU) has no infimum in vL.
Let Σ be the largest final segment of vL such that vU + Σ = vUn. Suppose that
Σ properly contains vUn−1. Then there is some α ∈ Σ \ vUn−1, but as vUn−1 does
not have an infimum, there is also some α′ ∈ Σ \ vUn−1 such that α < α′ < vUn−1.
We have vU + vUn−1 = vUn, whence

vUn ⊆ vU + α′ ⊆ vU + α ⊆ vU + Σ = vUn ,

so equality holds everywhere. However, we then have that α′ − α ∈ G(vU), but as
vU 6= vL, we have G(vU) = {0}, whence α = α′ . This contradiction shows that
Σ = vUn−1.

Using that vb+ vUn−1 = vV , we summarize what we have shown. If vV has an
infimum α in vL, then α− is the largest final segment Σ of vL such that vU + Σ =
vUV . This is equal to vV if vV contains its infimum, and properly contains vV
otherwise. If vV has no infimum in vL, then vV is the largest final segment Σ of
vL such that vU + Σ = vUV .

Now we consider the case of G(vU) 6= {0}. Given α ∈ vL and S ⊆ vL, by ᾱ and
S̄ we denote the images of α and S in vL/G(vU). We have G(vU) = {0} (cf. [19]).
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Hence what we have proved already remains valid for the final segments vU and
vV in vL. So we have: If vV has an infimum ᾱ in vL, then ᾱ− is the largest final
segment Σ̄ of vL such that vU + Σ̄ = vUV . If vV has no infimum in vL, or if vV
contains its infimum in vL, then vV is the largest final segment Σ̄ of vL such that
vU + Σ̄ = vUV .

Let Σ be the maximal final segment of vL such that vUV + Σ = vUV . Given
a final segment S of vL, the maximal final segment of vL reducing to S̄ modulo
G(vU) is

G(vU) + S ,

which is equal to S if G(vU) is contained in G(S). Hence, Σ = G(vU) + α− =
G(vV ) + α− if there is α ∈ vL such that vV has infimum ᾱ in vL. If vV contains
its infimum ᾱ in vL, then Σ = G(vU) + α− = G(vV ) + vV = vV . If vV has no
infimum in vL, then Σ = G(vV ) + vV = vV .

At this point, let us take a moment to discuss a special case. Assume that U is
a proper OL-ideal, G(vU) is nontrivial, vb = 0, and vU admits 0 as an infimum.
Then vV has infimum 0̄ in vL and it follows that Σ = G(vU) + 0−, which contains
negative elements of vL. So the largest OL-ideal V ′ such that UV ′ = UV is
V ′ = (a ∈ L | va ∈ G(vU) + 0−), which is a fractional OL-ideal. In contrast, by
definition the annihilator is an ideal contained in OL , so annU/UV = (a ∈ OL |
va ∈ G(vU) + 0−) = OL . As vU does not contain 0 by our assumption on U , we
have vU = {α ∈ vL | α > G(vU)}, which means that U =MG(vU). All idempotent
ideals other than OL andML are of this form (for OL andML we have infimum 0
with trivial invariance group). For all idempotent ideals U we have U = V = UV .

From what we have shown, we obtain:

Proposition 4.1. We use the notation introduced above. If there is α ∈ vL such
that vV has infimum ᾱ in vL, then

(45) annU/UV = (a ∈ OL | va ∈ G(vU) + α−) .

This is equal to V if and only if vV contains its infimum in vL.
If vV has no infimum in vL, then V = annU/UV .

Proposition 4.2. 1) If there are α ∈ vL and a convex subgroup H of vL such that
V = (a ∈ OL | va > α +H}, then

annU/UV = (a ∈ OL | va ∈ H + α−)

which properly contains V , and

(46) MvHannU/UV ⊆ V .

In all other cases, V = annU/UV .

2) If ML annihilates U/UV , then OL = annU/UV , except if ML is principal and
either n = 2 and U = V = ML, or U = OL and V = ML = (b). In these latter
cases, ML = annU/UV .

Proof. 1): A part of the statement follows from the previous proposition if we take
into account that G({β ∈ vL | β > α+H}) = H. It only remains to prove (46) in
case annU/UV properly contains V . We have vMvH = {β ∈ vL | β > H} and

{β ∈ vL | β ∈ H + α−} = (α +H) ∪ {β ∈ vL | β > α +H} = (α +H) ∪ vV .
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As MvHV ⊆ V , it suffices to prove that vMvH + (α + H) ⊆ vV . This holds as
β > H implies β + γ > H for all γ ∈ H, as H is a convex subgroup, and this in
turn implies α + β + γ > α +H.

2): Assume thatML annihilates U/UV . If annU/UV = OL, then there is nothing
to prove, so suppose that annU/UV =ML .

Assume first that M2
L = ML . We have UML = UV = bUn. If U is principal,

then the same is true for bUn, but as UML is not principal, this leads to a contra-
diction. If U is not principal, then UV = UML = U , so annU/UV = OL , which
again is a contradiction.

Now assume that ML is principal. By Proposition 4.1, either annU/UV = V
or annU/UV is of the form (45). Assume that annU/UV = V . Then ML = V =
bUn−1. If U = OL , then V = bOL and annU/UV =ML = (b). If U 6= OL , then
U ⊆ML = bUn−1 and it follows that n = 2 and U =ML = V .

Now assume that annU/UV =ML is of the form (45). Then G(vU) + α− must
contain the smallest value of vML . By our earlier discussion, G(vU) must then be
trivial since otherwise, G(vU) +α− contains 0 so that annU/UV = OL . It follows
that the smallest element of vML is the infimum of vV . But as vL is discretely
ordered, this shows that vV = vML , whence V = ML = annU/UV . Since
U ⊆ V , we have either U = OL or U =ML . If U = OL , then V = bUn−1 = (b).
If U = ML , then ML = V = bMn−1

L and as ML is principal, we must have
n− 1 = 1. �

Corollary 4.3. Assume that (L|K, v) satisfies (8). If ML annihilates ΩOL|OK ,
then ΩOL|OK = 0 and ann ΩOL|OK = OL .

Proof. Assume thatML annihilates ΩOL|OK ; then since ΩOL|OK ' U/UV ,ML also
annihilates U/UV . Under the assumption of the corollary, we have that U = IE and
V = Ip−1

E are not principal, hence the exceptional cases of part 2) of the preceding
proposition cannot appear. Consequently, OL = annU/UV , which implies that
U/UV and thus also ΩOL|OK are zero. �

4.3. The ideal V of differents.

Under the assumptions of Theorem 1.1, we will now show that V is the B-ideal
generated by the differents of the generators bα of B over A. Take any generator
b ∈ OL of L|K and let h be its minimal polynomial over K. Denote the different
of b by δ(b) := h′(b). For i ≥ 1 we have

bi − σbi = bi − (σb)i = bi − (b+ (σb− b))i =
i−1∑
j=0

(
i

j

)
bj(σb− b)i−j .

Since the extension is unibranched, we have vσb = vb, whence v(b− σb) ≥ vb ≥ 0.
Consequently,

v(bi − σbi) ≥ v(σb− b) = v(b− σb) .
Every b ∈ OK [bα] \ OK is of the form

b =
n−1∑
i=0

cib
i
α
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with ci ∈ OK . Therefore,

vδ(b) = v
∏

id 6=σ∈G

(b− σb) =
∑

id 6=σ∈G

v

(
n−1∑
i=0

cib
i
α − σ

n−1∑
i=0

ci(bα)i

)

=
∑

id 6=σ∈G

v
n−1∑
i=1

ci(b
i
α − σbiα) .

For 1 ≤ i ≤ n− 1, we have

vci(b
i
α − σbiα) ≥ v(biα − σbiα) ≥ v(bα − σbα) ,

showing that

v

n−1∑
i=1

ci(b
i
α − σbiα) ≥ v(bα − σbα) .

Hence,

vδ(b) ≥
∑

id 6=σ∈G

v(bα − σbα) = vh′α(bα) .

We use this to conclude:

Proposition 4.4. Under the assumptions of Theorem 1.1, we have:

(47) V = (δ(b) | b ∈ OL \ OK) .

Proof. Since OL is the union of the chain of rings OK [bα], α ∈ S, we have

(δ(b) | b ∈ OL \ OK) =
⋃
α∈S

(δ(b) | b ∈ OK [bα] \ OK) =
⋃
α∈S

(h′α(bα)) = V .

�

4.4. The case of Artin-Schreier defect extensions.

Theorem 4.5. Let (L|K, v) be an Artin-Schreier defect extension with ramification
ideal IE . Then there is an OL-module isomorphism

ΩOL/OK
∼= IE/I

p
E .

Proof. Let ϑ be an Artin-Schreier generator of L|K. By Theorem 3.4, the OK-
algebras OK [ϑc], with c ∈ K, form a chain of subrings of L whose union is OL. For
c ∈ K, ϑc = tc(ϑ−c), where tc ∈ OK is such that vϑc = 0. For v(ϑ−c1) < v(ϑ−c2),
by (28) we have that

ϑc1 =
tc1
tc2
ϑc2 + tc1(c2 − c1)

with
tc1
tc2

, tc1(c2 − c1) ∈ OK . By equation (38), the minimal polynomial gc of ϑc

satisfies g′c(ϑc) = −tp−1
c . We will apply Theorem 1.1 together with equation (3). Let

A = OK , B = OL and S = K ordered by α < β if v(ϑ−α) < v(ϑ−β). Let bα = ϑα,
aα = tα, cα,β = tα(β − α) and hα = fα so that h′α(bα) = f ′α(ϑα) = −tp−1

α . Hence
for every α ∈ S, h′α(bα)/ap−1

α = −1. The theorem now follows from equation (3)
together with Lemma 3.6, where U is the OL-ideal U = (tα | α ∈ S) = IE . �
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4.5. The case of Kummer defect extensions of degree p.

Theorem 4.6. Assume that charK = 0 and let (L|K, v) be a Kummer defect
extension of degree p with ramification ideal IE . Then there is an OL-module
isomorphism

ΩOL|OK
∼= IE/I

p
E .

Proof. Let η be a Kummer generator of L|K which is a 1-unit. We use the notation
from Section 3.2. By Corollary 3.5, the OK-algebras OK [η<c>] with c a 1-unit in
K form a chain of subrings of L whose union is OL. For v(η − c1) < v(η − c2), by
(33) we have that

η<c1> =
Tc1
Tc2

η<c2> + Tc1χ(c2 − c1)

with
Tc1
Tc2

, Tc1χ(c2 − c1) ∈ OK . By equation (41), the minimal polynomial f ′c of

η<c> satisfies f ′c(η<c>) = T p−1
c u with u a unit in OL . We will apply Theorem 1.1

together with equation (3). Let A = OK , B = OL and S = K ordered by α < β
if v(η − α) < v(η − β). Let bα = η<α>, aα = Tα, cα,β = Tαχ(β − α) and hα = fα
so that h′α(bα) = f ′α(η<α>) = T p−1

c u. Hence for every α ∈ S, h′α(bα)/ap−1
α = u. The

theorem now follows from equation (3) together with Lemma 3.7, where U is the
OL-ideal U = (Tα | α ∈ S) = IE . �

5. The trace of valuation rings and Dedekind differents

5.1. Defect extensions of prime degree.

In this section we will consider the trace on an extension E = (L|K, v) that satisfies
(8). If L|K is an Artin-Schreier extension, then we write L = K(ϑ) where ϑ is an
Artin-Schreier generator. If charK = 0 and L|K is a Kummer extension, then we
write L = K(η) where η is a Kummer generator, that is, ηp ∈ K; as explained at
the beginning of Section 2.8, we can assume that η is a 1-unit.

The proof of the following fact can be found in [14, Section 6.3].

Lemma 5.1. Take a separable field extension K(a)|K of degree n and let f(X) ∈
K[X] be the minimal polynomial of a over K. Then

(48) TrK(a)|K

(
am

f ′(a)

)
=

{
0 if 1 ≤ m ≤ n− 2
1 if m = n− 1 .

�

For arbitrary b, c ∈ K, we note:

(49) b(a− c)p−1 ∈MK(a) ⇐⇒ vb > −(p− 1)v(a− c) .

First we consider Artin-Schreier extensions. By Lemma 5.1 and equation (35),

(50) TrK(ϑ)|K
(
(ϑ− c)i

)
=

{
0 if 1 ≤ i ≤ p− 2
−1 if i = p− 1

for arbitrary c ∈ K since ϑ− c is also an Artin-Schreier generator. In particular,

TrK(ϑ)|K
(
b(ϑ− c)p−1

)
= −b .
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By (49) it follows that

TrK(ϑ)|K
(
MK(ϑ)

)
⊇ {b ∈ K | vb > −(p− 1)v(ϑ− c) for some c ∈ K}(51)

= {b ∈ K | vb ≥ −(p− 1)v(ϑ− c) for some c ∈ K}
= (b ∈ K | vb ∈ −(p− 1)v(ϑ−K)}
= (b ∈ K | vb ∈ (p− 1)ΣE} ,

where the first equality follows from the fact that −(p− 1)v(ϑ− c) has no smallest
element, and the last equality follows from equation (23) of Theorem 2.8.

Now we consider Kummer extensions. Since (ηi)p ∈ K, we have that

TrK(η)|K(ηi) = 0

for 1 ≤ i ≤ p− 1. For c ∈ K and 0 ≤ j ≤ p− 1, we compute:

(η − c)j =

j∑
i=1

(
j

i

)
ηi(−c)j−i + (−c)j .

Thus for every b ∈ K,

(52) TrK(η)|K(b(η − c)j) = pb(−c)j .
By (49), b(η − c)p−1 ∈MK(η) holds if and only if vb > −(p− 1)v(η − c); the latter
remains true if we make v(η − c) even larger. Since η is a 1-unit, there is c ∈ K
such that v(η − c) > 0, which implies that vc = 0. Hence we may choose c ∈ K
with vb > −(p − 1)v(η − c) and vc = 0. Applying (52) with j = p − 1, we find
that TrK(η)|K(b(−c)−(p−1)(η − c)p−1) = pb. We obtain:

TrK(η)|K
(
MK(η)

)
⊇ {pb | b ∈ K, vb > −(p− 1)v(η − c) for some c ∈ K}(53)

= {b ∈ K | vb ≥ vp− (p− 1)v(η − c) for some c ∈ K}

=

(
b ∈ K | vb ∈ (p− 1)

(
1

p− 1
vp− v(η −K)

))
= (b ∈ K | vb ∈ (p− 1)ΣE) ,

where the first equality follows from the fact that −(p− 1)v(ϑ− c) has no smallest
element, and the last equality follows from equation (24) of Theorem 2.8.

In order to prove the opposite inclusions in (51) and (53), we have to find out
enough information about the elements g(a) ∈ K(a) that lie in MK(a). Using the
Taylor expansion, we write

g(a) =

p−1∑
i=0

∂ig(c)(a− c)i .

By Lemma 2.4 there is c ∈ K such that among the values v∂ig(c)(a− c)i, 0 ≤ i ≤
p − 1, there is precisely one of minimal value, and the same holds for all c′ ∈ K
with v(a − c′) ≥ v(a − c). In particular, we may assume that v(a − c) > va. For
all such c, we have:

vg(a) = min
0≤i≤p−1

v∂ig(c)(a− c)i .

Hence for g(a) to lie inMK(a) it is necessary that v∂ig(c)(a−c)i > 0, or equivalently,

(54) v∂ig(c) > −iv(a− c)
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for 0 ≤ i ≤ p− 1 and c ∈ K as above.

In the Artin-Schreier extension case, for g(ϑ) ∈ MK(ϑ) and c ∈ K as above,
using (50) we find:

TrK(ϑ)|K(g(ϑ)) =

p−1∑
i=0

TrK(ϑ)|K(∂ig(c)(ϑ− c)i) = −∂p−1g(c) .

Since ∂p−1g(c) > −(p− 1)v(ϑ− c) by (54), this proves the desired equality in (51).

In the Kummer extension case, for g(η) ∈MK(η) and c ∈ K as above, using (52)
we find:

TrK(η)|K(g(η)) =

p−1∑
j=0

TrK(η)|K(∂jg(c)(η − c)j) = p

p−1∑
j=0

∂jg(c)(−c)j .

As we assume that v(η − c) > 0, we have that vc = 0 and

−iv(η − c) ≥ −(p− 1)v(η − c) for 0 ≤ i ≤ p− 1 .

Hence by (54), v
∑p−1

i=0 ∂ig(c)(−c)i ≥ −(p − 1)v(η − c). This proves the desired
equality in (53).

Remark 5.2. In the case of a Kummer extension, it follows from (53) that pOK ⊆
TrK(η)|K

(
MK(η)

)
since vp = vp− (p− 1)vη as η is a unit.

5.2. Proof of Theorem 1.5.

We have just proved the second equality of (9) in the previous section; the third
equality follows from part 1) of Lemma 2.7. The first equality is seen as follows.
Take any a ∈ OL . As the defect extension (L|K, v) is immediate, there is some
b ∈ OK such that a − b ∈ ML. Then Tr L|K(a) = Tr L|K(b) + Tr L|K(a − b) with
Tr L|K(a− b) ∈ Tr L|K(ML). If charL = p, then Tr L|K(b) = 0. If charL = 0, then
Tr L|K(b) = pb ∈ pOK , which is contained in Tr L|K(ML) as stated in Remark 5.2.

Assume that the extension E has independent defect. Then by part 1) of Propo-
sition 2.10, IpE = IE as well as (IE ∩ K)p = IE ∩ K. This implies that Ip−1

E = IE
and (IE ∩ K)p−1 = IE ∩ K. On the other hand, we know from the equivalence
of statements a) and b) in Theorem 1.4 that IE = MvH , where H is a strongly
convex subgroup of vL, and that H is equal to the convex subgroup HE appearing
in the definition of independent defect. Now the second equation of (10) follows
from (9) as (IE ∩K)p−1 = IE ∩K = MvH ∩K. The third equation of (10) holds
since MvH = (a ∈ L | va > H).

Now assume that (10) holds for some strongly convex subgroup H of vL = vK.
Set Σ := vL \H = vK \H. From (9) we now obtain:

(b ∈ K | vb ∈ (p− 1)ΣE) = (b ∈ K | vb ∈ Σ) .

On the one hand, we have

(b ∈ K | vb ∈ (p− 1)ΣE) = (b ∈ K | vb ∈ ((p− 1)ΣE)
−) ,

and on the other,

(b ∈ K | vb ∈ Σ) = (b ∈ K | vb ∈ ((p− 1)Σ)−)
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by Lemma 2.1. This implies that ((p − 1)ΣE)
− = ((p − 1)Σ)−. Suppose that

ΣE 6= Σ. If there is α ∈ ΣE \ Σ, then α < Σ, whence (p − 1)α < (p − 1)Σ and
therefore, ((p − 1)ΣE)

− ) ((p − 1)Σ)−, contradiction. Symmetrically, we obtain a
contradiction if there is α ∈ Σ \ΣE . This shows that Σ = ΣE , and we thus obtain
that E has independent defect and that H = HE .

The last statement of the theorem holds since vp /∈ H by part 2) of Proposi-
tion 2.10. If (vK)vp is archimedean, this forces H = {0}. �

5.3. Dedekind differents.

In this section, we compute the Dedekind differents D(OL|OK) in the case where
vL = vK. We will employ the following auxiliary results.

Lemma 5.3. Take any OL-fractional ideal I.

1) If vI has an infimum α in vL, then OL :L I = (a ∈ L | va ≥ −α). If vI has no
infimum in vL, then OL :L I = (a ∈ L | va > −vI), which is not a principal ideal,
and v(OL :L I) has no infimum.

2) If vI has an infimum α in vL, then OL :L (OL :L I) = (a ∈ L | va ≥ α). If vI
has no infimum in vL, then OL :L (OL :L I) = I.

Proof. 1): We compute:

OL :L I = (a ∈ L | aI ⊆ OL) = (a ∈ L | va+ β ≥ 0 for all β ∈ vI)

= (a ∈ L | va ≥ −vI) .

Since α is an infimum of vI if and only if −α is a supremum of −vI, this yields
our assertions.

2): This follows by applying part 1) twice. �

Denote by T (OL|OK) theOL-ideal generated by Tr L|K(OL). We use the previous
lemma to show:

Theorem 5.4. Assume that (L|K, v) is a finite unibranched extension with vL =
vK. Then we have:

1) C(OL|OK) = OL :L T (OL|OK) and D(OL|OK) = OL :L (OL :L T (OL|OK)).

2) If vTr L|K(OL) has an infimum α in vK, then D(OL|OK) = (a ∈ L | va ≥ α)
and if D(OL|OK) 6= T (OL|OK), then

(55) MLD(OL|OK) = T (OL|OK) .

If vTr L|K(OL) has no infimum in vK, then D(OL|OK) = T (OL|OK), which is not
principal.

Proof. 1): Take any z ∈ L. Since vL = vK, there is z1 ∈ K such that vz1 = vz, so
that z = z1z2 with z2 a unit in OL . Then

Tr L|K(zOL) = z1Tr L|K(z2OL) = z1Tr L|K(OL) .

Observe that z1Tr L|K(OL) ⊆ OK if and only if zT (OL|OK) ⊆ OL . This proves
the assertions of part 1).

2): A part of the assertions follow from part 1) together with part 2) of Lemma 5.3;
it only remains to prove (55) in case D(OL|OK) properly contains T (OL|OK). In
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this case, D(OL|OK) = (a ∈ L | va ≥ α) and T (OL|OK) = (a ∈ L | va > α) =
vML + (a ∈ L | va ≥ α), which proves (55). �

Proof of Theorem 1.6:

Lemmas 3.6 and 3.7 together with Proposition 4.4 show that Ip−1
E is equal to theOL-

ideal generated by the differents of all elements of OL \OK . From Theorem 1.5 we
know that Tr L|K (OL) = (IE ∩K)p−1, so T (OL|OK) = Ip−1

E , whence vTr L|K(OL) =

vT (OL|OK) = vIp−1
E . If this has no infimum in vK = vL, then from Theorem 5.4

we obtain that D(OL|OK) = T (OL|OK) = Ip−1
E . As the extension (L|K, v) is

immediate, vIp−1
E has no smallest element. Hence if vIp−1

E has an infimum α, it does

not contain it, and again by Theorem 5.4, D(OL|OK) = (a ∈ L | va ≥ α) ) Ip−1
E

and MLD(OL|OK) = T (OL|OK) = Ip−1
E .

Assume that (K, v) has rank 1. Then the only proper convex subgroup of vL is
{0}. Thus Proposition 4.1 shows that ann ΩOL|OK = Ip−1

E if vIp−1
E has no infimum

in vL, and ann ΩOL|OK = (a ∈ L | va ≥ α) if vIp−1
E has infimum α. From what we

have already shown, it follows that D(OL|OK) = ann ΩOL|OK .

Assume that the extension E has independent defect; then ΩOL|OK = 0 by The-
orem 1.4 and therefore, ann ΩOL|OK = OL . If HE = {0}, then Tr L|K (OL) =

Tr L|K (ML) =MK by Theorem 1.5, hence Ip−1
E = T (OL|OK) =ML . Since vMK

has infimum 0, it follows from part 2) of Theorem 5.4 that D(OL|OK) = OL .
Again, Proposition 4.1 shows that ann ΩOL|OK = OL .

On the other hand, if HE 6= {0}, then again by Theorem 1.4, Tr L|K (OL) =
Tr L|K (ML) = MvHE

∩ K, and as vMvHE
∩ K has no infimum in vK, we have

D(OL|OK) = T (OL|OK) =MvHE
( OL = ann ΩOL|OK in this case.

Finally, assume that D(OL|OK) is equal to OL or toMvH for a strongly convex
nontrivial subgroup H of vL. If the former holds, then D(OL|OK) is not equal
to Ip−1

E , so from what we have already proved it follows that 0 is the infimum of

vIp−1
E . This implies that IE =ML =MvH where H = {0}. Since vML = vIE has

no smallest element, it follows that {0} is a strongly convex subgroup of vL.
If the latter holds, then D(OL|OK) is not principal and therefore by what we

have shown, D(OL|OK) can only be equal to Ip−1
E . This implies that IE = MvH

for some strongly convex subgroup of vL. In both cases, it follows from from the
equivalence a)⇔b) of Theorem 1.4 that E has independent defect. �

6. Proof of Theorems 1.7 and 1.8

Take a defect extension E = (L|K, v) of degree p. Then by the fundamental
inequality, the extension is unibranched and immediate, and in particular, vL =
vK.

We first prove Theorem 1.7, so we assume that E is an Artin-Schreier extension
generated by ϑ ∈ L with ϑp − ϑ = a ∈ K. By Corollary 2.9, v(ϑ − c) < 0 for all
c ∈ K. It follows that v(ϑp − cp) = v(ϑ− c)p = pv(ϑ− c) < v(ϑ− c) and thus,

(56) v(a−℘(c)) = v(ϑp− ϑ− cp + c) = min{v(ϑp− cp), v(ϑ− c)} = pv(ϑ− c) .
This proves equation (11).
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The equivalence a)⇔b) follows from the definition of independent defect together
with equation (23) of Theorem 2.8 which says that ΣE = −v(ϑ −K). The equiv-
alences b)⇔c) and e)⇔f) follow from equation (11). The equivalence c)⇔d) is
trivial.

Now assume that vK is p-divisible. Then the equivalence a)⇔e) follows from
part 1) of Proposition 2.10 together with the equation ΣE = −v(ϑ−K).

Finally, assume that (K, v) has rank 1. Then the only proper convex subgroup
of vK is H = {0}, so that condition d) is equivalent to condition g).

Now we prove Theorem 1.8, so we assume that E is a Kummer extension. As
explained at the beginning of Section 2.8, it is generated by a 1-unit η ∈ L with
ηp = a ∈ K. By Corollary 2.9, v(η − c) < 1

p−1
vp for all c ∈ K.

The following is part of Lemma 2.18 of [20]:

Lemma 6.1. Take η ∈ K̃ such that ηp ∈ K and vη = 0. Then for c ∈ K such that
v(η − c) > 0, v(η − c) < 1

p−1
vp holds if and only if v(ηp − cp) < p

p−1
vp, and if this

is the case, then v(ηp − cp) = pv(η − c).

In order to prove equation (12), we have to discuss the remaining case of v(η −
c) ≤ 0. If v(η − c) = 0, then vc ≥ 0 and c is not a 1-unit. Hence cp is not a 1-unit
while a = ηp is, whence v(a − cp) = 0 = pv(η − c). If v(η − c) < 0, then vc < 0
and v(η − c) = vc. It follows that vcp < 0 = vηp, so that v(ηp − cp) = vcp = pvc =
pv(η − c). This completes the proof of equation (12).

The equivalence a)⇔b) follows from the definition of independent defect together
with equation (24) of Theorem 2.8, which says that ΣE = 1

p−1
vp− v(ϑ−K). The

equivalences b)⇔c) and e)⇔f) follow from equation (12) and the fact that α < H
if and only if pα < H since H is a convex subgroup of vK. The equivalence c)⇔d)
is trivial.

Now assume that vK is p-divisible. Then by part 1) of Proposition 2.10 together
with the equation ΣE = 1

p−1
vp−v(ϑ−K), condition a) is equivalent to the equation

p

p− 1
vp− pv(η −K) =

1

p− 1
vp− v(η −K) .

Multiplying both sides with −1 and then adding p
p−1

vp to both sides, we find that

this equation is equivalent to condition e).

Finally, if (K, v) has rank 1, then it follows as in the proof of Theorem 1.7 that
condition d) is equivalent to condition g).
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