Transseries emerged in connection with Écalle's work on Dulac's problem and Dahn and Göring's work on nonstandard models of real exponentiation, and some can be viewed as asymptotic expansions of solutions to differential equations. More recently, Aschenbrenner, Van den Dries, and Van der Hoeven completely axiomatized the elementary theory of the differential field of (logarithmic-exponential) transseries and showed that it is model complete.